
UDAVA: An Unsupervised Learning Pipeline for Sensor Data
Validation in Manufacturing

Erik Johannes Husom
SINTEF Digital, Norway

erik.husom@sintef.no

Simeon Tverdal
SINTEF Digital, Norway

simeon.tverdal@sintef.no

Arda Goknil
SINTEF Digital, Norway

arda.goknil@sintef.no

Sagar Sen
SINTEF Digital, Norway

sagar.sen@sintef.no

ABSTRACT

Manufacturing has enabled the mechanized mass production of the

same (or similar) products by replacing craftsmen with assembly

lines of machines. The quality of each product in an assembly line

greatly hinges on continual observation and error compensation

during machining using sensors that measure quantities such as

position and torque of a cutting tool and vibrations due to possi-

ble imperfections in the cutting tool and raw material. Patterns

observed in sensor data from a (near-)optimal production cycle

should ideally recur in subsequent production cycles with min-

imal deviation. Manually labeling and comparing such patterns

is an insurmountable task due to the massive amount of stream-

ing data that can be generated from a production process. We

present UDAVA, an unsupervised machine learning pipeline that

automatically discovers process behavior patterns in sensor data

for a reference production cycle. UDAVA performs clustering of

reduced dimensionality summary statistics of raw sensor data to en-

able high-speed clustering of dense time-series data. It deploys the

model as a service to verify batch data from subsequent production

cycles to detect recurring behavior patterns and quantify deviation

from the reference behavior. We have evaluated UDAVA from an

AI Engineering perspective using two industrial case studies.

ACM Reference Format:

Erik Johannes Husom, Simeon Tverdal, Arda Goknil, and Sagar Sen. 2022.

UDAVA: An Unsupervised Learning Pipeline for Sensor Data Validation in

Manufacturing. In 1st Conference on AI Engineering - Software Engineering

for AI (CAIN’22), May 16–24, 2022, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3522664.3528603

1 INTRODUCTION

Repetitive manufacturing is a form of mass production that relies

on making large numbers of identical goods/parts in a continuous

flow. It is used by manufacturers committed to a specific production

rate. For instance, Renault produces 1500 cylinder heads per day for

electric car engines in one of its production lines in the bodywork

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9275-4/22/05. . . $15.00
https://doi.org/10.1145/3522664.3528603

assembly plant [35] in Valladolid, Spain. These cylinder heads are

repetitivelymanufactured using a fleet of multi-axis CNC (computer

numerical control) milling machines chipping raw material at high

speed. ITP Aero [22], a Spanish turbine manufacturer, delivers

turbine discs with fir tree slots where each slot must be identical

and cut using the broaching process [13]. Data acquisition systems

on edge devices (e.g., program logic controllers) acquire sensor

data at sub-microsecond sampling frequencies during repetitive

manufacturing for real-time decision making and post mortem

analysis in case of product defects or production failures.

Sensor data acquired during machining can reveal transitions in

process behavior reflecting normal operation or process shifts and

drifts [16] leading to product defects. Process shifts and drifts are

unexplained or unexpected trends of a measured process parame-

ter(s) away from its intended target value in time-ordered analysis.

They affect the ability to produce goods within specifications. One

common source of process shifts is the initial, manual setup of

the manufacturing line (e.g., sensor calibration [29]), which has

to take place each time a new lot (i.e., a considerable quantity of

goods/parts) is produced. A process drift goes toward shifting in

one direction over time. The typical sources of process drifts are

sensor faults [25], tool wear [42], workpiece surface quality [23],

and chip evacuation mechanisms [8]. It is hard to detect a process

drift as it may get hidden behind others.

High-volume and velocity multivariate sensor data acquired

during manufacturing introduce a challenging task for human op-

erators to find diverse patterns of interest and track their devia-

tions (e.g., process shifts and drifts) over multiple production cycles.

Therefore, we investigate in this paper whether we can engineer

an AI system to (a) automatically discover reference patterns rep-

resenting modes of process behavior in manufacturing data from

a reference production cycle and (b) validate data in subsequent

production cycles by identifying the recurrence of these patterns.

In this paper, we present an unsupervised machine learning

pipeline for sensor data validation in manufacturing, i.e., UDAVA

automatically discovering process behavior patterns in sensor data.

Machine Learning (ML) pipelines for data validation in the literature

cluster raw time series data obtained directly from manufacturing

sensors. They use the raw data similarity as a distance metric to

divide time series data into sub sequences [2]. The most common

distance metric is the Euclidean distance [14] which is limited to

fixed sizes of time series and sensitive to noise and distortion. Dy-

namic time warping (DTW) [31] overcomes some of the limitations

of Euclidean distance but has quadratic computational complexity

159

2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3522664.3528603&domain=pdf&date_stamp=2022-10-17

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Erik Johannes Husom, Simeon Tverdal, Arda Goknil, and Sagar Sen

and hence does not scale very well with large data sets. Given the

large data sets of historical data in manufacturing, UDAVA extracts

features from the sub sequences of time series data and clusters

these features instead of raw data.

UDAVA takes, as input, time-varying sensor data from one or

more reference production cycles during repetitive manufacturing.

A reference production cycle is a (near-)optimal production cycle

where the manufactured products are within acceptable tolerances

of the specification, with almost no defects, preferably low energy

consumption, and minimal waste generation. UDAVA performs

clustering on vectors of summary statistics (i.e., feature vectors) de-

rived from raw sensor data over configurable window sizes. The

raw sensor data is automatically labeled based on clusters repre-

senting distinct behavior modes. UDAVA wraps, as a web service,

the AI model represented by clusters/behavior modes discovered

in the reference sensor data. The web service can be updated with

a new model when the product or process parameters change. It

is containerized as a Docker container and deployed on edge de-

vices or cloud infrastructures where new data from subsequent

production cycles is acquired continually.

UDAVA essentially solves an unsupervised learning problem in

the manufacturing domain. However, numerous challenges arise in

the engineering and deployment of UDAVA in industrial production

environments. Therefore, we have analyzed and evaluated UDAVA

from data science and AI engineering perspectives (see our research

questions in Section 6). We have used reference data sets from two

industrial case studies: (a) broaching fir tree slots for jet engine

turbine discs performed at CFAA - Advanced Manufacturing Centre

for Aeronautics, Spain, while data acquisition occurs on an edge

device developed by SAVVY data systems [36], and (b) high-speed

CNC milling of car engine cylinder heads at Renault’s Valladolid

factory, Spain, where data is acquired in an edge device CASIP and

high-frequency data persisted in the cloud infrastructure KASEM

E-maintenance both developed by Predict [34] in France.

The paper is structured as follows. Sections 2-3 present the back-

ground and related work. In Section 4, we describe the technical

details of UDAVA. Section 5 presents the deployment of UDAVA.

Section 6 reports on the evaluation. Section 7 concludes the paper.

2 BACKGROUND

UDAVA is engineered as a data pipeline (Section 2.1) and employs

unsupervised learning (Section 2.2). We evaluated UDAVA from an

AI engineering perspective (Section 2.3).

