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It is well-known that big-step semantics is not able to distinguish stuck and non-terminating computations. This is a strong limitation

as it makes very difficult to reason about properties involving infinite computations, such as type soundness, which cannot even be

expressed.

We show that this issue is only apparent: the distinction between stuck and diverging computations is implicit in any big-step

semantics and it just needs to be uncovered. To achieve this goal, we develop a systematic study of big-step semantics: we introduce

an abstract definition of what a big-step semantics is, we define a notion of computation by formalising the evaluation algorithm

implicitly associated with any big-step semantics, and we show how to canonically extend a big-step semantics to characterise stuck

and diverging computations.

Building on these notions, we describe a general proof technique to show that a predicate is sound, that is, it prevents stuck

computation, with respect to a big-step semantics. One needs to check three properties relating the predicate and the semantics and, if

they hold, the predicate is sound. The extended semantics are essential to establish this meta-logical result, but are of no concerns

to the user, who only needs to prove the three properties of the initial big-step semantics. Finally, we illustrate the technique by

several examples, showing that it is applicable also in cases where subject reduction does not hold, hence the standard technique for

small-step semantics cannot be used.
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1 INTRODUCTION

The operational semantics of programming languages or software systems specifies, for each program/system configu-

ration, its final result, if any. In the case of non-existence of a final result, there are two possibilities:

• either the computation stops with no final result: stuck computation,

• or the computation never stops: non-termination.

There are two main styles to define operationally a semantic relation: the small-step style [46, 47], on top of a

transition relation representing single computation steps, or directly by a set of rules as in the big-step style [35]. Within

a small-step semantics it is straightforward to make the distinction between stuck and non-terminating computations,

while a typical drawback of the big-step style is that they are not distinguished (no judgement is derived in both cases).
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2 Francesco Dagnino

Actually, in big-step style, it is not even clear what a computation is, because the only available notion is derivability of

judgements, which does not convey the dynamics of computation.

For this reason, even though big-step semantics is generally more abstract, and sometimes more intuitive to design

and therefore to debug and extend, in the literature much more effort has been devoted to study the meta-theory of

small-step semantics, providing properties, and related proof techniques. Notably, the soundness of a type system (typing

prevents stuck computation) can be proved by progress and subject reduction, also called type preservation, [53]. Note

that soundness cannot even be expressed with respect to a big-step semantics, since non-termination and stuckness are

confused, as they are both modelled by the absence of a final result.

Our quest in this paper is to develop a meta-theory of big-step operational semantics, to enable formal reasoning

also on non-terminating computations. More precisely, we will address the following problems:

(1) Defining, in a formal way, computations in a given arbitrary big-step semantics.

(2) According to this definition, describing extensions of a given arbitrary big-step semantics, where the difference

between stuckness and non-termination is made explicit.

(3) Providing a general proof technique by identifying three sufficient conditions on the original big-step rules to

prove soundness of a predicate.

All these points rely on the same fundamental cornerstone: a general definition of big-step semantics. Such a definition

captures the essential features of a big-step semantics, independently from the particular language or system.

To address Item 1, we rely on the intuition that every big-step semantics implicitly defines an evaluation algorithm.

Then, we identify computations in the big-step semantics with computations of such algorithm. Formally, we extend

the big-step semantics to model partial evaluations, representing intermediate states of the evaluation process, and we

formalise the evaluation algorithm by a transition relation between such intermediate states. Then, computations are

just sequences of transition steps. Note that the use of a transition relation is somehow necessary to define computations

since they are related to the dynamics of the evaluation and it cannot be captured by derivability in big-step semantics,

as it is too abstract. In this way, we get a reference model of computations in big-step semantics, where we can easily

distinguish stuck and non-terminating computations, thus showing that this distinction is actually present, but hidden,

in any big-step semantics.

To deal with Item 2, we describe extensions of a given big-step semantics capable to distinguish between stuck and

non-terminating computations, as defined in Item 1, but abstracting away single computation steps. In this way, we

show that such a distinction can be made directly in a big-step style. More in detail, starting from an arbitrary big-step

judgment c⇒ r that evaluates configurations c into results r , the first construction produces an enriched judgement

c⇒tr rtr where rtr is either a pair ⟨t, r⟩ consisting of a finite trace t and a result r , or an infinite trace 𝜎 . Finite and

infinite traces model the (finite or infinite) sequences of all the configurations encountered during the evaluation. In this

way, by interpreting coinductively the rules of the extended semantics, an infinite trace models divergence (whereas

no result corresponds to stuck computation). Furthermore, we will show that, by using coaxioms [8, 22], we can get

rid of traces, modelling divergence just by a judgmeent c⇒∞. The second construction is in a sense dual. It is the

general version of the well-known technique presented in Exercise 3.5.16 by Pierce [44] of adding a special result

wrong explicitly modelling stuck computations (whereas no result corresponds to divergence). We will show that these

constructions are correct, proving that they represent the intended class of computations as defined in Item 1.
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A meta-theory for big-step semantics 3

Three sufficient conditions in Item 3 are local preservation, ∃-progress, and ∀-progress. For proving the result that

the three conditions actually ensure soundness, we crucially rely on the extended big-step semantics of Item 2, since

otherwise, as said above, we could not even express the property.

However, the three conditions deal only with the original rules of the given big-step semantics. This means that,

practically, in order to use the technique there is no need to deal with the meta-theory (computations and extended

semantics). This implies, in particular, that our approach does not increase the original number of rules. Moreover, the

sufficient conditions are checked only on single rules, hence neither induction nor coinduction is needed. In a sense,

they make explicit elementary fragments of the soundness proof, embedding such semantic-dependent fragments in a

semantic-independent (co)inductive proof, which we carry out once and for all (cf. Theorems 7.6 and 7.9).

We support our approach by presenting several examples, demonstrating that: on the one hand, soundness proofs

can be easily rephrased in terms of our technique, that is, by directly reasoning on big-step rules; on the other hand, our

technique works also when the property to be checked (for instance, well-typedness) is not preserved by intermediate

computation steps, whereas it holds for the final result. On a side note, our examples concern type systems, but the

meta-theory we present in this work holds for any predicate.

Actually, we can express two flavours of soundness, depending on whether we make explicit stuckness or non-

termination. In the former case we express soundness-must, which is the notion of soundness we have considered so far,

preventing all stuck computations, while in the latter case we express soundness-may, a weaker notion only ensuring

the existence of a non-stuck computation. Of course, this distinction is relevant only in presence of non-determinism,

otherwise the two notions coincide. We define a proof technique for soundness-may as well, showing it is correct. In

the end, it should be noted that we define soundness with respect to a big-step semantics within a big-step formulation,

without resorting to a small-step style (indeed, the extended semantics are themselves big-step).

This paper is extracted from the PhD thesis of the author [23] and extends the work presented in Dagnino et al.

[26] in several ways: first, we consider a more natural and general notion of big-step semantics; we provide a detailed

analysis of computations in big-step semantics; we define an additional construction based on coaxioms generalising

the approach in Ancona et al. [9]; finally, we improve examples considering also imperative languages.

The rest of the paper is organised as follows. Section 2 recalls basic notions about inference systems and corules.

Section 3 provides a definition of big-step semantics. Section 4 defines computations in big-step semantics as possibly

infinite sequences of steps in a transition relation on partial evaluation trees. In this way we get a reference semantic

model. Section 5 defines two constructions extending a given big-step semantics: one, based on traces, which explicitly

models diverging computations and another which explicitly models stuck computations. Section 6 defines a third

construction, modelling divergence just as a special result, by using appropriate corules. Section 7 shows how we can

express two flavours of soundness against big-step semantics and provides proof techniques to show this property.

Section 8 illustrates the proof technique on several examples. Finally, Section 9 concludes the paper, discussing related

and future work.

2 PRELIMINARIES ON INFERENCE SYSTEMS AND CORULES

In this section, we recall standard notions about (co)inductive definitions by inference systems [3, 36, 51], which are

used throughout the paper, and also their generalisation by corules, introduced by Ancona et al. [8], Dagnino [22, 23],

which enable more flexible coinductive definitions. Corules will be only used in Sections 6 and 7 to properly model and

reason about diverging computations in a big-step semantics.
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4 Francesco Dagnino

Assume a set U, named universe, whose elements are called judgements. An inference system I is a set of (inference)

rules, which are pairs ⟨Pr, c⟩, where Pr ⊆ U the set of premises and c ∈ U the conclusion (a.k.a. consequence). As it is

customary, rules are often written as fractions

Pr

c

. A rule with an empty set of premises is an axiom. A proof tree (a.k.a.

derivation) for a judgement j in I is a tree whose nodes are (labeled with) judgements in U, j is the root, and there

is a node c with set of children Pr only if there is a rule ⟨Pr, c⟩ in I. The inductive and the coinductive interpretations

of I, denoted 𝜇⟦I⟧ and 𝜈⟦I⟧, respectively, are the sets of judgements with, respectively a well-founded
1
and an

arbitrary (well-founded or not) proof tree. We will write I ⊢𝜇 j and I ⊢𝜈 j when j ∈ 𝜇⟦I⟧ and j ∈ 𝜈⟦I⟧, respectively.
Set-theoretically, we say that a subset 𝑋 ⊆ U is (I-)closed if, for every rule ⟨Pr, j⟩ ∈ I, Pr ⊆ 𝑋 implies j ∈ 𝑋 , and
(I-)consistent if, for every j ∈ 𝑋 , there is a rule ⟨Pr, j⟩ ∈ I such that Pr ⊆ 𝑋 . Then, it can be proved that 𝜇⟦I⟧ is the

least closed subset and 𝜈⟦I⟧ is the largest consistent subset and this provides us with the following proof principles:

induction principle if 𝑋 ⊆ U is closed then 𝜇⟦I⟧ ⊆ 𝑋
coinduction principle if 𝑋 ⊆ U is consistent then 𝑋 ⊆ 𝜈⟦I⟧

We recall now the notion of inference system with corules [8, 22, 23], which mixes induction and coinduction in a

specific way.

For a set 𝑋 ⊆ U, let I|𝑋 denote the inference system obtained from I by keeping only rules with conclusion in 𝑋 .

Definition 2.1 (Inference system with corules). An inference system with corules, or generalised inference system, is a pair

⟨I,Ico⟩ where I and Ico are inference systems, whose elements are called rules and corules, respectively. A corule with

empty set of premises is a coaxiom. The interpretation 𝜈⟦I,Ico⟧ of such a pair is defined by 𝜈⟦I,Ico⟧ = 𝜈⟦I|𝜇⟦I∪Ico⟧⟧.

Thus, the interpretation 𝜈⟦I,Ico⟧ is basically coinductive, but restricted to a universe of judgements which is

inductively defined by the (potentially) larger system I∪Ico. In proof-theoretic terms, 𝜈⟦I,Ico⟧ is the set of judgements

which have an arbitrary (well-founded or not) proof tree in I whose nodes all have a well-founded proof tree in I ∪Ico,
that is, the (standard) inference system consisting of both rules and corules. We will write ⟨I,Ico⟩ ⊢𝜈 j when j is

derivable in ⟨I,Ico⟩, that is, j ∈ 𝜈⟦I,Ico⟧.
We illustrate these notions by a simple example. As usual, sets of rules are expressed by meta-rules with side

conditions, and analogously sets of corules are expressed by meta-corules with side conditions. (Meta-)corules will be

written with thicker lines, to be distinguished from (meta-)rules. The following inference system defines the maximal

element of a list of natural numbers, where 𝜀 is the empty list, and x:𝑢 the list with head x and tail 𝑢.

maxElem(𝑥 :𝜀, 𝑥)
maxElem(𝑢,𝑦)
maxElem(𝑥 :𝑢, 𝑧) 𝑧 = max(𝑥,𝑦)

The inductive interpretation is defined only on finite lists, since for infinite lists an infinite proof is needed. However,

the coinductive interpretation allows the derivation of wrong judgements. For instance, let 𝐿 = 1 : 2 : 1 : 2 : 1 : 2 : . . ..

Then, any judgement maxElem(𝐿, 𝑥) with 𝑥 ≥ 2 can be derived, as illustrated by the following examples.

. . .

maxElem(𝐿, 2)

maxElem(2:𝐿, 2)

maxElem(1:2:𝐿, 2)

. . .

maxElem(𝐿, 5)

maxElem(2:𝐿, 5)

maxElem(1:2:𝐿, 5)

1
It is finite when sets of premises are finite.
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A meta-theory for big-step semantics 5

By adding a corule (in this case a coaxiom), we add a constraint which forces the greatest element to belong to the list,

so that wrong results are “filtered out”:

maxElem(𝑥 :𝜀, 𝑥)
maxElem(𝑢,𝑦)
maxElem(𝑥 :𝑢, 𝑧) 𝑧 = max(𝑥,𝑦)

maxElem(𝑥 :𝑢, 𝑥)
Indeed, the judgement maxElem(1:2:𝐿, 2) has the infinite proof tree shown above, and each node has a finite proof tree

in the inference system extended by the corule:

. . .

maxElem(𝐿, 2)

maxElem(2:𝐿, 2)

maxElem(1:2:𝐿, 2)

maxElem(2:𝐿, 2)

maxElem(1:2:𝐿, 2)

On the other hand, the judgement maxElem(1:2:𝐿, 5) has the infinite proof tree shown above, but has no finite proof

tree in the inference system extended by the corule. Indeed, since 5 does not belong to the list, the corule can never be

applied. Hence, this judgement cannot be derived in the inference system with corules. Finally, note that the judgement

maxElem(1:2:𝐿, 1) has a finite proof tree in the inference system extended by the corule, but has no proof tree in the

system with no corules, as 1 is not an upper bound of the list. We refer to [8–10, 22, 23, 25] for other examples.

Let ⟨I,Ico⟩ be a generalised inference system. The interpretation 𝜈⟦I,Ico⟧ can be characterised as the largest

I-consistent subset of 𝜇⟦I ∪ Ico⟧, and this provides us with the bounded coinduction principle, a generalisation of the

standard coinduction principle.

Theorem 2.2 (Bounded coinduction). Let 𝑋 ⊆ U. If 𝑋 is I-consistent and 𝑋 ⊆ 𝜇⟦I ∪ Ico⟧, then 𝑋 ⊆ 𝜈⟦I,Ico⟧.

In other words, to prove that every judgement in 𝑋 is derivable in ⟨I,Ico⟩ , we have to prove that every judgement

in 𝑋 has a well-founded proof tree in I ∪ Ico and every judgement in 𝑋 is the conclusion of a rule whose premises are

all in 𝑋 .

3 DEFINING BIG-STEP SEMANTICS

As mentioned in the introduction, the corner stone of this paper is a formalisation of what a big-step semantics is, that

captures its essential features, subsuming a large class of examples. This enables a general formal reasoning on an

arbitrary big-step semantics.

Definition 3.1. A big-step semantics is a triple ⟨C, R,R⟩ where:

• C is a set of configurations c.

• R is a set of results r . A judgment j is a pair written c⇒ r , meaning that configuration c evaluates to result r . Set

C (j) = c and R(j) = r .

• R is a set of (big-step) rules 𝜌 of shape

j1 . . . j𝑛

c⇒ r

also written in inline format: rule(j1 . . . j𝑛, c, r)

where j1 . . . j𝑛 , with 𝑛 ≥ 0, is a sequence of premises. Set C (𝜌) = c, R(𝜌) = r and, for 𝑖 ∈ 1..𝑛, C (𝜌, 𝑖) = C (j𝑖 ) and
R(𝜌, 𝑖) = R(j𝑖 ).
We require R to satisfy the bounded premises condition:

BP for every c ∈ C, there exists 𝑏c ∈ N such that, for each 𝜌 = rule(j1 . . . j𝑛, c, r), 𝑛 ≤ 𝑏c .
Manuscript submitted to ACM



6 Francesco Dagnino

e ::= x | v | e1 e2 | succ𝑒 | e1 ⊕ e2 expression

v ::= n | 𝜆x .e value

(val)

v⇒ v

( app )

e1 ⇒ 𝜆𝑥.𝑒 e2 ⇒ v2 e [v2/x ] ⇒ v

e1 e2 ⇒ v

(succ)

e⇒ n

succ e⇒ n + 1

(choice)

e𝑖 ⇒ v

e1 ⊕ e2 ⇒ v

𝑖 = 1, 2

(val) rule(𝜀, v, v)
(app) rule(e1 ⇒ 𝜆x .e e2 ⇒ v2 e [v2/x ] ⇒ v, e1 e2, v)
(succ) rule(e⇒ n, succ e, n + 1)
(choice) rule(e𝑖 ⇒ v, e1 ⊕ e2, v) 𝑖 = 1, 2

Fig. 1. Example of big-step semantics

We will use the inline format, more concise and manageable, for the development of the meta-theory, e.g., in

constructions.

Big-step rules, as defined above, are very much like inference rules (cf. Section 2), but they carry slightly more

structure with respect to them. Notably, premises are a sequence rather than a set, that is, they are ordered and there can

be repeated premises. Such additional structure, however, does not affect derivability, namely, the inference operator

and so the interpretations of such rules. Therefore, given a big-step semantics ⟨C, R,R⟩, slightly abusing the notation,

we denote by R the inference system obtained by forgetting such additional structure, and define, as usual, the semantic

relation as the inductive interpretation of R. Then, we write R ⊢𝜇 c⇒ r when the judgment c⇒ r is derivable in R.
Even though the additional structure of big-step rules does not affect the semantic relation they define, it is crucial to

develop the meta-theory, allowing abstract reasoning about an arbitrary big-step semantics. It will be used in all results

in this paper: to define computations in big-step semantics, then to provide constructions yelding extended semantics

able to distinguish stuck and diverging computations and, finally, to define proof techniques for soundness. Indeed, as

premises are a sequence, we know in which order configurations in the premises should be evaluated.

In practice, the (infinite) set of rules R is described by a finite set of meta-rules, each one with a finite number of

premises. As a consequence, for each configuration, the number of premises of rules with such a configuration in the

conclusion is not only finite but bounded. Since we have no notion of meta-rule, we explicitly require this feature

(relevant in the following) by the bounded premises (BP) condition.

We end this section by illustrating the above definitions and conditions on a simple example: a 𝜆-calculus with

constants for natural numbers, successor and non-deterministic choice, shown in Fig. 1. We denote by x variables and

by n natural number constants. It is immediate to see this example as an instance of Definition 3.1:

• Configurations and results are expressions, and values, respectively.
2

• To have the set of (meta-)rules in our required shape, abbreviated in inline format in the bottom section of the

figure, we have only to assume an order on premises of rule (app).

Remark 3.2. The order of premises chosen for rule (app) in Fig. 1 formalises the evaluation strategy for an application

e1 e2 where first (1) evaluates e1, then (2) checks that the value of e1 is a 𝜆-abstraction, finally (3) evaluates e2. That is,

left-to-right evaluation with early error detection. Other strategies can be obtained by choosing a different order or by

adjusting big-step rules. Notably, right-to-left evaluation (3)-(1)-(2) can be expressed by just swapping the first two

2
In general, configurations may include additional components and results are not necessarily particular configurations, see, e.g., Section 8.2.
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A meta-theory for big-step semantics 7

premises, that is:

(app-r) rule(e2⇒ v2 e1⇒ 𝜆x .e e[v2/x] ⇒ v, e1 e2, v)

Left-to-right evaluation with late error detection (1)-(3)-(2) can be expressed as follows:

(app-late) rule(e1⇒ v1 e2⇒ v2 v1⇒ 𝜆x .e e[v2/x] ⇒ v, e1 e2, v)

We can even opt for a non-deterministic approach by taking more than one rule among (app), (app-r) and (app-late). As said

above, these different choices do not affect the semantic relation inductively defined by the inference system, which

is always the same. However, they will affect computations and thus the extended semantics distinguishing stuck

computation and non-termination. Indeed, if the evaluation of e1 and e2 is stuck and non-terminating, respectively, we

should obtain a stuck computation with rule (app) and non-termination with rule (app-r); further, if e1 evaluates to a natural

constant and e2 diverges, we should obtain a stuck computation with rule (app) and non-termination with rule (app-late).

In summary, to see a typical big-step semantics as an instance of our definition, it is enough to identify configurations

and results and to assume an order (or more than one) on premises.

4 COMPUTATIONS IN BIG-STEP SEMANTICS

Intuitively, the evaluation of a configuration c is a dynamic process and, as such, it may either successfully terminate

producing the final result, or get stuck, or never terminate. However, a big-step semantics just tells us whether a

configuration c evaluates to a certain result r , without describing the dynamics of such evaluation process. This is nice,

because it allows us to abstract away details about intermediate states in the evaluation process, but it makes quite

difficult to reason about concepts like non-termination and stuckness, since they refer to computations and we do not

even know what a computation is in a big-step semantics.

In this section, we show that, given a big-step semantics as defined in Definition 3.1, we can recover the dynamics

of the evaluation, by defining computations, which, in a sense, are implicit in a big-step specification. To this end, we

extend the big-step semantics, so that we can represent partial (or incomplete) evaluations, modelling intermediate

states of the evaluation process. Then, we model the dynamics by a transition relation beween such partial evaluations,

hence, as usual, a computation will be a (possibly infinite) sequence of transitions.

Let us assume a big-step semantics ⟨C, R,R⟩. As said above, the first step is to extend such semantics to model partial

evaluations. To this end, first of all, we introduce a special result ?, so that a judgment c⇒ ? (called incomplete, whereas

a judgment c⇒ r is complete) means that the evaluation of c is not completed yet. Set R? = R + {?} whose elements are

ranged over by r?. We now define an augmented set of rules R? to properly handle the new result ?:

Definition 4.1 (Rules for partial evaluation). The set of rules R? is obtained from R by adding the following rules:

start rules For each configuration c ∈ C, define rule ax? (c) as
c⇒ ?

.

partial rules For each rule 𝜌 = rule(j1 . . . j𝑛, c, r) in R, index 𝑖 ∈ 1..𝑛, and r? ∈ R?, define rule pev?
(𝜌, 𝑖, r?) as

j1 . . . j𝑖−1 C (j𝑖 ) ⇒ r?

c⇒ ?