2.1 Data Pipelines with Data Version Control

A data pipeline is a digital infrastructure facilitating data process-

ing. ML applications generally require complex data pipelines that

can handle all steps from processing raw data to producing a

trained (and possibly deployed) ML model [3]. The first part of

such pipelines involves data cleaning, feature engineering, and data

restructuring for the input format of the ML algorithm. It is fol-

lowed by building and training the model. Developing an ML model

involves running various experiments to fine-tune configuration

and control parameters. Therefore, there is a need to track source

code, input and output data, control parameters, and models.

Traditional version control systems likeGit [27] easily keep track

of changes in source code and control parameters but are ill-suited

for tracking big data and binary files, e.g., ML models. We use the

Data Version Control (DVC) framework [21, 24] to support big files

in our pipeline. A DVC pipeline is created by defining a set of stages.

Each stage has a run command(s) concerning its dependencies to

other stages. The dependencies usually involve input data, control

parameters, expected output, and source code. DVC can automati-

cally detect and track changes in any element of the pipeline. The

cache stores output of data processing stages. DVC computes out-

put hashes to compare the current output with the previous ones of

any given stage. The advantage is that DVC can skip the execution

of certain stages and instead fetch the correct output from the cache

if they have already run in the same configuration. The execution

time is significantly reduced for large numbers of experiments. We

can configure DVC to track performance metrics for any model

created using the pipeline. And, we can analyze the history of all

experiments with perfect reproducibility.

2.2 Unsupervised learning

Unsupervised learning refers to machine learning algorithms iden-

tifying patterns in data sets without any labels or human guidance.

One unsupervised learning method is clustering observations in

a data set based on their characteristics. It aims to find a clus-

ter configuration with the maximum similarity between in-cluster

observations and the maximum dissimilarity between different clus-

ters. Measuring the Euclidean distance between observations gives

observation similarity. UDAVA employs two clustering algorithms,

i.e., K-means and the mean shift algorithm.

K-means clustering [28, 43] is a centroid-based cluster algorithm

that defines a cluster with a vector representing the cluster center

(centroid). It requires a predefined number of clusters. First, each ob-

servation in the data set is randomly assigned to a cluster. Then, the

algorithm computes the centroids using the random assignments. It

redistributes the observations to new clusters based on the closest

centroids. The centroids are recomputed until we have no changes

on the cluster assignments or reach a predefined maximum number

of iterations. The cluster centroids are identified by using a cluster

label, i.e., an integer from 1 to 𝑁 , where 𝑁 is the total number of

clusters. We can improve the efficiency of the K-means by using

only a subset, a mini-batch of randomly sampled data from the

data set in each iteration during model training [37]. Mini-batches

significantly reduce the time needed for the model to converge and

make the K-means suitable to deal with large amounts of data.

The mean shift [10, 18] is a density-based algorithm searching

dense areas within the observation space to identify clusters. It

automatically decides the number of clusters, while the K-means

algorithm needs a fixed number. However, the mean shift is much

more computationally expensive to run.

2.3 AI Engineering

Artificial intelligence (AI) and machine learning (ML) have been

increasingly adopted by the industry. It has been observed over

a dozen case studies that deploying industry-strength AI systems

(i.e., systems that include AI components) and ML models in those

160

UDAVA: An Unsupervised Learning Pipeline for Sensor Data Validation in Manufacturing CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

systems proves to be challenging [7]. The problems most com-

panies experience in AI systems are concerned with a range of

topics, including data quality, design methods and processes, the

performance of ML models, and deployment and compliance.

Bosch et al. [7] define the term "AI engineering" as an extension

of software engineering with new processes and technologies for

the development and evolution of AI systems. The goal of AI en-

gineering is to address the engineering challenges of AI systems

from the software engineering point of view. To this end, Bosch

et al. propose a research agenda that provides (i) typical evolution

patterns concerned with AI adoption that companies experience,

(ii) an overview of the engineering challenges surrounding ML

solutions, and (iii) open items that need to be addressed.

Below we briefly describe some AI engineering dimensions we

consider while devising and evaluating UDAVA.

• Data versioning and dependency management. The

quality of data used for training is crucial to achieving the

high performance of ML models. Since data pipelines tend

to be less robust than software pipelines, it is important to

provide data quality management solutions. Data quality

can be supported by simple checks for data being in range

or present. More advanced checks ensure that the average

for a data window stays constant or the statistical distribu-

tion of data remains similar. Ensuring data quality can be

particularly challenging for different types of data in use.

• Deployment infrastructure. Independent from central-

ized or distributed ML approaches, models need to be de-

ployed in systems in the field. Companies need a deployment

infrastructure that reliably deploys subsequent model ver-

sions, measures model performance, and raises warnings for

anomalous behavior. Deployment of ML models may require

a substantial change in the system architecture.

• Quality attributes. The key challenge of data science for

ML models is to achieve high accuracy and precision. On

the other hand, several other quality attributes, including

computation performance, the number of inferences per

time unit, real-time properties, and system robustness, are

relevant from the AI engineering perspective. It is a challenge

to design and implement an AI system that meets the quality

requirements of the ML components in the system.

• Integration of models and components. Since an AI sys-

tem has not only AI components, companies need to inte-

grate ML models with the traditional software components

of the system. Software verification techniques need to be

adapted to check whether AI and regular software compo-

nents are integrated seamlessly. Depending on the criticality

of ML models, the validation and verification activities need

to be more elaborate and strict.

3 RELATEDWORK

Approaches to time series clustering, in general, have been reviewed

by Aghabozorgi et. al. [1], and Alqahtani et. al. [2] provide a re-

view of (deep)-clustering approaches to time series data. Dogan

et. al. [15] present a comprehensive overview of ML methods for

manufacturing. According to these surveys, there is a considerable

focus on using clustering to detect patterns in the end product

(e.g., [26]). Clustering time-varying sensor data from the manu-

facturing process has been used to address anomaly detection and

predictive maintenance (e.g., [4]). Predictive maintenance in man-

ufacturing often assumes that sensor data is high quality without

sensor faults [25]. We believe that, like in UDAVA, unsupervised

learning should steer its focus towards sensor data validation.

Euclidean distance is used as a deviation metric in clustering to

compute the distance between two time series data. One limitation

of Euclidean distance is that distance only between fixed-length

time series data can be computed. This metric is very sensitive

to noise and distortion and less robust to non-linearity. Dynamic

Time Warping (DTW) [31] overcomes the limitation of Euclidean

distance by aligning (warping) the series before computing the

distance. However, two temporal points with different local struc-

tures might be mistakenly matched. This issue is addressed by the

shape Dynamic Time Warping (shapeDTW) [51] using point-wise

local structural information. DTW has been used for manufactur-

ing applications (e.g., bearing fault diagnosis [44] and predictive

maintenance [40]). It has quadratic computational complexity and

does not scale with large data sets in manufacturing.

Clustering large data sets requires dimensionality reduction [45].

Widely used methods for dimensionality reduction include Princi-

pal Component Analysis (PCA) [41] extracting features mutually

uncorrelated, K-grams [49] preserving the sequential nature of

series, Discrete Fourier Transforms [17] extracting features from

time-frequency characteristics, and Shapelets [48]. Like some of

these methods, UDAVA employs feature extraction, a form of di-

mension reduction, to lower the cost of high-dimensional data and

achieve higher clustering accuracy.