Intuitively, start rules allow us to begin the evaluation of any configuration, while partial rules allow us to partially

apply a rule from R to derive a partial judgement. Note that the last premise of a partial rule can be either complete

(r? ∈ R) or incomplete (r? = ?), in the latter case we also call it a ?-propagation rule, since it propagates ? from premises

to the conclusion.
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8 Francesco Dagnino

e⇒ ?

e⇒ v?

succ e⇒ ?

e𝑖 ⇒ v?

e1 ⊕ e2⇒ ?

𝑖 = 1, 2

e1⇒ v?

e1 e2⇒ ?

e1⇒ 𝜆x .e e2⇒ v?

e1 e2⇒ ?

e1⇒ 𝜆x .e e2⇒ v2 e[v2/x] ⇒ v?

e1 e2⇒ ?

Fig. 2. Rules for ? for the 𝜆-calculus in Fig. 1.

It is important to observe that the construction described above yields a triple ⟨C, R?,R?⟩, which is a big-step

semantics according to Definition 3.1.
3
In Fig. 2 we report rules added by the construction in Definition 4.1 to the

big-step semantics of the 𝜆-calculus in Fig. 1.

Given a big-step semantics ⟨C, R,R⟩, using rules in R, we can build trees called evaluation trees. Such trees are

very much like proof trees for an inference system, with the only difference that evaluation trees are ordered trees,

because premises of big-step rules are a sequence. Roughly, an evaluation tree is an ordered tree with nodes labelled

by semantic judgements, such that for each node labelled by c⇒ r with sequence of children j1, . . . , j𝑛 , there is a rule

rule(j1 . . . j𝑛, c, r) in R.
An evaluation tree for ⟨C, R?,R?⟩ is called a partial evaluation tree, as it can contain incomplete judgements. We say

that a partial evaluation tree is complete if it only contains complete judgments, it is incomplete otherwise. Finite partial

evaluation trees indeed model possibly incomplete evaluation of configurations, namely, the intermediate states of the

evaluation process, because big-step rules can be partially applied. Hence, they are the fundamental building block,

which will allow us to define computations in big-step semantics.

In the next subsection we will give a formal definition of (partial) evaluation trees, similar to that of proof trees

[22–24]. This formal definition is needed to state some results and to carry out proofs in a rigorous way, and it is not

essential to follow the rest of the paper, hence the reader not interested in formal details can skip it, relying on the

above semiformal definition.

4.1 The structure of partial evaluation trees

We give a formal account of (partial) evaluation trees, which is useful to state and prove technical results in the next

sections. This development is based on the definition and properties of trees provided by Courcelle [20], adjusted to our

specific setting.

Let N>0 be the set of positive natural numbers, N★
>0

the set of finite sequences of positive natural numbers and L a

set of labels. An ordered tree labelled in L is a partial function 𝜏 : N★
>0

→ L such that dom(𝜏) is not empty, and, for

each 𝛼 ∈ N★
>0

and 𝑛 ∈ N>0, if 𝛼𝑛 ∈ dom(𝜏) then 𝛼 ∈ dom(𝜏) and, for all 𝑘 ≤ 𝑛, 𝛼𝑘 ∈ dom(𝜏). Given an ordered tree 𝜏

and 𝛼 ∈ dom(𝜏), set br𝜏 (𝛼) = sup{𝑛 ∈ N | 𝛼𝑛 ∈ dom(𝜏)} the branching of 𝜏 at 𝛼 , and 𝜏 |𝛼 the subtree of 𝜏 rooted at 𝛼 ,

that is, 𝜏 |𝛼 (𝛽) = 𝜏 (𝛼𝛽), for all 𝛽 ∈ N★
>0
. The root of 𝜏 is r(𝜏) = 𝜏 (𝜀) and obviously we have 𝜏 = 𝜏 |𝜀 . Finally, we write

𝜏1 . . . 𝜏𝑛

𝑥
for the tree 𝜏 defined by 𝜏 (𝜀) = 𝑥 , and 𝜏 (𝑖𝛼) = 𝜏𝑖 (𝛼) for all 𝑖 ∈ 1..𝑛. Since in the following we will only

deal with ordered trees, we will refer to them just as trees.

Let us assume a big-step semantics ⟨C, R,R⟩. Assume also that labels in L are semantic judgments c⇒ r , then we

can define evaluation trees as follows:

Definition 4.2. A tree 𝜏 : N★
>0

→ L is an evaluation tree in ⟨C, R,R⟩, if, for each 𝛼 ∈ dom(𝜏) with 𝜏 (𝛼) = c⇒ r , there

is rule(𝜏 (𝛼1) . . . 𝜏 (𝛼br𝜏 (𝛼)), c, r) ∈ R.
3
The condition (BP) is satisfied as the number of premises of the additional rules is bounded by that of a rule in the original semantics.
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Note that, starting from an evaluation tree 𝜏 , we can construct a proof tree for the inference system denoted by R, by

forgetting the order on sibling nodes and removing duplicated children. Therefore, if 𝜏 is a finite evaluation tree with

r(𝜏) = c⇒ r , then R ⊢𝜇 c⇒ r holds.

Definition 4.3. A partial evaluation tree in ⟨C, R,R⟩ is an evaluation tree in ⟨C, R?,R?⟩.

The following proposition assures two key properties of partial evaluation trees. First, if there is some ?, then it is

propagated to ancestor nodes. Second, for each level of the tree there is at most one ?. We set |𝛼 | the length of 𝛼 ∈ N★
>0

.

Proposition 4.4. Let 𝜏 be a partial evaluation tree, then the following hold:

(1) for all 𝛼𝑛 ∈ dom(𝜏), if R? (𝜏 (𝛼𝑛)) = ? then R? (𝜏 (𝛼)) = ?.

(2) for all 𝑛 ∈ N, there is at most one 𝛼 ∈ dom(𝜏) with |𝛼 | = 𝑛 such that R? (𝜏 (𝛼)) = ?.

Proof. To prove Item 1, we just have to note that the only rules having a premise j with R? (j) = ? are ?-propagation

rules, which also have conclusion j
′
with R? (j′) = ?; hence the thesis is immediate. To prove Item 2, we proceed by

induction on 𝑛. For 𝑛 = 0, there is only one 𝛼 ∈ N★
>0

with |𝛼 | = 0 (the empty sequence), hence the thesis is trivial.

Consider 𝛼 = 𝛼 ′𝑘 ∈ dom(𝜏) with |𝛼 | = 𝑛 + 1. If R? (𝜏 (𝛼)) = ?, then, by Item 1, R? (𝜏 (𝛼 ′)) = ?, and, by induction

hypothesis, 𝛼 ′ is the only sequence of length 𝑛 in dom(𝜏) with this property. Therefore, another node 𝛽 ∈ dom(𝜏), with
|𝛽 | = 𝑛 + 1 and R? (𝜏 (𝛽)) = ?, must satisfy 𝛽 = 𝛼 ′ℎ for some ℎ ∈ N>0; hence, since 𝜏 is a partial evaluation tree, 𝜏 (𝛼)
and 𝜏 (𝛽) are two premises of the same rule with ? as result, thus they must coincide, since all rules in R? have at most

one premise with ?. □

Corollary 4.5. Let 𝜏 be a partial evaluation tree, then R? (r(𝜏)) ∈ R if and only if 𝜏 is complete.

We can define a relation
4
, denoted by ⊑, on trees labelled by possibly incomplete judgements, as follows:

Definition 4.6. Let 𝜏 and 𝜏 ′ be trees labelled by possibly incomplete semantic judgements. Define 𝜏 ⊑ 𝜏 ′ if and only if

dom(𝜏) ⊆ dom(𝜏 ′) and, for all 𝛼 ∈ dom(𝜏), C (𝜏 (𝛼)) = C (𝜏 ′(𝛼)) and R? (𝜏 (𝛼)) ∈ R implies 𝜏 |𝛼 = 𝜏 ′ |𝛼 .

Intuitively, 𝜏 ⊑ 𝜏 ′ means that 𝜏 ′ can be obtained from 𝜏 by adding new branches or replacing some ?s with results.

We use ⊏ for the strict version of ⊑. Note that, if 𝜏 ⊑ 𝜏 ′, then, for all 𝛼 ∈ N★
>0

, 𝜏 ′(𝛼) is more defined than 𝜏 (𝛼), because,
either 𝜏 (𝛼) is undefined, or 𝜏 (𝛼) is incomplete and C (𝜏 (𝛼)) = C (𝜏 ′(𝛼)), or 𝜏 (𝛼) = 𝜏 ′(𝛼).

It is easy to check that ⊑ is a partial order and, if 𝜏 ⊑ 𝜏 ′, then, for all 𝛼 ∈ dom(𝜏), 𝜏 |𝛼 ⊑ 𝜏 ′ |𝛼 . The following

proposition shows some, less trivial, properties of ⊑.

Proposition 4.7. The following properties hold:

(1) for all trees 𝜏 and 𝜏 ′, if 𝜏 ⊑ 𝜏 ′ and R? (r(𝜏)) ∈ R, then 𝜏 = 𝜏 ′

(2) for each increasing sequence (𝜏𝑖 )𝑖∈N of trees, there is a least upper bound 𝜏 =
⊔
𝜏𝑛 .

Proof. Item 1 is immediate by definition of ⊑. To prove Item 2, first note that, since for all 𝑛 ∈ N, 𝜏𝑛 ⊑ 𝜏𝑛+1, for all
𝛼 ∈ N★

>0
we have that, for all 𝑛 ∈ N, if 𝜏𝑛 (𝛼) is defined, then, for all 𝑘 ≥ 𝑛, C (𝜏𝑘 (𝛼)) = C (𝜏𝑛 (𝛼)), and, if R? (𝜏𝑛 (𝛼)) ∈ R,

then 𝜏𝑘 (𝛼) = 𝜏𝑛 (𝛼). Hence, for all 𝑛 ∈ N, there are only three possibilities for 𝜏𝑛 (𝛼): it is either undefined, or equal
to c⇒ ?, or equal to c⇒ r , where c and r are always the same. Let us denote by 𝑘𝛼 the least index 𝑛 where 𝜏𝑛 (𝛼) is
most defined, that is, if 𝜏𝑛 (𝛼) is always undefined, then 𝑘𝛼 = 0, if 𝜏𝑛 (𝛼) is eventually always equal to c⇒ ?, then 𝑘𝛼

4
This is a slight variation of similar relations on trees considered by Courcelle [20], Dagnino [22].
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is the least 𝑛 where 𝜏𝑛 (𝛼) is defined, and, if 𝜏𝑛 (𝛼) is eventually always equal to c⇒ r , then 𝑘𝛼 is the least 𝑛 where

𝜏𝑛 (𝛼) = c⇒ r . Therefore, for all 𝑛 ≥ 𝑘𝛼 , we have that 𝜏𝑛 (𝛼) = 𝜏𝑘𝛼 (𝛼).
Consider a tree 𝜏 defined by 𝜏 (𝛼) = 𝜏𝑘𝛼 (𝛼). It is easy to check that dom(𝜏) = ⋃