Engineering AI systems [7] (e.g., infusing unsupervised learn-

ing into manufacturing environments) has not been discussed ex-

tensively. Angelopoulos et. al. [5] present learning algorithms for

Industry 4.0 with little focus on how to design and deploy them.

Some works [9, 46, 47] discuss unsupervised learning for predictive

maintenance and anomaly detection without mentioning AI engi-

neering aspects. Our paper presents the field knowledge of how ML

models are deployed, maintained, tested, from which researchers

can benefit.

4 UDAVA APPROACH

The process in Figure 1 presents an overview of our approach. The

main steps of the approach are as follows.

(1) Preprocessing reference data. UDAVA splits time series

data into subsequences and extracts statistical features from

them. Output feature vectors represent the subsequences.

(2) Unsupervised learning of clusters.UDAVA performs clus-

ter analysis on the feature vectors. It assigns each feature

vector to a cluster/category. The cluster analysis produces

a model consisting of several cluster centers; each cluster

center defines a process behavior pattern.

(3) Labeling and validating new data. UDAVA computes the

feature vectors of the time series data to be validated. It

calculates a deviationmetric by checking the sum of distances

between feature vectors and cluster centers.

UDAVA preprocesses both reference (training) and production

time series data (data to be validated). The feature vectors extracted

161

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Erik Johannes Husom, Simeon Tverdal, Arda Goknil, and Sagar Sen

Figure 1: Overview of UDAVA.

from the production time series data are input to Step 3 in Figure 1.

The following subsections explain each step in Figure 1.

4.1 Reference Data Preprocessing

Information in raw time series exists as relations between consecu-

tive time-varying data points. Clustering high volumes of raw time

series is computationally expensive. UDAVA extracts features from

data subsequences, thus removing temporal dimension. If the finer

granularity is needed, it uses the sliding window technique [11, 17]

requiring more computing time. Feature extraction is done on each

subsequence, resulting in a feature vector (as we call it).

Summary statistics of subsequences can be used as features to

generate a feature vector. UDAVA employs six basic features that

convey essential information of sub-sequences:mean,median, stan-

dard deviation, variance, range, and frequency. The range is the

difference between the minimum and maximum values of the sub-

sequence, and the frequency is calculated using Fast Fourier Trans-

form (FFT). Features are given equal weight in clustering and are

scaled based on the following equation:

𝑓 =
𝑓 ′ − 𝜇

𝜎
, (1)

where 𝜇 and 𝜎 are the mean and standard deviation of the feature

𝑓 ′ before scaling and 𝑓 is the scaled feature.

4.2 Unsupervised learning of clusters

UDAVA runs a clustering algorithm to automatically assign each

feature vector into clusters (Step 2 in Figure 1). The output of the

algorithm is a cluster model consisting of cluster centers for refer-

ence data. UDAVA is configurable for a wide range of clustering

algorithms available in the Python package Scikit-learn [32]. For

instance, the standard K-means algorithm can be used for its ef-

ficiency when the number of clusters is specified. UDAVA can be

configured with the mean shift algorithm if one prefers the number

of clusters to be automatically decided. In K-means clustering, the

similarities between observations in the data set are evaluated by

calculating the multidimensional Euclidean distance based on all

the features in each feature vector. Figure 2 illustrates example

clusters using only two features in the feature vectors.

Figure 2: Example clusters detected by UDAVA in 2D fea-

ture space. Each colored dot represents one observation (fea-

ture vector) of the data set; the different colors (red, orange,

blue, and green) correspond to four clusters in the model.

Diamond-shaped markers indicate the cluster centers. The

annotations illustrate the calculation of the deviation metric

𝐷𝑙 for a feature vector 𝐹𝑙 , shown as a black dot.

Figure 3: Raw data from an example data set (multicolored

line) with the deviation metric 𝐷 (black line), for the refer-
ence (top) and production (bottom) data. The subsequences

are colored based on the cluster they belong to. The maxi-

mum value of the deviation metric is indicated in both plots.

4.3 Labeling and validating new data

UDAVA uses the cluster model to label and validate new data ob-

tained from production (Step 3 in Figure 1). Production data is

preprocessed by UDAVA in the same way as reference data (see

Subsection 4.1). The cluster model is employed to assign cluster la-

bels to each feature vector of the production data. Figure 3 presents

some example cluster labels. The multicolored line represents sen-

sor data. Its color changes according to the cluster. The cluster

labels are plotted back into temporal space by assigning the feature

vectors’ labels to the corresponding subsequence.

162

UDAVA: An Unsupervised Learning Pipeline for Sensor Data Validation in Manufacturing CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

UDAVA detects deviating process behavior to validate produc-

tion data. It computes the distance of the feature vectors obtained

from production data with the cluster centers in the cluster model

obtained from the reference data. The deviation metric is computed

for each feature vector of the production time series data. The ref-

erence data is collected during (near-)optimal production cycles

to provide cluster centers that can serve as a baseline for the com-

parison with the production data. The deviation metric is about

how close a new observation (a feature vector) is to the existing

cluster centers defined by the model. Cluster centers in the model

are defined by the mean of the features of all feature vectors in each

cluster. Let the total number of clusters be 𝑁 , and the index of each

cluster 𝑐 be 𝑖 ∈ 1, ..., 𝑁 . The cluster center 𝑐𝑖 is

𝑐𝑖 = [𝜇𝑖,1, 𝜇𝑖,2, .., 𝜇𝑖, 𝑗 , ..., 𝜇𝑖,𝑀−1, 𝜇𝑖,𝑀], (2)

where 𝜇𝑖, 𝑗 is the mean of feature 𝑗 of all the feature vectors in
cluster 𝑖 . The index 𝑗 runs from 1 to𝑀 , where𝑀 is the number of

features in each feature vector. To validate production data, we first

compute the Euclidean distance in the multidimensional feature

space 𝑑𝑖,𝑙 each feature vector 𝐹𝑙 has to each cluster center 𝑐𝑖 , where
𝑙 ∈ 1, . . . , 𝐿 is the feature vector’s index in the data set.

𝑑𝑖,𝑙 =
√
(𝑓1 − 𝜇𝑖,1)2 + · · · + (𝑓𝑗 − 𝜇𝑖,2)2 + · · · + (𝑓𝑀 − 𝜇𝑖,𝑀)2), (3)

where 𝑓𝑗 represents the features for the given feature vector 𝐹𝑙 .
These distances are then summed using the following formula:

𝐷𝑙 =
𝑁∑
𝑖=1

𝑑𝑖,𝑙 . (4)

𝐷 is the deviationmetric and can bemonitored over time to check

how much the production data deviates from the reference data.

Figure 2 illustrates how 𝐷𝑙 , marked by the black dot, is calculated

for feature vector 𝐹𝑙 .
We consider the sum of distances as a measure of deviation

because it gives how far an observation is from the known clusters.

Feature vector 𝐹𝑙 of cluster 𝑖 might be far from cluster center 𝑐𝑖 ,
relative to the other data points in the cluster (i.e., 𝑑𝑖,𝑙 is large).
It does not necessarily mean it is a deviation since it might be

close to the boundary against another cluster. Please check the

red data points in the center of Figure 2. Even though they are

relatively far from the red cluster center, they are close enough

and may share attributes with the data points in the green and

blue clusters. Therefore, the distance of a feature vector to any

individual cluster center may fail as a metric to discover deviations.