𝑛∈N dom(𝜏𝑛). We now check that,

for all 𝑛 ∈ N, 𝜏𝑛 ⊑ 𝜏 . For all 𝛼 ∈ dom(𝜏𝑛), we have 𝛼 ∈ dom(𝜏) and we distinguish two cases:

• if 𝜏𝑛 (𝛼) = c⇒ ?, then, since either 𝜏𝑛 ⊑ 𝜏𝑘𝛼 or 𝜏𝑘𝛼 ⊑ 𝜏𝑛 and 𝛼 ∈ dom(𝜏𝑘𝛼 ), we get C (𝜏 (𝛼)) = C (𝜏𝑘𝛼 (𝛼)) =

C (𝜏𝑛 (𝛼)) = c;

• if 𝜏𝑛 (𝛼) = c⇒ r , then 𝑘𝛼 ≤ 𝑛, hence, since 𝜏𝑘𝛼 ⊑ 𝜏𝑛 , we get C (𝜏 (𝛼)) = C (𝜏𝑘𝛼 (𝛼)) = C (𝜏𝑛 (𝛼)) = c, thus we

have only to check that 𝜏𝑛 |𝛼 = 𝜏 |𝛼 . To prove this point, consider 𝛽 ∈ dom(𝜏 |𝛼 ), then, by Corollary 4.5, we have

𝜏 |𝛼 (𝛽) = 𝜏 (𝛼𝛽) = c
′⇒ r

′
, hence, since for all ℎ ≥ 𝑘𝛼 we have 𝜏𝑘𝛼 |𝛼 = 𝜏ℎ |𝛼 , we get 𝛼𝛽 ∈ dom(𝜏ℎ) and 𝜏ℎ |𝛼

is complete, thus 𝑘𝛼𝛽 ≤ 𝑘𝛼 . Therefore, 𝜏𝑘𝛼𝛽
⊑ 𝜏𝑘𝛼 ⊑ 𝜏𝑛 and so we get 𝜏𝑘𝛼𝛽 |𝛼𝛽

= 𝜏𝑛 |𝛼𝛽
, which implies that

𝜏𝑛 |𝛼 (𝛽) = 𝜏𝑘𝛼𝛽
(𝛼𝛽) = 𝜏 (𝛼𝛽), as needed.

This proves that 𝜏 is an upper bound of the sequence, we have still to prove that it is the least one. To this end, let

𝜏 ′ be an upper bound of the sequence: we have to show that 𝜏 ⊑ 𝜏 ′. Since 𝜏 ′ is an upper bound, for all 𝑛 ∈ N we

have dom(𝜏𝑛) ⊆ dom(𝜏 ′), hence dom(𝜏) ⊆ dom(𝜏 ′), and, especially, for all 𝛼 ∈ N★
>0

we have 𝜏𝑘𝛼 ⊑ 𝜏 ′. Hence, for

all 𝛼 ∈ dom(𝜏), we have C (𝜏 (𝛼)) = C (𝜏𝑘𝛼 (𝛼)) = C (𝜏 ′(𝛼)), and, if R? (𝜏 (𝛼)) = r , since 𝜏𝑘𝛼 ⊑ 𝜏 and 𝜏𝑘𝛼 ⊑ 𝜏 ′, we have
𝜏𝑘𝛼 |𝛼 = 𝜏 |𝛼 and 𝜏𝑘𝛼 |𝛼 = 𝜏 ′ |𝛼 , hence 𝜏 |𝛼 = 𝜏 ′ |𝛼 , as needed. □

Obviously, this relation restricts to partial evaluation trees and, more importantly, the set of partial evaluation trees

is closed with respect to least upper bound for ⊑, as the next proposition shows.

Proposition 4.8. For each increasing sequence (𝜏𝑛)𝑛∈N of partial evaluation trees, the least upper bound

⊔
𝜏𝑛 is a

partial evaluation tree as well.

Proof. Set 𝜏 =
⊔
𝜏𝑛 . We have to show that for every node 𝛼 ∈ dom(𝜏) there is a rule in R? with conclusion 𝜏 (𝛼)

and premises the (labels of) the children of 𝛼 in 𝜏 .

Recall from Proposition 4.7 (2) that 𝜏 (𝛼) = 𝜏𝑘𝛼 (𝛼), where 𝑘𝛼 ∈ N is the least index 𝑛 where 𝜏𝑛 (𝛼) is most defined.

Note that, for all 𝛼 ∈ dom(𝜏), br𝜏 (𝛼) is finite. Indeed, by definition of 𝜏 and since the sequence is increasing, we have

br𝜏 (𝛼) = sup{br𝜏𝑛 (𝛼) | 𝑛 ≥ 𝑘𝛼 }, and br𝜏𝑛 (𝛼) is the number of premises of a rule, for all 𝑛 ≥ 𝑘𝛼 ; all such rules have the

same configuration in the conclusion C (𝜏𝑛 (𝛼)) = C (𝜏 (𝛼)), hence, by condition (BP) in Definition 3.1, there is 𝑏 ∈ N
such that br𝜏𝑛 (𝛼) ≤ 𝑏, thus br𝜏 (𝛼) ≤ 𝑏. Then, the set 𝐾 = {𝑘𝛼 } ∪ {𝑘𝛼𝑖 | 𝑖 ∈ 1..br𝜏 (𝛼)} is finite and 𝑛 = max𝐾 is finite,

hence, as 𝑛 ≥ 𝑘𝛼 and 𝑛 ≥ 𝑘𝛼𝑖 , for all 𝑖 ∈ 1..br𝜏 (𝛼), we have 𝜏𝑛 (𝛼) = 𝜏 (𝛼) and 𝜏𝑛 (𝛼𝑖) = 𝜏 (𝛼𝑖), for all 𝑖 ∈ 1..br𝜏 (𝛼).
Therefore, ⟨𝜏 (𝛼1) . . . 𝜏 (𝛼br𝜏 (𝛼)), 𝜏 (𝛼)⟩ = ⟨𝜏𝑛 (𝛼1) . . . 𝜏𝑛 (𝛼br𝜏 (𝛼)), 𝜏𝑛 (𝛼)⟩ ∈ R?, since 𝜏𝑛 is a partial evaluation tree.

Thus, by Definition 4.3, 𝜏 is a partial evaluation tree. □

As already mentioned, finite partial evaluation trees model possibly incomplete evaluations. Then, the relation ⊑
models refinement of the evaluation, because if 𝜏 ⊑ 𝜏 ′, where 𝜏 and 𝜏 ′ are finite partial evaluation trees, 𝜏 ′ is “more

detailed” than 𝜏 . In a sense, ⊑ on finite partial evaluation trees abstracts the process of evaluation itself, as we will make

precise in the next section.

What about infinite trees? Similarly to what we have discussed in the introduction, there are many infinite partial

evaluation trees which are difficult to interpret. For instance, using rules in Fig. 1 and Fig. 2, we can construct the
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following infinite tree for all v?, where Ω = (𝜆x .x x) (𝜆x .x x):

𝜆x .x x⇒ 𝜆x .x x 𝜆x .x x⇒ 𝜆x .x x

.

.

.

Ω = (x x) [𝜆x .x x/x] ⇒ v?

Ω⇒ v?

Among all such trees there are some “good” ones, we call them well-formed. Well-formed infinite partial evaluation

trees arise as limits of strictly increasing sequences of finite partial evaluation trees, hence, in a sense, they model the

limit of the evaluation process. namely, non-termination.

Definition 4.9. An infinite partial evaluation tree 𝜏 is well-formed if, for all 𝛼 ∈ dom(𝜏), if R? (𝜏 (𝛼)) ∈ R, then 𝜏 |𝛼 is

finite.

In other words, in a well-formed partial evaluation tree all complete subtrees are finite. The next proposition, together

with Proposition 4.4, implies that a well-formed tree contains a unique infinite path, which is entirely labelled by

incomplete judgments. A similar property on infinite derivations will be enforced by corules in the semantics for

divergence in Section 6.

Proposition 4.10. If 𝜏 is a well-formed infinite partial evaluation tree then, for all 𝑛 ∈ N, there is 𝛼 ∈ dom(𝜏) such
that |𝛼 | = 𝑛 and R? (𝜏 (𝛼)) = ?.

Proof. The proof is by induction on 𝑛. For 𝑛 = 0, we have R? (r(𝜏)) = ?, since, otherwise, we would have R? (r(𝜏)) = r ,

hence, by Definition 4.9, 𝜏 = 𝜏 |𝜀 would be finite, while 𝜏 is infinite by hypothesis.

For 𝑛 = 𝑘 + 1, by induction hypothesis, we know there is 𝛼 ∈ dom(𝜏) such that |𝛼 | = 𝑘 and R? (𝜏 (𝛼)) = ?. For all

𝛽 ∈ dom(𝜏) with 𝛽 = 𝛼 ′ℎ, |𝛼 ′ | = 𝑘 , 𝛼 ′ ≠ 𝛼 , we have R? (𝜏 (𝛽)) ∈ R, because, if R? (𝜏 (𝛽)) = ?, then also R? (𝜏 (𝛼 ′)) = ?, by

Proposition 4.4, and, again by Proposition 4.4, this implies 𝛼 ′ = 𝛼 , which is absurd. As a consequence, for all such 𝛽 , we

have that 𝜏 |𝛽 is finite, as 𝜏 is well-formed.

Then, we focus on children of 𝛼 , splitting cases over br𝜏 (𝛼). If br𝜏 (𝛼) = 0, then 𝛼 has no children and so 𝜏 is finite,

which is absurd. If ℎ = br𝜏 (𝛼) > 0, then, if R? (𝜏 (𝛼ℎ)) ∈ R, since 𝜏 is a partial evaluation tree, we get R? (𝜏 (𝛼ℎ′)) ∈ R for

all ℎ′ ≤ ℎ, hence 𝜏 is again finite, which is absurd. Therefore, R? (𝜏 (𝛼ℎ)) = ?, as needed. □

The following result shows that well-formed partial evaluation trees are exactly the least upper bounds of strictly

increasing sequences of finite partial evaluation trees.

Proposition 4.11. The following properties hold:

(1) for each strictly increasing sequence (𝜏𝑛)𝑛∈N of finite partial evaluation trees, the least upper bound

⊔
𝜏𝑛 is infinite

and well-formed;

(2) for each well-formed infinite partial evaluation tree 𝜏 , there is a strictly increasing sequence (𝜏𝑛)𝑛∈N of finite partial

evaluation trees such that 𝜏 =
⊔
𝜏𝑛 .

Proof. To prove Item 1, set 𝜏 =
⊔
𝜏𝑛 , then, by Proposition 4.8, we have that 𝜏 is a partial evaluation tree, hence we

have only to check that it is infinite and well-formed.

Note that 𝜏 is infinite if and only if dom(𝜏) = ⋃
𝑛∈N dom(𝜏𝑛) is infinite. To prove this, it suffices to observe that, for

all 𝑛 ∈ N, there is ℎ > 𝑛 such that dom(𝜏𝑛) ⊂ dom(𝜏ℎ), namely, there is 𝛼 ∈ dom(𝜏ℎ) such that 𝛼 ∉ dom(𝜏𝑛). This
can be proved by induction on the number of ? in 𝜏𝑛 , denoted by 𝑁? (𝜏𝑛), which is finite as 𝜏𝑛 is finite. This follows
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because, if dom(𝜏𝑛) = dom(𝜏𝑛+1), we have 𝑁? (𝜏𝑛+1) < 𝑁? (𝜏𝑛), since 𝜏𝑛 ⊏ 𝜏𝑛+1 implies that there is at least one node

𝛼 ∈ dom(𝜏𝑛) such that R? (𝜏𝑛 (𝛼)) = ? and R? (𝜏𝑛+1 (𝛼)) = r , thus we can apply the induction hypothesis.

To show that 𝜏 is well-formed, first recall that, for all 𝛼 ∈ dom(𝜏), we have 𝜏 (𝛼) = 𝜏𝑛 (𝛼) for some 𝑛 ∈ N. Then, for
all 𝛼 ∈ dom(𝜏) such that 𝜏 (𝛼) = c⇒ r , since 𝜏𝑛 ⊑ 𝜏 and 𝜏𝑛 (𝛼) = 𝜏 (𝛼), by definition of ⊑, we get 𝜏𝑛 |𝛼 = 𝜏 |𝛼 ; hence, 𝜏 |𝛼
is finite and so 𝜏 is well-formed.

To prove Item 2, for all 𝑛 ∈ N, consider the partial evaluation tree 𝜏𝑛 obtained by “cutting” 𝜏 at level 𝑛 and defined as

follows. Let 𝛼𝑛 ∈ dom(𝜏) be the node such that |𝛼𝑛 | = 𝑛 and R? (𝜏 (𝛼𝑛)) = ? (which exists by Proposition 4.10 as 𝜏 is

well-formed and it is unique thanks to Proposition 4.4 (2)), then define 𝜏𝑛 (𝛽) = 𝜏 (𝛽) for all 𝛽 ≠ 𝛼𝑛𝛽
′
, with 𝛽 ′ ∈ N+

>0
,

and undefined otherwise. We have 𝜏𝑛 ⊑ 𝜏𝑛+1, since, by Proposition 4.4 (1), 𝛼𝑛+1 = 𝛼𝑛𝑖 for some 𝑖 ∈ N>0. Finally, by
construction, we have 𝜏 =

⊔
𝜏𝑛 , as needed. □

This important result will be used in the next sections to prove correctness of extended big-step semantics explicitly

modelling divergence.

4.2 The transition relation

As already mentioned, finite partial evaluation trees nicely model intermediate states in the evaluation process of a

configuration. We now make this precise by defining a transition relation −−−−→R between them, such that, starting

from the initial partial evaluation tree

c⇒ ?

, we derive a sequence where, intuitively, at each step we detail the

evaluation. In this way, a sequence ending with a complete tree (a tree containing no ?) models succesfully terminating

computation, whereas an infinite sequence (tending to an infinite partial evaluation tree) models divergence, and a

sequence reaching an incomplete tree which cannot further move models a stuck computation.

The one-step transition relation −−−−→R is inductively defined by the rules in Fig. 3. To make the definition clearer,

we explicitly annotate the tree with the rule in R? applied to derive the root of the tree from its children. In the figure,

#𝜌 denotes the number of premises of 𝜌 . Finally, ∼𝑖 is the equality up-to an index of rules, defined below:

Definition 4.12. Let 𝜌 = rule(j1 . . . j𝑛, c, r) and 𝜌 ′ = rule(j′
1
. . . j′𝑚, c

′, r ′) be rules in R. Then, for any index 𝑖 ∈
1..min(𝑛,𝑚), define 𝜌 ∼𝑖 𝜌 ′ if and only if

• c = c
′
,

• for all 𝑘 < 𝑖 , j𝑘 = j
′
𝑘
, and

• C (j𝑖 ) = C (j′
𝑖
).

In other words, this equivalence models the fact that rules 𝜌 and 𝜌 ′ represent the same computation until the 𝑖-th

configuration included.

Intuitively, each transition step makes “less incomplete” the partial evaluation tree. Notably, transition rules apply

only to nodes labelled by incomplete judgements (c⇒ ?), whereas subtrees whose root is a complete judgement (c⇒ r)

cannot move. In detail:

• If the last applied rule is ax? (c), we have to find a rule 𝜌 with c in the conclusion and, if it has no premises we

just return R(𝜌) as result, otherwise we start evaluating the first premise of such rule.

• If the last applied rule is pev
?
(𝜌, 𝑖, r), then all subtrees are complete, hence, to continue the evaluation, we have

to find another rule 𝜌 ′, having, for each 𝑘 ∈ 1..𝑖 , as 𝑘-th premise the root of 𝜏𝑘 . Then there are two possibilities:

if there is an 𝑖 + 1-th premise, we start evaluating it, otherwise, we return R(𝜌 ′) as result.
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(tr-1) (ax
?
(c) )

c⇒ ?

−−−−→R (𝜌 )
c⇒ r

#𝜌 = 0

C (𝜌) = c

R(𝜌) = r

(tr-2) (ax
?
(c) )

c⇒ ?

−−−−→R (pev
?
(𝜌,1,?) )

c
′⇒ ?

c⇒ ?

#𝜌 > 0

C (𝜌) = c

C (𝜌, 1) = c
′

(tr-3) (pev
?
(𝜌,𝑖,r ) )

𝜏1 . . . 𝜏𝑖

c⇒ ?

−−−−→R (𝜌′)
𝜏1 . . . 𝜏𝑖

c⇒ r
′

𝜌′ ∼𝑖 𝜌
R(𝜌′, 𝑖) = r

#𝜌′ = 𝑖

R(𝜌′) = r
′

(tr-4) (pev
?
(𝜌,𝑖,r ) )

𝜏1 . . . 𝜏𝑖

c⇒ ?

−−−−→R (pev
?
(𝜌′,𝑖+1,?) )

𝜏1 . . . 𝜏𝑖 c
′⇒ ?

c⇒ ?

𝜌′ ∼𝑖 𝜌
R(𝜌′, 𝑖) = r

C (𝜌′, 𝑖 + 1) = c
′

(tr-5) (pev
?
(𝜌,𝑖,?) )

𝜏1 . . . 𝜏𝑖−1 𝜏𝑖
c⇒ ?

−−−−→R (pev
?
(𝜌,𝑖,r

?
) )
𝜏1 . . . 𝜏𝑖−1 𝜏′𝑖

c⇒ ?

𝜏𝑖−−−−→R𝜏
′
𝑖

Fig. 3. Transition relation between partial evaluation trees.

(𝜆x .x) 𝑛⇒ ?

−−−−→R
𝜆x .x⇒ ?

(𝜆x .x) 𝑛⇒ ?

−−−−→R
𝜆x .x⇒ 𝜆x .x

(𝜆x .x) 𝑛⇒ ?

−−−−→R
𝜆x .x⇒ 𝜆x .x 𝑛⇒ ?

(𝜆x .x) 𝑛⇒ ?

−−−−→R
𝜆x .x⇒ 𝜆x .x 𝑛⇒ 𝑛

(𝜆x .x) 𝑛⇒ ?

−−−−→R
𝜆x .x⇒ 𝜆x .x 𝑛⇒ 𝑛 𝑛⇒ ?

(𝜆x .x) 𝑛⇒ ?

−−−−→R
𝜆x .x⇒ 𝜆x .x 𝑛⇒ 𝑛 𝑛⇒ 𝑛

(𝜆x .x) 𝑛⇒ ?

−−−−→R
𝜆x .x⇒ 𝜆x .x 𝑛⇒ 𝑛 𝑛⇒ 𝑛

(𝜆x .x) 𝑛⇒ 𝑛

Fig. 4. The evaluation of (𝜆x .x) 𝑛 using −−−−→R for rules in Fig. 1.

• If the last applied rule is a propagation rule pev
?
(𝜌, 𝑖, ?), then we simply propagate the step made by 𝜏𝑖 (the

last subtree), which is necessarily incomplete. After the step, 𝜏 ′
𝑖
may be complete, hence the last applied rule is

pev
?
(𝜌, 𝑖, r?).

In Fig. 4 we report an example of evaluation of a term according to rules in Fig. 1, using partial evaluation trees and

−−−−→R .

As mentioned above, the definition of −−−−→R given in Fig. 3 nicely models as a transition system an interpreter

driven by the big-step rules. In other words, the one-step transition relation between finite partial evaluation trees

specifies an algorithm of incremental evaluation.
5
On the other hand, also the partial order relation ⊑ (cf. Definition 4.6)

models a refinement relation between finite partial evauation trees, even if in a more abstract way. The next proposition

formally proves that these two descriptions agree, namely, ⊑ is indeed an abstraction of −−−−→R .

Proposition 4.13. Let 𝜏 and 𝜏 ′ be finite partial evaluation trees, then the following hold:

(1) if 𝜏−−−−→R𝜏
′
then 𝜏 ⊏ 𝜏 ′, and

(2) if 𝜏 ⊑ 𝜏 ′ then 𝜏−−−−→★
R𝜏

′
.

Proof. Point 1 can be easily proved by induction on the definition of −−−−→R . The proof of point 2 is by induction

on 𝜏 ′, denote by 𝐼𝐻 the induction hypothesis. This is possible as 𝜏 ′ is finite by hypothesis. We can assume R? (r(𝜏)) = ?,

5
Non-determinism can only be caused by intrinsic non-determinism of the big-step semantics, if any.
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since in the other case, by Proposition 4.7 (1), we have 𝜏 = 𝜏 ′, hence the thesis is trivial. We can further assume

R? (r(𝜏 ′)) = ?, since, if 𝜏 ′ =
𝜏 ′
1

. . . 𝜏 ′𝑛
c⇒ r

, then we always have 𝜏 ′′ =
𝜏 ′
1

. . . 𝜏 ′𝑛
c⇒ ?

−−−−→R𝜏
′
and 𝜏 ⊑ 𝜏 ′′, because

𝜏 ⊑ 𝜏 ′ and we have dom(𝜏 ′) = dom(𝜏 ′′), 𝜏 ′(𝛼) = 𝜏 ′′(𝛼) for all 𝛼 ≠ 𝜀, C (r(𝜏 ′)) = C (r(𝜏 ′′)) and R? (r(𝜏)) = ?. Now, if

𝜏 ′ =
c⇒ ?

(base case), then, since dom(𝜏) ⊆ dom(𝜏 ′) and C (r(𝜏)) = C (r(𝜏 ′)) by definition of ⊑, we have 𝜏 = 𝜏 ′,

hence the thesis is trivial.

Let us assume 𝜏 =
𝜏1 . . . 𝜏𝑘

c⇒ ?

and 𝜏 ′ =
𝜏 ′
1

. . . 𝜏 ′
𝑖

c
′⇒ ?