However, the sum of distances increases when observations are far

from all the cluster centers, e.g., observations in the periphery and

outside the plotted area in Figure 2. A feature vector always has a

non-zero distance to at least one of the cluster centers. Therefore,

the deviation metric is never zero for any feature vector in the

reference and production data sets. We need to interpret the value

of the deviation metric of a given observation with other values

from the same production data set or the reference data set. A

spike in the deviation metric or a higher average for a production

cycle compared to the reference data set are signs of deviations or

significant changes in the production data.

The black dotted line in Figure 3 represents deviation metric 𝐷 .
Each dot shows the value of𝐷𝑙 for feature vector 𝐹𝑙 that corresponds
to the subsequence of the sensor data for that time slot. The two

plots show similar production cycles for the reference time series

(top) and the production time series (bottom). There is a significant

time gap between the two time series. The former was recorded

in August 2017, and the latter was in October 2017. The deviation

metric in both plots shows a spike where the green cluster appears.

It indicates that the sensor exhibits a deviating behavior known as

sensor drift. The spike in the reference data reaches a value of 𝐷 =
22.4, while the highest one in the production data reaches 𝐷 = 30.5.
The increase of the deviation metric can also be used to detect the

occurrence of faults in the manufacturing process. Furthermore, we

can use cluster labels to discover repeating patterns. If one cluster

is observed for faulty behavior, we can flag each occurrence of the

given cluster label to identify similar behaviors.

5 DEPLOYMENT OF UDAVA

We can deploy UDAVA on a standalone machine, edge device, or

the cloud as a docker container. The pipeline requires access to

a time series database, such as InfluxDB, or an API provided by

a data acquisition system used by manufacturers. The ML mod-

els as a service are integrated into UDAVA as a web server or a

docker container invoked by data owners. The service is deployed

on-premises on an edge device or the cloud of data owners. There-

fore, the model as a service has a simple and open API (without

security authentication) for receiving data and sending clusters and

deviations as output. Figure 4 presents the structure of the API. The

service back-end may contain multiple models, and each model is

assigned a unique identifier (UID). UIDs are retrievable from the

UI of the UDAVA service installed on edge or by querying the API

using a REST GET call. The API has a POST method receiving data

for validation. A client, e.g., a company building the edge device

to acquire data, sends a JSON request that contains the UID of the

model to be used, in addition to the input time series data and its

variable names. Listing 1 presents an example JSON request.

Figure 4: The API Overview.

The request starts with

the model identifier (Line

1 in Listing 1). The names

of the data columns fol-

low the identifier (Line 3).

The first column contains

timestamps for each data

point in the second column

(Lines 5-10). The example

input data contains times-

tamps and spindle torque

values. The spindle torque

is sampled every five sec-

onds, and the input data has six data points.

The back-end of the API splits the input data into subsequences,

and feature vectors are computed for each subsequence (see Fig-

ure 4). Each feature vector is compared to the cluster centers in

the cluster model and then assigned to the cluster to which it is

closest. UDAVA’s service returns the deviation metric for each fea-

ture vector and the cluster to which the vector belongs in the given

163

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Erik Johannes Husom, Simeon Tverdal, Arda Goknil, and Sagar Sen

1 {"param": {"modeluid": "618b9b95-7805"},
2 "scalar": {
3 "headers": ["date","SpindleTorque"],
4 "data": [
5 ["2017-08-23 17:57:00", 101.2],
6 ["2017-08-23 17:57:05", 101.3],
7 ["2017-08-23 17:57:10", 101.2],
8 ["2017-08-23 17:57:15", 101.3],
9 ["2017-08-23 17:57:20", 101.4],
10 ["2017-08-23 17:57:25", 101.5],] } }

Listing 1: Example JSON request to UDAVA API.

1 {"param": {"modeluid": "618b9b95-7805"},
2 "scalar": {
3 "headers": ["date","cluster","metric"],
4 "data": [
5 ["2017-08-23 17:57:05", 0, 16.77],
6 ["2017-08-23 17:57:20", 1, 38.74],] } }

Listing 2: Example JSON response from UDAVA API.

cluster model. They are returned as a time series with timestamps.

Listing 2 presents the JSON response for the request in Listing 1.

The model used in the example splits the input sequence into

subsequences of three values without overlap. Hence, given input

data with six data points, we obtain two input subsequences, and the

output has two data points (Lines 5-6 in Listing 2). The timestamps

in the first column in the output JSON correspond to the middle of

each original subsequence. The second column in the data points

(header cluster) is the cluster label assigned by the model; the

third column (header metric) is the deviation metric 𝐷 .
The schema for JSON requests and responses is extensible. We

can extend the headers in the request to process data from multiple

sensors. Furthermore, we can introduce other metrics (in addition to

deviationmetric𝐷) to provide additional information on sensor data
validation. We containerize the API and cluster model as a Docker

container to support easy deployment. The API can be used in the

cloud infrastructures of data owners (manufacturing companies).

Therefore, it can send and receive data without encryption and

implement security measures such as authentication.

UDAVA builds the model as often as necessary, but mostly when

a new reference production cycle (minimal tool wear and high

product quality) is available and when start and end timestamps

are available after production. When data freshness is low, UDAVA

employs a new reference cycle to create a newmodel. UDAVA stores

and versions models as binary files using a chronological system in

Git (with DVC).

The models (clusters obtained from reference data) can infer in

N/f second (N is the length of the subsequence, and f is the sampling

frequency) with a delay due to communication with the service

(running as a Docker container on edge). UDAVA invokes the model

as a service with, for instance, six values (Listing 1), and the model

finds two clusters for N=3 (Listing 2). The inference occurs in 0.9

secs (about 1Hz). The output is recommendations to operators to

stop machining if necessary. However, one may also automatically

pause machining based on faults (sensor drift).

With UDAVA, we emphasize the engineering need to handle

evolving data obtained at high velocities using a pipeline that can

synthesize services to detect behavior and deviations in production.

The traditional unsupervised learning flow expects a curated data

set where data does not often evolve with time.

6 EVALUATION

In this section, we investigate, based on two industrial data sets,

the following Research Questions (RQ)s:

• RQ1. Can UDAVA discover process behavior patterns in sensor

data for a reference production cycle?

• RQ2. Does comparing process behavior patterns reveal process

shifts and drifts in subsequent production cycles?

• RQ3. How can UDAVA be deployed, tested and maintained in

industrial production environments?

6.1 Subjects of the Evaluation

We applied UDAVA to discover sensor data anomalies in two in-

dustrial case studies: (i) broaching of turbine discs for airplane jet

engines and (ii) milling of cylinder heads for car engines.

Figure 5: Broaching machine.

6.1.1 Aerospace case study.

This case study involves the

data set of the broaching of

turbine discs for jet engines.

Broaching is a manufactur-

ing process for forming in-

ternal or external round, flat,

or contoured surfaces. A

broaching machine pushes

a multi-toothed cutting tool,

called a broach, into a work-

piece to remove material.

Slots of various dimensions

are cut at high production

rates. Our broaching ma-

chine data set was collected

from three broaching tools

in a broach tool holder for

around three hours on the 24th of May 2021 (see Figures 5 and 6).

Figure 6: Broaching machine setup and fir tree slots.

164

UDAVA: An Unsupervised Learning Pipeline for Sensor Data Validation in Manufacturing CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

Figure 7: Manufacturing steps of combustion chambers.

The machine’s lift velocity was 19m/min while the coolant was

on, and the slot angle was 15 degrees. The disc was held in the

lift. The stroke started and finished at the height of Z=3024mm

and Z=3024mm, respectively. The machining process began at the

height of Z=841mm. We recorded data from three different sources:

(i) two accelerometers with a sample rate of 7.812499825377017e-05

seconds, (ii) a data logger with a sample rate of 4.00e-03 seconds,

and (iii) tool wear measured with an optical microscope.

The tool wear was measured for every five slots. Two types of

data were collected: average wear, which gives information about

how cutting conditions are for the tool, and maximum wear, which

includes micro tool breakage and is needed to replace the tool.

6.1.2 Automotive case study. It involves the data set of milling

cylinder heads’ combustion chambers for car engines. A combustion

chamber is manufactured with several machining operations, e.g.,

drilling, milling, and reaming (see Figure 7). Milling is the process

of machining using rotary cutters to remove material by advancing

a cutter into a workpiece. A machining operation consists of cutting

conditions, i.e., feed rate, depth of cut, and cutting speed.

The machining process measurements, alarms, and cutting con-

ditions are collected directly from the CNC of each milling machine.

The machines are four-axis center from Comau Urane 25 V3 –

with Siemens 840D SL CNC. All information are centralized and

synchronized in the KASEM application from Predict [34].

We collected around 180 times series with a sample rate between

10Hz and 100Hz. 70 time series are analog time series containing

measurements such as axis torque or position. The other time series

are machine status data, such as “machine in automatic mode”.

Some of the important time series obtained are (i) linear axis X,

a gantry axis with two linear motors X1 and X2 (e.g., X1 and X2

real position in millimeter and X1 and X2 temperature in Celsius

degree), (ii) linear axis Y and Z with only one motor (e.g., real

position in millimeter and torque in percent of motor drive nominal

torque), (iii) rotational axis A (e.g., position in degree and speed in

degree per minute), (iv) spindle (e.g., speed in rotation per minute

and current in percent of motor drive nominal current), and (v)

machine condition (e.g., the number of program currently running

on the machine and the number of tool load in the spindle).

Figure 8: Aerospace case: Process behavior patterns in refer-

ence accelerometer data with tool change indications.

6.2 Results

This section discusses the results of our case studies, addressing, in

turn, each of the RQs.

RQ1: Can UDAVA discover process behavior patterns in sen-

sor data for a reference production cycle? Process behavior

patterns are sections of raw sensor data in the same cluster. We

obtain them from the reference data representing a successful man-

ufacturing process.

UDAVA computed process behavior patterns in the reference

accelerometer data in the aerospace case (see Figure 8). The refer-

ence data set is the vibration measurements from the milling of slot

number 15 on the turbine disc (60 fir tree slots separated from each

other by 4 degrees). We used this data set as a reference because

(i) the broaching machine and accelerometer data is incomplete,

and (ii) the data set is recorded relatively early in the broaching

process when the tool has not worn out. Worn-out cutting tools can

obscure the source of faults in reference data. We discovered four

process behavior patterns (depicted by four colors) representing

what the three cutting tools are doing. The red cluster is the least

represented. It is attached to behavior where the tool is neither cut-

ting nor moving. We call it the background cluster. We found in the

visual inspection that the green and brown clusters are very similar

since they are related to similar behavior and amplitudes. We call

the green cluster as cutting main and the brown one as cutting

supplemental. The blue cluster is related to erratic behavior where

sensor data fluctuates fast and has low predictability. We have this

cluster when the machine is moving but not cutting. We call it the

erratic cluster. We found a mix of cutting and erratic clusters in the

cutting behavior. These clusters are absent in non-cutting behavior.

The background cluster is also present when the machine is moving.

We can see it before and after the cutting process. The amplitude of

both the erratic and background clusters is lower than the cutting

clusters. Dimensionality reduction entails the reduction of a subse-

quence of raw time series data to a summary vector of a smaller size.

For instance, UDAVA transforms one-hundred values over time to a

6-dimensional vector consistent with statistical properties such as

mean, median, standard deviation, frequency, range. UDAVA used

reduced dimensionality feature vectors to efficiently characterize

behavior patterns that match a mental model of vibration states

and transition between them in the broaching process.

165

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Erik Johannes Husom, Simeon Tverdal, Arda Goknil, and Sagar Sen

Figure 9: Automotive case: Process behavior patterns in ref-

erence spindle Z-axis position data.

UDAVA computed process behavior patterns from reference data

of the machine variable Z-axis position of the spindle in the auto-

motive case (see Figure 9). The sequence of Z-axis values is very

similar and repeated in multiple batches of continuous data ac-

quired from the milling machine. We used early batches of Z-axis

values as reference data to compute clusters using UDAVA. We

discovered four process behavior patterns depicted by four colors in

the reference data. The green cluster is related to rapid fluctuation

in the sensor data with low amplitude, and we call it the oscillating

cluster. Another notable behavior pattern is the rapid vertical move-

ment related to the blue or vertical clusters. Due to the quick switch

between the green and blue clusters, we observed some confusion

in the cluster classification where the patterns switch. We call the

red one the still cluster since there is no movement on the Z-axis.

The final cluster denoted by brown is related to the peaks, where

the axis returns to baseline before instantly descending. We name

it the peak cluster. The patterns in the time-varying Z-axis position

of the spindle represent the stages of machining or CNC milling,

such as power off, milling, drift, and tool change.

RQ1 Conclusion. UDAVA assigns different behavior patterns

to different clusters in a consistent fashion, allowing for un-

supervised detection of various forms of behavior in the

aerospace and automotive cases.

RQ2: Does comparing process behavior patterns reveal pro-

cess shifts and drifts in subsequent production cycles? Com-

paring process behavior patterns helps visualize and quantify devi-

ation (as discussed in Section 4.3) in multiple production cycles of

a repetitive manufacturing process.

We compared behavior patterns and deviations for accelerome-

ter data measuring vibrations during the broaching of fir tree slots

around a turbine disc in the aerospace case (see Figure 10 for Slot

15, the reference slot, and Slot 45 later in the continuous broaching

process). The tool wear is expected to increase with every new

broached slot. The most significant difference is the deviation from

the cluster centers being higher for Slot 45 (green) when compared

to Slot 15 (yellow). Except for the single peak from the reference

data set, all sections of the cutting process display higher averages

and higher peaks. Visual inspection of the clusters in Slot 15 and

Slot 45 also revealed that Slot 15 has more variance in behavior

patterns when compared to Slot 45, characterized by high vibra-

tion. We present the change in behavior clusters for slots broached

Figure 10: Aerospace case: Deviation of Slot 15 and Slot 45

from cluster centers in reference accelerometer data.