, with, necessarily, 𝑘 ≤ 𝑖 and c = c
′
by definition of ⊑. We

have 𝜏ℎ ⊑ 𝜏 ′
ℎ
, for all ℎ ≤ 𝑘 , and by Proposition 4.4 (2), at most 𝜏𝑘 is incomplete, that is, for all ℎ < 𝑘 , 𝜏ℎ is complete,

namely, R? (r(𝜏ℎ)) ∈ R, thus, by definition of ⊑, we have 𝜏ℎ = 𝜏 ′
ℎ
. Furthermore, since 𝜏𝑘 ⊑ 𝜏 ′

𝑘
, by 𝐼𝐻 , we get 𝜏𝑘−−−−→★

R𝜏
′
𝑘
,

hence 𝜏−−−−→★
R𝜏

′′ =
𝜏 ′
1

. . . 𝜏 ′
𝑘

c⇒ ?

⊑ 𝜏 ′. We now show, concluding the proof, by arithmetic induction on 𝑖 − 𝑘 , that
𝜏 ′′−−−−→★

R𝜏
′
. If 𝑖 − 𝑘 = 0, hence 𝑖 = 𝑘 , we have 𝜏 ′′ = 𝜏 ′, hence the thesis is immediate. If 𝑖 − 𝑘 > 0, hence 𝑖 > 𝑘 , setting

c
′′ = C (r(𝜏 ′

𝑘+1)), by 𝐼𝐻 , we get
c
′′⇒ ?

−−−−→★
R𝜏

′
𝑘+1; moreover, again by Proposition 4.4 (2), we have R? (r(𝜏 ′𝑘 )) ∈ R,

hence we get

𝜏 ′′−−−−→R
𝜏 ′
1

. . . 𝜏 ′
𝑘

c
′′⇒ ?

c⇒ ?

−−−−→★
R
𝜏 ′
1

. . . 𝜏 ′
𝑘
𝜏 ′
𝑘+1

c⇒ ?

= 𝜏

Finally, by arithmetic induction hypothesis, we get 𝜏−−−−→★
R𝜏

′
, as needed. □

We conclude this section by showing that the transition relation−−−−→R agrees with the semantic relation (inductively)

defined by R, namely, the semantic relation captures exactly successful terminating computations in −−−−→R .

Theorem 4.14. R ⊢𝜇 c⇒ r iff

c⇒ ?
−−−−→★

R𝜏 , where r(𝜏) = c⇒ r.

Proof. R ⊢𝜇 c⇒ r implies

c⇒ ?

−−−−→★
R𝜏 where r(𝜏) = c⇒ r . By definition, if R ⊢𝜇 c⇒ r holds, then there is a

finite evaluation tree 𝜏 in R such that r(𝜏) = c⇒ r . Since R ⊆ R? by Definition 4.1, 𝜏 is a (complete) partial evaluation

tree as well; furthermore,

c⇒ ?

⊑ 𝜏 , hence, by Proposition 4.13 (2), we get the thesis.

c⇒ ?

−−−−→★
R𝜏 where r(𝜏) = c⇒ r implies R ⊢𝜇 c⇒ r . Since r(𝜏) = c⇒ r , by Corollary 4.5, 𝜏 is complete, hence, it is

an evaluation tree in R, thus R ⊢𝜇 c⇒ r holds. □

5 EXTENDED BIG-STEP SEMANTICS: TWO CONSTRUCTIONS

In Section 4, we have just shown that, given a big-step semantics as in Definition 3.1, it is possible to define computations

in such semantics, by deriving a transition relation which formally models the evaluation algorithm guided by the rules.

In this way, we are able to distinguish stuck and non-terminating computations as in standard small-step semantics.

This, in a sense, shows that such a distinction is implicit in a big-step semantics.

In this section, we aim at showing that we can make such distinction explicit directly by a big-step semantics, without

introducing any transition relation modelling single computation steps. To this end, we describe two constructions

that, starting from a big-step semantics, yield extended ones where non-terminating and stuck computations are

explicitly distinguished. These two constructions are in some sense dual to each other, because one explicitly models

non-termination, while the other one explicitly models stuckness, and they are based on well-know ideas: divergence is

modelled by traces, as suggested by Leroy and Grall [36], while stuckness by an additional special result, as described,

for instance, by Pierce [44]. The novel contribution is that, thanks to the general definition of big-step semantics in

Section 3 (cf. Definition 3.1), we can provide general constructions working on an arbitrary big-step semantics, rather

than discussing specific examples, as it is customary in the literature.
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In the following, we assume a big-step semantics ⟨C, R,R⟩.

5.1 Adding traces

The set of traces in the big-step semantics is the set C
∞

of finite and infinite sequences of configurations. Finite traces

are ranged over by t, while infinite traces by 𝜎 .

The judgement of trace semantics has shape c⇒tr rtr, where rtr ∈ Tr
C

R
= (C★ × R) + C

𝜔
, that is, rtr is either a pair

⟨t, r⟩ of a finite trace and a result, modelling a converging computation, or an infinite trace 𝜎 , modelling divergence.

Intuitively, traces t keep track of all the configurations visited during the evaluation, starting from c itself. To define the

trace semantics, we construct, starting from R, a new set of rules Rtr as follows:

Definition 5.1 (Rules for traces). The set of rules Rtr consists of the following rules:

finite trace rules For each 𝜌 = rule(j1 . . . j𝑛, c, r) in R and finite traces t1, . . . , t𝑛 ∈ C
★
, define rule trace(𝜌, t1, . . . , t𝑛)

as

C (j1) ⇒tr ⟨t1, R(j1)⟩ . . . C (j𝑛) ⇒tr ⟨t𝑛, R(j𝑛)⟩
c⇒tr ⟨ct1 · · · t𝑛, r⟩

infinite trace rules For each 𝜌 = rule(j1 . . . j𝑛, c, r) in R, index 𝑖 ∈ 1..𝑛, finite traces t1, . . . , t𝑖−1 ∈ C
★
, and infinite

trace 𝜎 ∈ C
𝜔
, define rule trace∞ (𝜌, 𝑖, t1, . . . , t𝑖−1, 𝜎) as follows:

C (j1) ⇒tr ⟨t1, R(j1)⟩ . . . C (j𝑖−1) ⇒tr ⟨t𝑖−1, R(j𝑖−1)⟩ C (j𝑖 ) ⇒tr 𝜎

c⇒tr ct1 · · · t𝑖−1𝜎

Finite trace rules enrich big-step rules in R by finite traces, thus modelling computations converging to a final result.

On the other hand, infinite trace rules handle non-termination, modelled by infinite traces: they propagate divergence,

that is, if a configuration in the premises of a rule in R diverges, namely, it evaluates to an infinite trace, then the

subsequent premises are ignored and the configuration in the conclusion diverges as well. Note that all these rules have

a non-empty trace in the conclusion, hence only non-empty traces are derivable by such rules. Finally, observe that the

triple ⟨C, TrC
R
,Rtr⟩ is a big-step semantics according to Definition 3.1.

The standard inductive interpretation of big-step rules is not enough in this setting: it can only derive judgements

of shape c⇒tr ⟨t, r⟩, because there is no axiom introducing infinite traces, hence they cannot be derived by finite

derivations. In other words, the inductive interpretation of Rtr can only capture converging computations. To properly

handle divergence, we have to interpret rules coinductively, namely, allowing both finite and infinite derivations.

Then, we will write Rtr ⊢𝜈 c⇒tr rtr to say that c⇒tr rtr is coinductively derivable by rules in Rtr. It is important to

note the following proposition, stating that enabling infinite derivations does not affect the semantics of converging

computations.

Lemma 5.2. Rtr ⊢𝜈 c⇒tr ⟨t, r⟩ iff Rtr ⊢𝜇 c⇒tr ⟨t, r⟩.

Proof. The right-to-left implication is trivial, because the inductive interpretation is always included in the coinduc-

tive one. The proof of the other direction is by induction on the length of t, which is a finite trace. By hypothesis, we

know that c⇒tr ⟨t, r⟩ is derivable by a (possibly infinite) derivation and, by Definition 5.1, we know that the last applied

rule 𝜌tr has shape trace(𝜌, t1, . . . , t𝑛), hence t = ct1 · · · t𝑛 . If |t | = 1, then t = c, and so 𝑛 = 0, that is, 𝜌 = rule(𝜀, c, r),
because only non-empty traces are derivable, hence Rtr ⊢𝜇 c⇒tr ⟨t, r⟩ holds by 𝜌tr. If |t | > 0, then, for all 𝑖 ∈ 1..𝑛,

|t𝑖 | < |t |, hence, by induction hypothesis, we get Rtr ⊢𝜇 C (𝜌, 𝑖) ⇒tr ⟨t𝑖 , R(𝜌, 𝑖)⟩, and so Rtr ⊢𝜇 c⇒tr ⟨t, r⟩ holds by
𝜌tr. □
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(app-tr)

e1⇒tr ⟨t1, 𝜆x .e⟩ e2⇒tr ⟨t2, v2⟩ e[v2/x] ⇒tr ⟨t, v⟩
e1 e2⇒tr ⟨(e1 e2)t1t2t, v⟩

(div-app-1)

e1⇒tr 𝜎

e1 e2⇒tr (e1 e2)𝜎
(div-app-2)

e1⇒tr ⟨t1, 𝜆x .e⟩ e2⇒tr 𝜎

e1 e2⇒tr (e1 e2)t1𝜎

(div-app-3)

e1⇒tr ⟨t1, 𝜆x .e⟩ e2⇒tr ⟨t2, v2⟩ e[v2/x] ⇒tr 𝜎

e1 e2⇒tr (e1 e2)t1t2𝜎

Fig. 5. Trace semantics for application

Note that, following the same inductive strategy as the above proof, we can prove that actually a derivation for a

judgement of shape c⇒tr ⟨t, r⟩ is necessarily finite. This is essentially due to the fact that rules are productive, meaning

that the trace in the conclusion is always strictly larger than those in the premises.

We show in Fig. 5 the rules obtained by applying Definition 5.1, starting from meta-rule (app) of the example in Fig. 1

(for the other meta-rules the outcome is analogous).

For instance, set 𝜔 = 𝜆x .x x, hence Ω = 𝜔 𝜔 (cf. page 11), and 𝜎Ω the infinite trace Ω𝜔𝜔Ω𝜔𝜔 . . ., it is easy to see

that the judgment Ω⇒tr tΩ can be derived by the following infinite derivation:
6

𝜔⇒tr ⟨𝜔,𝜔⟩ 𝜔⇒tr ⟨𝜔,𝜔⟩

.

.

.

Ω = (x x) [𝜔/x] ⇒tr 𝜎Ω

Ω⇒ Ω𝜔𝜔𝜎Ω = 𝜎Ω

Note that only the judgment Ω⇒tr 𝜎Ω can be derived, that is, the trace semantics of Ω is uniquely determined to be

𝜎Ω , since the infinite derivation forces the equation 𝜎Ω = Ω𝜔𝜔𝜎Ω .

To check that the construction in Definition 5.1 is a correct extension of the given big-step semantics, we have to

show it is conservative, in the sense that it does not affect the semantics of converging computations, as formally stated

below.

Theorem 5.3. Rtr ⊢𝜈 c⇒tr ⟨t, r⟩ for some t ∈ C
★
iff R ⊢𝜇 c⇒ r.

Proof. By Lemma 5.2, we know that Rtr ⊢𝜈 c⇒tr ⟨t, r⟩ iff Rtr ⊢𝜇 c⇒tr ⟨t, r⟩. Then, the thesis follows by proving

Rtr ⊢𝜇 c⇒tr ⟨t, r⟩, for some t ∈ C
★
, iff R ⊢𝜇 c⇒ r , by a straightforward induction on rules. □

We conclude this subsection by showing a coinductive proof principle associated with trace semantics, which allows

us to prove that a predicate on configurations ensures the existence of a non-terminating computation.

Lemma 5.4. Let S ⊆ C be a set. If, for all c ∈ S, there are 𝜌 = rule(j1 . . . j𝑛, c, r) ∈ R and 𝑖 ∈ 1..𝑛 such that

(1) for all 𝑘 < 𝑖 , R ⊢𝜇 j𝑘 , and

(2) C (j𝑖 ) ∈ S

then, for all c ∈ S, there exists 𝜎 ∈ C
𝜔
such that Rtr ⊢𝜈 c⇒tr 𝜎 .

Proof. First of all, for each c ∈ S, we construct a trace 𝜎c ∈ C
𝜔
, which will be the candidate trace to prove the

thesis. By hypothesis (Item 1), there is a rule 𝜌c = rule(jc
1
. . . jc𝑛c

, c, rc) and an index 𝑖c ∈ 1..𝑛c such that, for all 𝑘 < 𝑖c ,

we have R ⊢𝜇 j
c

𝑘
. Therefore, by Theorem 5.3, there are finite traces t

c

1
, . . . , tc

𝑖c−1 ∈ C
★
such that for all 𝑘 < 𝑖c we have

6
To help the reader, we add equivalent expressions with a grey background.
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Rtr ⊢𝜈 C (jc
𝑘
) ⇒tr ⟨tc𝑘 , R(j

c

𝑘
)⟩, and, in addition (Item 2), we know that C (jc

𝑖c
) ∈ S. Then, for each c ∈ S, we can introduce

a variable 𝑋c and define an equation 𝑋c = c · tc
1
· · · · · tc

𝑖c−1 · 𝑋C (jc𝑖c ) . The set of all such equations is a guarded system

of equations, which thus has a unique solution, namely, a function 𝑠 : S → C
𝜔
such that, for each c ∈ S we have

𝑠 (c) = c · tc
1
· · · · · tc

𝑖c−1 · 𝑠 (C (j
c

𝑖c
)).7

We now have to prove that, for all c ∈ S, we have Rtr ⊢𝜈 c⇒tr 𝑠 (c). To this end, consider the set S′ = {⟨c, 𝑠 (c)⟩ |
c ∈ S} ∪ {⟨c, ⟨t, r⟩⟩ | Rtr ⊢𝜈 c⇒tr ⟨t, r⟩}, then the proof is by coinduction. Let ⟨c, rtr⟩ ∈ S′

, then we have to find a rule

⟨j1 . . . j𝑛, c⇒tr rtr⟩ ∈ Rtr such that, for all 𝑘 ∈ 1..𝑛, ⟨C (j𝑘 ), TrCR (j𝑘 )⟩ ∈ S′
. We have two cases:

• if rtr = 𝑠 (c), then the needed rule is trace∞ (𝜌c, 𝑖c, tc
1
, . . . , tc

𝑖c−1, 𝑠 (C (j
c

𝑖c
))), and

• if rtr = ⟨t, r⟩, then Rtr ⊢𝜈 c⇒tr ⟨t, r⟩, by construction of S′
, hence c⇒tr ⟨t, r⟩ is the conclusion of a finite trace

rule, where all premises are still derivable, thus in S′
by construction.

□

5.2 Adding wrong

A well-known technique [1, 44] to distinguish between stuck and diverging computations, in a sense “dual” to the

previous one, is to add a special result wrong, so that c⇒ wrong means that the evaluation of c goes stuck.

In this case, defining a general and “automatic” version of the construction, starting from an arbitrary big-step

semantics ⟨C, R,R⟩, is a non-trivial problem. Our solution is based on the equivalence on rules defined in Definition 4.12

(equality up to an index), which allows us to define when wrong can be introduced.

The extended judgement has shape c⇒ rwr where rwr ∈ Rwr = R + {wrong}, that is, it is either a result or an error.

To define the extended semantics, we construct, starting from R, an extended set of rules Rwr as follows:

Definition 5.5 (Rules for wrong). The set of rules Rwr is obtained by adding to R the following rules:

wrong configuration rules For each configuration c ∈ C such that there is no rule 𝜌 in R with C (𝜌) = c, define rule

wrong(c) as
c⇒ wrong

.

wrong result rules For each rule 𝜌 = rule(j1 . . . j𝑛, c, r) in R, index 𝑖 ∈ 1..𝑛, and result r
′ ∈ R, if, for all rules 𝜌 ′ such

that 𝜌 ∼𝑖 𝜌 ′, R(𝜌 ′, 𝑖) ≠ r
′
, then define rule wrong(𝜌, 𝑖, r ′) as

j1 . . . j𝑖−1 C (j𝑖 ) ⇒ r
′

c⇒ wrong

wrong propagation rules These rules propagate wrong analogously to those for divergence propagation: For each

rule 𝜌 = rule(j1 . . . j𝑛, c, r) in R and index 𝑖 ∈ 1..𝑛, define rule prop(𝜌, 𝑖,wrong) as
j1 . . . j𝑖−1 C (j𝑖 ) ⇒ wrong

c⇒ wrong

Wrong configurations rules simply say that, if there is no rule for a given configuration, then we can derive wrong.

Wrong result rules, instead, derive wrong whenever the configuration in a premise of a rule reduces to a result which

is not admitted in such (and any equivalent) rule. We also call these two kinds of rules wrong introduction rules,

as they introduce wrong in the conclusion without having it in the premises. Finally, wrong propagation rules say

that, if a configuration in a premise of some rule in R goes wrong, then the subsequent premises are ignored and

the configuration in the conclusion goes wrong as well. Note that ⟨C, Rwr,Rwr⟩ is a big-step semantics according to

Definition 3.1.

7
This argument can be made more precise using coalgebras [50], in particular the fact that S and C

𝜔
carry, respectively, a coalgebra and a corecursive

algebra [16] structure for the functor 𝑋 ↦→ C
★ ×𝑋 .
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(wrong-app)

e1 ⇒ n

e1 e2 ⇒ wrong

(wrong-succ)

e⇒ 𝜆x .e

succ e⇒ wrong

(prop-app-1)

e1 ⇒ wrong

e1 e2 ⇒ wrong

(prop-app-2)

e1 ⇒ 𝜆x .e e2 ⇒ wrong

e1 e2 ⇒ wrong

(prop-app-3)

e1 ⇒ 𝜆x .e e2 ⇒ v2 e [v2/x ] ⇒ wrong

e1 e2 ⇒ wrong

(prop-succ)

e⇒ wrong

succ e⇒ wrong

Fig. 6. Semantics with wrong for application and successor

In this case, the standard inductive interpretation is enough to get the correct semantics, because, intuitively, an error,

if any, occurs after a finite number of steps. Then, we write Rwr ⊢𝜇 c⇒ rwr when the judgment c⇒ rwr is inductively

derivable by rules in Rwr.

We show in Fig. 6 the meta-rules for wrong introduction and propagation constructed starting from those for

application and successor in Fig. 1.

For instance, rule (wrong-app) is introduced since in the original semantics there is rule (app) with e1 e2 in the conclusion

and e1 in the first premise, but there is no equivalent rule (that is, with e1 e2 in the conclusion and e1 in the first premise)

such that the result in the first premise is n. Intuitively, this means that n is a wrong result for the evaluation of the first

argument of an application.

Like the previous construction, the wrong construction is a correct extension of R, namely, it is conservative.

Theorem 5.6. Rwr ⊢𝜇 c⇒ r iff R ⊢𝜇 c⇒ r.

Proof. The right-to-left implication is trivial, as R ⊆ Rwr by Definition 5.5. The proof of the other direction is by

induction on rules in Rwr. The only relevant cases are rules in R, because rules in Rwr \ R allow only the derivation of

judgements of shape c⇒ wrong. Hence, the thesis is immediate. □

5.3 Correctness of constructions

We now prove correctness of the trace and wrong constructions, by showing they capture diverging and stuck computa-

tions, respectively, as defined by the transition relation −−−−→R introduced in Section 4.2. This provides us a coherence

result for our approach.

First of all, note that both constructions correctly capture converging computations, because, if restricted to such

computations, by Theorems 5.3 and 5.6, the constructions are both equivalent to the original big-step semantics. Hence,

in the following, we focus only on diverging and stuck computations, respectively.

Correctness of Rtr. Given a partial evaluation tree 𝜏 , we write 𝜏−−−−→𝜔
R meaning that there is an infinite sequence of

−−−−→R -steps starting from 𝜏 . Then, the theorem we want to prove is the following:

Theorem 5.7. Rtr ⊢𝜈 c⇒tr 𝜎 , for some 𝜎 ∈ C
𝜔
, iff

c⇒ ?
−−−−→𝜔

R .

To prove this result, we need to relate evaluation trees (a.k.a. derivations) inRtr (cf. Definition 5.1) to partial evaluation

trees in R (cf. Definition 4.3). To this end, we define a function 𝑢? : Tr
C

R
→ R?, which essentially forgets traces, as

follows: 𝑢? (⟨t, r⟩) = r and 𝑢? (𝜎) = ?. We can extend this function to judgements, mapping c⇒tr rtr to c⇒ 𝑢? (rtr),
and to rules, mapping trace(𝜌, t1, . . . , t𝑛) to 𝜌 and trace∞ (𝜌, 𝑖, t1, . . . , t𝑖−1, 𝜎) to pev? (𝜌, 𝑖, ?). Finally, we get a function
erase that transforms an evaluation tree 𝜏 tr in Rtr into a partial evaluation tree, defined by erase(𝜏 tr) = 𝑢? ◦ 𝜏 tr, that is,
relying on the fact that a tree is a (partial) function, we postcompose 𝜏 tr with 𝑢?; in other words, this means that we
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apply 𝑢? to all judgements labeling a node in 𝜏 tr, thus erasing traces. Since 𝑢? transforms rules in Rtr into rules in R?,

erase(𝜏 tr) is indeed a partial evaluation tree and the following equalities between trees hold:

erase

(
(trace(𝜌, t

1
,...,t𝑛 ) )

𝜏 tr
1

. . . 𝜏 tr𝑛

c⇒tr ⟨t, r⟩

)
= (𝜌 )

erase

(
𝜏 tr
1

)
. . . erase

(
𝜏 tr𝑛

)
c⇒ r

erase

(
(trace∞(𝜌, 𝑖, t

1
,...,t𝑖−1, 𝜎 ) )

𝜏 tr
1

. . . 𝜏 tr
𝑖

c⇒tr 𝜎
′

)
= (pev

?
(𝜌,𝑖,?) )

erase

(
𝜏 tr
1

)
. . . erase

(
𝜏 tr
𝑖

)
c⇒ ?