Figure 11: Aerospace case: Average tool wear per slot.

after Slot 15 (the reference) in Figure 12. A noticeable trend is a

gradual decrease in cluster variation; the greenmain cutting cluster

becoming more dominant indicates higher amplitudes in vibration.

We compared the tool wear readings in Figure 11 with the mean

deviation metric of the cutting phase from each fifth slot. We no-

ticed a correlation between tool wear and deviation. The deviation

depends on the slot angle (the angle at which the fir tree slot is

broached on the disc). Slot angle (not in Figure 11) increases from

Slot 15 to 36 and then drops. This behavior matches the drop in

deviation at Slot 36 in Figure 11. We need to investigate the cause of

slot angle affecting deviation. UDAVA’s model as a service supports

the validation of new accelerometer sensor data based on comput-

ing a simple deviation metric for each slot. Deviation in data may

indicate that the sensor is not calibrated under certain conditions

(e.g., slot angle) and is affected by tool wear.

We did not find a significant deviation in process behavior pat-

terns in the spindle Z-axis positionmeasurements in the automotive

case. The spindle position data in the automotive case is sampled at

a lower frequency than the accelerometer data (for vibrations) in the

aerospace case. It gives a low-resolution observation of the milling

process. Figure 13 compares the behavior patterns in the reference

and production data. The deviation metric supports our conclusion

that variation in milling was nominal with no noticeable divergence

from the reference data set. We observed occasional spikes in the

data set, seemingly attached to the slight difference in clustering.

UDAVA’s model as a service for the automotive case illustrates how

the deviation metric helps validate machine sensor data, such as

the Z-axis position of the spindle over many production cycles, and

maintain manufacturing within expected tolerances.

166

UDAVA: An Unsupervised Learning Pipeline for Sensor Data Validation in Manufacturing CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

Figure 12: Aerospace case: Comparison of accelerometer data

behavior patterns in many slots.

Figure 13: Automotive case: Patterns from the reference Z-

axis data compared with patterns from production.

The drifts in our use caseswere negligible since production cycles

did not deviate much (see Figure 13). It is still possible for domain

experts to set thresholds for the deviationmetric in UDAVA to detect

faults. One may introduce artificial faults to the manufacturing

process to demonstrate significant changes in the deviation metric.

RQ2 Conclusion. The deviation metric helps validate data

over multiple production cycles and reason about the root

cause of deviation by comparison with other parameters (e.g.,

tool wear).

RQ3: How can UDAVA be deployed, tested and maintained

in industrial production environments? To address RQ3, we

analyzed our experience of deploying UDAVA in two different indus-

trial manufacturing settings. We categorized and summarized the

experience based on the AI engineering dimensions in Section 2.3.

Data versioning and dependency management: Data version

control (described in Section 2.1) is used in UDAVA to maintain

the versions of reference data. Any change to the reference data

automatically executes component dependencies to perform data

preprocessing and unsupervised learning and wrap a new model as

a web service (see Section 5). The reference data in the aerospace

case was automatically acquired based on two data quality crite-

ria: (a) data timeliness (earliest possible data samples with no or

few signs of defects and tool wear) and (b) data completeness of

internal data from the Broaching machine and external data from

two high-frequency accelerometers (as depicted in Section 6.1.1. A

new version of the reference data was only acquired when tools

had worn out and were replaced with new tools or resharpened

for reuse. The need for new reference data was manually set in a

Boolean variable in the pipeline configuration. The versions of the

reference data in the automotive case were obtained from an early

and successful production cycle of a cylinder head of a combustion

engine. The data were chosen based on a set of program numbers

(referring to G-code for CNC milling) and a range of timestamps.

These parameters were input into the data pipeline. The data ver-

sioning and dependency management challenges lie in the design

and validation of the pipeline architecture of UDAVA. For instance,

it is of interest to evaluate the bottlenecks in the performance of

UDAVA given different parameters and its greenness through li-

braries such as Code Carbon [12]. Growing technical debts in data

pipeline architectures [38] is also a concern for UDAVA having an

increasing number of dependencies on data and code.

Deployment infrastructure: The reference data in the aerospace

case was acquired from the SAVVY data systems edge device and

was available as a set of CSV files for the manufacturing of each

slot. Broaching a fir tree slot for a turbine disc is a repetitive and

fast process. Therefore, dense high-frequency reference data over a

short period from one slot was enough to validate sensor data for a

new fir tree slot. In the automotive case, the pipeline obtained data

through an API provided by the KASEM cloud developed by Predict

to maintain a fleet of manufacturing machines. The API supports

data for a specific machine, a timestamp range, and a set of variables

(e.g., Z-axis position of the spindle). The deployment infrastructure

presents several scientific challenges in designing new architectures,

like UDAVA, on the edge-cloud continuum while adhering to data

privacy and security constraints. As we experienced in our case

studies, sensor data is the intellectual property of manufacturing

companies. Therefore, many scientific challenges lie in designing

federated learning architectures [19] for a fleet of machines in

multi-company product lines, edge devices, and the cloud.

Quality Attributes: Data quality attributes of completeness, fresh-

ness, and accuracy are prerequisites to selecting reference data as

computation of process behavior clusters, and deviation from these

clusters depends on the quality of the reference data. For instance,

sensor data from accelerometers measuring vibration may have

missing/corrupt values due to signal processing errors such as alias-

ing or electrical noise from the environment recorded at the same

frequency as the accelerometer signal. Data quality for reference

data was validated in a different data quality service (out of scope for

this article) through the specification of expectations using the Great

Expectations tool [20]. An expectation in the aerospace case, for

instance, is that 100% of the vibration severity values in the x-axis

should be between 0 and 50 mm/s because a higher severity is out

of range. According to an expectation in the automotive case, 95%

of the spindle torque values should be within the acceptable range

167

CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA Erik Johannes Husom, Simeon Tverdal, Arda Goknil, and Sagar Sen

of values. There were several such expectations specified for both

cases. The performance of UDAVA to find meaningful clusters was

evaluated based on expert knowledge of process behavior. Cluster-

ing is deemed semantically correct when UDAVA correctly clusters

process behavior such as power on, normal operation, and drift. The

clustering algorithm parameters (e.g., features for clustering such

as frequency, mean, median, standard deviation, entropy etc.) were

changed to improve performance in recognizing behaviors such as

power on/off, normal operation, and sensor drift. The challenges

in infusing quality attributes within a machine learning pipeline

are related to streamlining user involvement in specifying expecta-

tions on data quality and evaluating clustering quality. Although

UDAVA is an unsupervised learning approach, it still requires users

to specify basic data quality rules and tweak clustering parameters

to achieve meaningful results across multiple production cycles.

Furthermore, there is a need to quantify uncertainty in clustering re-

sults due to out of distribution or uncertain data streams. Sharma et.

al. [39] propose outlier-robust multi-view clustering for uncertain

data to improve clustering quality in manufacturing data.

Integration of models and components: In the aerospace case,

the validation of the fir tree slot was at the edge device of the SAVVY

data systems. We deployed UDAVA as a simple web service in this

resource-constrained edge device. The data acquired from a fleet of

machines in the automotive case was transferred to the cloud hav-

ing virtually unlimited resources. Here, we containerized the ML

model as a service for detecting clusters and deviations in parallel

on more than one CNC machine in the automotive factory. The

challenges in integrating models and components are principally

related to the evolution of the manufacturing process and conse-

quently the evolution of the data and models. Although we consider

the repetitive manufacturing of the same products or parts, there

might be occasional, minor modifications to product specifications

and process parameters (e.g., the need to ramp up production) that

can render an ML model obsolete. Therefore, there is a need to

investigate continual learning [30] and domain adaptation [6] in

conjunction with the continuous deployment of ML models [33].

RQ3 Conclusion. The AI engineering challenges we identi-

fied are (i) improving the greenness of pipelines, (ii) reducing

pipeline debt, (iii) using federated learning in multi-machine

fleets for data security, (iv) quantifying uncertainty in cluster-

ing as a quality metric, and (v) implementing continual learn-

ing, domain adaptation, and the continuous deployment of

updated AI models for dynamic manufacturing environments.

6.3 Threats to Validity

Internal validity. To limit threats to internal validity, we con-

sidered the data sets obtained from assembly lines operational in

factories. We included only real (physical world) data. However,

limited information on changes in the production data is still a fac-

tor threatening the internal validity. The aerospace case contains

tool wear information, which might explain the increase in the

deviation metric, but the automotive case has no such information.

External validity. The main external threat to validity in our study

concerns generalizability, which is a common issue in industrial case

studies. To mitigate the threat, we considered two representative

production lines manufacturing different components for different

companies and generating data in different sizes and nature.

7 CONCLUSION

Manufacturing processes can generate a massive amount of sensor

data at varying frequencies. It is tremendously hard for human

operators to supervise such a stream of big data and detect process

shifts and drifts (i.e., the signs of product defects) in the data. In this

article, we presented UDAVA that discovers behavior patterns of a

manufacturing process in sensor data through unsupervised learn-

ing of summary statistics. UDAVA compares the feature vectors of

the production data with the cluster centers in the cluster model

obtained from the reference data. It computes a deviation metric

that illustrates how much the production data deviates from the

original cluster centers in the reference data. The deviation metric

helps to discover potential drifts in the production data, investigate

the causes, and implement methods to control drifts.

We engineered UDAVA as an AI-driven system in two indus-

trial environments: (a) broaching of turbine discs in the aerospace

industry and (b) milling of cylinder heads of car engines in the

automotive industry. UDAVA could identify the significant increase

in the tool wear in the aerospace data set, which leads to defects

in turbine discs. We also showed that it could identify process

behavior patterns for normal operation and sensor drift in the auto-

motive data set. Furthermore, we discussed how we handled some

AI engineering dimensions in UDAVA for both cases.

7.1 Future work

Multi-sensor data synchronization: Multi-sensor data synchro-

nization is mostly a manual task within the domain of prepossessing

in AI. Process behavior clusters observed across multiple sensors

for the same manufacturing process may have similarities in the

sequence and duration of occurrence. We can use these similarities

to find synchronization points between blocks of patterns across

different sensors. In this respect, sensor data synchronization can be

formulated as a constraint-driven optimization problem to obtain

the most likely synchronization point.

AI-driven control of manufacturing processes: We plan to use

the deviation metric to control the manufacturing process through

tool re-sharpening, tool change, coolant use, ramp-up/ramp-down

of production, and vibration compensation to reduce defects. Rec-

ommendations can be given to operators, or manufacturing process

controls can be implemented automatically in real-time.

User involvement in ML-infused systems Trust in AI systems

is improved when users understand the underlying model and influ-

ence it to match a mental image of the real world. Process behavior

clusters detected by UDAVA do not have a label or name. Domain

experts can label a few of these clusters and perform domain adap-

tation [50] to label all of the new sensor data automatically.

ACKNOWLEDGMENT

The work has been conducted as part of the InterQ project (958357)

and the DAT4.ZERO project (958363) funded by the European Com-

mission within the Horizon 2020 research and innovation pro-

gramme.

168

UDAVA: An Unsupervised Learning Pipeline for Sensor Data Validation in Manufacturing CAIN’22, May 16–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-

series clustering–a decade review. Information Systems 53 (2015), 16–38.
[2] Ali Alqahtani, Mohammed Ali, Xianghua Xie, and Mark W Jones. 2021. Deep

Time-Series Clustering: A Review. Electronics 10, 23 (2021), 3001.
[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece

Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[4] Nagdev Amruthnath and Tarun Gupta. 2018. A research study on unsupervised
machine learning algorithms for early fault detection in predictive maintenance.
In 2018 5th International Conference on Industrial Engineering and Applications
(ICIEA). IEEE, 355–361.

[5] Angelos Angelopoulos, Emmanouel T Michailidis, Nikolaos Nomikos, Panagiotis
Trakadas, Antonis Hatziefremidis, Stamatis Voliotis, and Theodore Zahariadis.
2020. Tackling faults in the industry 4.0 era—a survey of machine-learning
solutions and key aspects. Sensors 20, 1 (2020), 109.

[6] Moslem Azamfar, Xiang Li, and Jay Lee. 2020. Deep learning-based domain
adaptation method for fault diagnosis in semiconductor manufacturing. IEEE
Transactions on Semiconductor Manufacturing 33, 3 (2020), 445–453.

[7] Jan Bosch, Helena Holmström Olsson, and Ivica Crnkovic. 2021. Engineering
AI systems: A research agenda. In Artificial Intelligence Paradigms for Smart
Cyber-Physical Systems. IGI Global, 1–19.

[8] YUE Caixu, GAO Haining, LIU Xianli, Steven Y Liang, and WANG Lihui. 2019. A
review of chatter vibration research in milling. Chinese Journal of Aeronautics
32, 2 (2019), 215–242.

[9] Chieh-Yu Chen, Shi-Chung Chang, and Da-Yin Liao. 2020. Equipment Anom-
aly Detection for Semiconductor Manufacturing by Exploiting Unsupervised
Learning from Sensory Data. Sensors 20, 19 (2020), 5650.

[10] Yizong Cheng. 1995. Mean shift, mode seeking, and clustering. IEEE TRANSAC-
TIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (1995).

[11] Chia-Shang James Chu. 1995. Time series segmentation: A sliding window
approach. Information Sciences 85, 1-3 (1995), 147–173.

[12] Code Carbon. [n.d.]. https://codecarbon.io/. Visited in 2022.
[13] A Del Olmo, G Martínez de Pissón, L Sastoque, A Fernández, A Calleja, and

LN López De Lacalle. 2021. Merging complex information in high speed broaching
operations in order to obtain a robust machining process. In IOP Conference Series:
Materials Science and Engineering, Vol. 1193. IOP Publishing, 012079.

[14] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn
Keogh. 2008. Querying and mining of time series data: experimental comparison
of representations and distance measures. Proceedings of the VLDB Endowment 1,
2 (2008), 1542–1552.

[15] Alican Dogan and Derya Birant. 2021. Machine learning and data mining in
manufacturing. Expert Systems with Applications 166 (2021), 114060.

[16] David H Evans. 1975. Statistical Tolerancing: The State of the Art: Part III. Shifts
and Drifts. Journal of Quality Technology 7, 2 (1975), 72–76.

[17] Tak-chung Fu. 2011. A review on time series datamining. Engineering Applications
of Artificial Intelligence 24, 1 (2011), 164–181.

[18] K. Fukunaga and L. Hostetler. 1975. The estimation of the gradient of a den-
sity function, with applications in pattern recognition. IEEE Transactions on
Information Theory 21, 1 (1975), 32–40. https://doi.org/10.1109/TIT.1975.1055330

[19] Ning Ge, Guanghao Li, Li Zhang, and Yi Liu. 2021. Failure prediction in produc-
tion line based on federated learning: an empirical study. Journal of Intelligent
Manufacturing (2021), 1–18.

[20] Great Expectations. [n.d.]. https://greatexpectations.io/. Visited in 2022.
[21] iterative.ai. [n.d.]. Open-source Version Control System for Machine Learning

Projects. https://dvc.org/. Visited in 2022.
[22] ITP Aero. [n.d.]. https://www.itpaero.com/. Visited in 2022.
[23] Mustafa Kuntoğlu, Emin Salur, Munish Kumar Gupta, Murat Sarıkaya, and

Danil Yu Pimenov. 2021. A state-of-the-art review on sensors and signal pro-
cessing systems in mechanical machining processes. The International Journal of
Advanced Manufacturing Technology 116, 9 (2021), 2711–2735.

[24] Ruslan Kuprieiev, Dmitry Petrov, Paweł Redzyński, Saugat Pachhai, Casper da
Costa-Luis, Alexander Schepanovski, Peter Rowlands, Ivan Shcheklein, Jorge
Orpinel, Fábio Santos, Aman Sharma, Zhanibek, Gao, Batuhan Taskaya, Dani
Hodovic, Andrew Grigorev, Earl, Nabanita Dash, nik123, George Vyshnya,
maykulkarni, Max Hora, Vera, Sanidhya Mangal, Wojciech Baranowski, Clemens
Wolff, Alex Maslakov, Alex Khamutov, Kurian Benoy, and Ophir Yoktan. 2021.
DVC: Data Version Control - Git for Data & Models. https://doi.org/10.5281/
zenodo.4544110.

[25] Hongbin Liu, Mingzhi Huang, Iman Janghorban, Payam Ghorbannezhad, and
ChangKyoo Yoo. 2011. Faulty sensor detection, identification and reconstruction

of indoor air quality measurements in a subway station. In 2011 11th International
Conference on Control, Automation and Systems. IEEE, 323–328.

[26] Mika Liukkonen and Yrjö Hiltunen. 2018. Recognition of systematic spatial
patterns in silicon wafers based on SOM and K-means. IFAC-PapersOnLine 51, 2
(2018), 439–444.

[27] Jon Loeliger and Matthew McCullough. 2012. Version Control with Git: Powerful
tools and techniques for collaborative software development. " O’Reilly Media, Inc.".

[28] J. Macqueen. 1967. Some methods for classification and analysis of multivari-
ate observations. In In 5-th Berkeley Symposium on Mathematical Statistics and
Probability. 281–297.

[29] AB Martins, JT Farinha, and AM Cardoso. 2020. Calibration and Certification of
Industrial Sensors—A Global Review.WSEAS Trans. Syst. Control (2020), 394–416.

[30] Benjamin Maschler, Hannes Vietz, Nasser Jazdi, and Michael Weyrich. 2020.
Continual learning of fault prediction for turbofan engines using deep learning
with elastic weight consolidation. In 2020 25th IEEE international conference on
emerging technologies and factory automation (ETFA), Vol. 1. IEEE, 959–966.

[31] Meinard Müller. 2007. Dynamic time warping. Information retrieval for music
and motion (2007), 69–84.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[33] Ioannis Prapas, Behrouz Derakhshan, Alireza Rezaei Mahdiraji, and Volker Markl.
2021. Continuous Training andDeployment of Deep LearningModels. Datenbank-
Spektrum 21, 3 (2021), 203–212.

[34] Predict. [n.d.]. https://www.predict.fr/produits-services/logiciels/. Visited in
2022.

[35] Renault Assembly Plant. [n.d.]. https://www.renaultgroup.com/en/our-
company/locations/valladolid-bodywork-assembly-plant-2/. Visited in 2022.

[36] SAVVY Data Systems. [n.d.]. https://www.savvydatasystems.com/es/inicio. Vis-
ited in 2022.

[37] D. Sculley. 2010. Web-scale k-means clustering. In Proceedings of the 19th
international conference on World wide web - WWW '10. ACM Press. https:
//doi.org/10.1145/1772690.1772862

[38] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden technical debt in machine learning systems. Advances
in neural information processing systems 28 (2015), 2503–2511.

[39] Krishna Kumar Sharma and Ayan Seal. 2021. Outlier-robust multi-view clustering
for uncertain data. Knowledge-Based Systems 211 (2021), 106567.

[40] Carla Silva, Marvin F da Silva, Arlete Rodrigues, José Silva, Vítor Santos Costa,
Alípio Jorge, and Inês Dutra. 2021. Predictive Maintenance for Sensor Enhance-
ment in Industry 4.0. In Asian Conference on Intelligent Information and Database
Systems. Springer, 403–415.

[41] Ashish Singhal and Dale E Seborg. 2005. Clustering multivariate time-series
data. Journal of Chemometrics: A Journal of the Chemometrics Society 19, 8 (2005),
427–438.

[42] Dimla E Dimla Snr. 2000. Sensor signals for tool-wear monitoring in metal cutting
operations—a review of methods. International Journal of Machine Tools and
Manufacture 40, 8 (2000), 1073–1098.

[43] Hugo Steinhaus et al. 1956. Sur la division des corps matériels en parties. Bull.
Acad. Polon. Sci 1, 804 (1956), 801.

[44] Ye Tian, Zili Wang, and Chen Lu. 2019. Self-adaptive bearing fault diagnosis based
on permutation entropy and manifold-based dynamic time warping. Mechanical
Systems and Signal Processing 114 (2019), 658–673.

[45] Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. 2009. Dimen-
sionality reduction: a comparative review. Journal of Machine Learning Research
10, 66-71 (2009), 13.

[46] Ethan Wescoat, Matthew Krugh, Andrew Henderson, Josh Goodnough, and
Laine Mears. 2019. Vibration analysis utilizing unsupervised learning. Procedia
Manufacturing 34 (2019), 876–884.

[47] Michael Wocker, Naomi Kimberly Betz, Christian Feuersänger, Alexander Lind-
worsky, and Jochen Deuse. 2020. Unsupervised learning for opportunistic main-
tenance optimization in flexible manufacturing systems. Procedia CIRP 93 (2020),
1025–1030.

[48] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. 2010. A brief survey on sequence
classification. ACM Sigkdd Explorations Newsletter 12, 1 (2010), 40–48.

[49] Hamdi Yahyaoui and Aisha Al-Mutairi. 2016. A feature-based trust sequence
classification algorithm. Information Sciences 328 (2016), 455–484.

[50] Kaichao You,Mingsheng Long, Zhangjie Cao, JianminWang, andMichael I Jordan.
2019. Universal domain adaptation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2720–2729.

[51] Jiaping Zhao and Laurent Itti. 2018. shapedtw: Shape dynamic time warping.
Pattern Recognition 74 (2018), 171–184.

169