Note that, by construction, dom(𝜏 tr) = dom(erase
(
𝜏 tr

)
), hence, 𝜏 tr is finite iff erase

(
𝜏 tr

)
is finite and 𝜏 tr is infinite

iff erase

(
𝜏 tr

)
is infinite. Furthermore, since, as we have already observed, 𝜏 tr is finite iff r(𝜏 tr) = c⇒tr ⟨t, r⟩, we have

that erase

(
𝜏 tr

)
is complete iff 𝜏 tr is finite and erase

(
𝜏 tr

)
is well-formed iff 𝜏 tr is infinite (cf. Definition 4.9).

Lemma 5.8. If Rtr ⊢𝜈 c⇒tr rtr holds by an infinite evaluation tree 𝜏 tr, then there is a sequence (𝜏𝑛)𝑛∈N such that

𝜏𝑛−−−−→R𝜏𝑛+1 for all 𝑛 ∈ N, 𝜏0 =
c⇒ ?

, and

⊔
𝜏𝑛 = erase

(
𝜏 tr

)
.

Proof. Since 𝜏 tr is infinite, erase
(
𝜏 tr

)
= 𝜏 is a well-formed infinite partial evaluation treee and, by Proposition 4.11 (2),

there is a strictly increasing sequence (𝜏 ′𝑛)𝑛∈N of finite partial evaluation trees such that

⊔
𝜏 ′𝑛 = 𝜏 and 𝜏 ′

0
=

c⇒ ?

. By

Proposition 4.13 (2), since for all 𝑛 ∈ N we have 𝜏 ′𝑛 ⊏ 𝜏
′
𝑛+1, we get 𝜏

′
𝑛−−−−→★

R𝜏
′
𝑛+1, and, since 𝜏

′
𝑛 ≠ 𝜏 ′

𝑛+1, this sequence

of steps is not empty. Hence, we can construct a sequence (𝜏𝑛)𝑛∈N such that 𝜏0 = 𝜏 ′
0
=

c⇒ ?

, 𝜏𝑛−−−−→R𝜏𝑛+1 and⊔
𝜏𝑛 = 𝜏 , as needed. □

Lemma 5.9. Let 𝜏 be a well-formed infinite partial evaluation tree with r(𝜏) = c⇒ ?. Then, Rtr ⊢𝜈 c⇒tr 𝜎 holds for

some 𝜎 ∈ C
𝜔
.

Proof. The thesis follows from Lemma 5.4, applied to the set S ⊆ C defined as follows: c ∈ S iff C (r(𝜏)) = c,

for some infinite well-formed partial evaluation tree 𝜏 . Let c ∈ S, then c = C (r(𝜏)) and the last applied rule in 𝜏 is

pev
?
(𝜌, 𝑖, ?), for some 𝜌 = rule(j1 . . . j𝑛, c, r) in R. Then, we have R ⊢𝜇 j𝑘 , for all 𝑘 < 𝑖 and C (j𝑖 ) = C (r(𝜏 |𝑖 )) and 𝜏 |𝑖 is an

infinite well-formed partial evaluation tree. Therefore, C (j𝑖 ) ∈ S, and so the hypotheses of Lemma 5.4 are satisfied. □

Proof of Theorem 5.7. Rtr ⊢𝜈 c⇒tr 𝜎 for some 𝜎 ∈ C
𝜔
implies

c⇒ ?

−−−−→𝜔
R . Since Rtr ⊢𝜈 c⇒tr 𝜎 holds and 𝜎

is infinite, by (a consequence of) Lemma 5.2, there is an infinite evaluation tree 𝜏 tr in Rtr such that r(𝜏 tr) = c⇒tr 𝜎 .

Then, by Lemma 5.8 we get the thesis.

c⇒ ?

−−−−→𝜔
R implies Rtr ⊢𝜈 c⇒tr 𝜎 for some 𝜎 ∈ C

𝜔
. By definition of −−−−→𝜔

R , there is an infinite sequence

(𝜏𝑛)𝑛∈N such that 𝜏0 =
c⇒ ?

and, for all 𝑛 ∈ N, 𝜏𝑛−−−−→R𝜏𝑛+1, hence, by Proposition 4.13 (1), we get 𝜏𝑛 ⊏ 𝜏𝑛+1. By

Proposition 4.11 (1), we have that 𝜏 =
⊔
𝜏𝑛 is a well-formed infinite partial evaluation tree, hence we get the thesis by

Lemma 5.9. □

Correctness of Rwr. We now show that the construction in Section 5.2 correctly models stuck computation in −−−−→R .

The proof relies on the following lemma. We say that a (finite) partial evaluation tree 𝜏 is irreducible if there is

no 𝜏 ′ such that 𝜏−−−−→R𝜏
′
, and it is stuck if it is irreducible and R? (r(𝜏)) = ?. Note that, by Proposition 4.7 (1) and

Proposition 4.13 (1), a complete partial evaluation tree 𝜏 is irreducible.

Lemma 5.10. If 𝜏 is a stuck partial evaluation tree with r(𝜏) = c⇒ ?, then Rwr ⊢𝜇 c⇒ wrong holds.
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Proof. The proof is by induction on 𝜏 , splitting cases on the last applied rule.

Case: ax? (c) Since 𝜏 is stuck, by definition of −−−−→R (cf. Fig. 3 first and second clauses), there is no rule 𝜌 ∈ R such

that C (𝜌) = c, hence Rwr ⊢𝜇 c⇒ wrong holds, by applying wrong(c).
Case: pev? (𝜌, 𝑖, r) Suppose 𝜌 = rule(j1 . . . j𝑛, c, r ′) and 𝑖 ∈ 1..𝑛, by hypothesis, for all 𝑘 < 𝑖 , 𝜏 |𝑘 is a complete partial

evaluation tree of j𝑘 , hence we know that R ⊢𝜇 j𝑘 holds. Since 𝜏 is stuck, by definition of −−−−→R (cf. Fig. 3 third

and fourth clauses), there is no rule 𝜌 ′ ∼𝑖 𝜌 with R(𝜌 ′, 𝑖) = r , hence wrong(𝜌, 𝑖, r) ∈ Rwr. By Theorem 5.6 we get

Rwr ⊢𝜇 j𝑘 , for all 𝑘 < 𝑖 , hence applying wrong(𝜌, 𝑖, r), we get Rwr ⊢𝜇 c⇒ wrong.

Case: pev? (𝜌, 𝑖, ?) Suppose 𝜌 = rule(j1 . . . j𝑛, c, r ′) and 𝑖 ∈ 1..𝑛, by hypothesis, for all 𝑘 < 𝑖 , 𝜏 |𝑘 is a complete partial

evaluation tree of j𝑘 , hence we know that R ⊢𝜇 j𝑘 holds. Set c𝑖 = C (𝜌, 𝑖), then, since 𝜏 is stuck, by definition of

−−−−→R (cf. Fig. 3 clause (tr-5)), the subtree 𝜏 |𝑖 is stuck as well and r(𝜏 |𝑖 ) = c𝑖 ⇒ ?. By Theorem 5.6, we get Rwr ⊢𝜇 j𝑘 ,

for all 𝑘 < 𝑖 , and, by induction hypothesis, we get Rwr ⊢𝜇 c𝑖 ⇒ wrong, hence, applying rule prop(𝜌, 𝑖,wrong), we
get Rwr ⊢𝜇 c⇒ wrong. □

Lemma 5.11. If Rwr ⊢𝜇 c⇒ wrong, then there is a stuck partial evaluation tree 𝜏 with r(𝜏) = c⇒ ?.

Proof. The proof is by induction on rules in Rwr. It is enough to consider only rules with wrong in the conclusion,

hence we have the following three cases:

Case: wrong(c) By Definition 5.5, there is no rule 𝜌 ∈ R such that C (𝜌) = c, thus

c⇒ ?

is stuck.

Case: wrong(𝜌, 𝑖, r) By Definition 5.5, assuming 𝜌 ≡ rule(j1 . . . j𝑛, c, r ′), there is no rule 𝜌 ′ ∼𝑖 𝜌 such that R(𝜌 ′, 𝑖) =
r ; then, by Theorem 5.6, for all 𝑘 ≤ 𝑖 , R ⊢𝜇 j𝑘 holds, hence there is a finite and complete partial evaluation tree 𝜏𝑘

with r(𝜏𝑘 ) = j𝑘 . Therefore, applying rule pev
?
(𝜌, 𝑖, r) to 𝜏1, . . . , 𝜏𝑖 , we get a partial evaluation tree, which is stuck,

by definition of −−−−→R .

Case: prop(𝜌, 𝑖,wrong) Suppose 𝜌 = rule(j1 . . . j𝑛, c, r) and c𝑖 = C (j𝑖 ), then, by induction hypothesis, we get that

there is a stuck tree 𝜏 ′ such that r(𝜏 ′) = c𝑖 ⇒ ?; then, by Theorem 5.6, for all 𝑘 < 𝑖 , R ⊢𝜇 j𝑘 holds, hence there is a

finite and complete partial evaluation tree 𝜏𝑘 with r(𝜏𝑘 ) = j𝑘 . Therefore, applying pev
?
(𝜌, 𝑖, ?) to 𝜏1, . . . , 𝜏𝑖−1, 𝜏 ′,

we get a stuck tree. □

Theorem 5.12. Rwr ⊢𝜇 c⇒ wrong iff
c⇒ ?

−−−−→★
R𝜏 , where 𝜏 is stuck.

Proof. Rwr ⊢𝜇 c⇒ wrong implies

c⇒ ?

−−−−→★
R𝜏 where 𝜏 is stuck. By Lemma 5.11 we get a stuck partial evaluation

tree 𝜏 with r(𝜏) = c⇒ ?, hence the thesis follows by Proposition 4.13 (2), as we trivially have

c⇒ ?

⊑ 𝜏 .

c⇒ ?

−−−−→★
R𝜏 where 𝜏 is stuck implies Rwr ⊢𝜇 c⇒ wrong. It follows immediately from Lemma 5.10, since

r(𝜏) = c⇒ ? by hypothesis. □

6 DIVERGENCE BY COAXIOMS

As we have described in Section 5.1, traces allow us to explicitly model divergence, provided that we interpret rules

coinductively: a configuration diverges if it evaluates to an infinite trace. However, the resulting semantics is somewhat

redundant: traces keep track of all configurations visited during the evaluation, while we are just interested in whether

there is a final result or non-termination, and a configuration may evaluate to many different infinite traces, hence

divergence is modelled in many ways. In this section we show how coaxioms (cf. Definition 2.1 in Section 2) can be

succesfully adopted to achieve a more abstract model of divergence, removing this redundancy. Basically, we present a

systematic definition of the approach discussed by Ancona et al. [9].
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(div-app-1)

e1⇒∞
e1 e2⇒∞ (div-app-2)

e1⇒ 𝜆x .e e2⇒∞
e1 e2⇒∞

(div-app-3)

e1⇒ 𝜆x .e e2⇒ v2 e[v2/x] ⇒∞
e1 e2⇒∞

Fig. 7. Divergence propagation rules for application

The key idea is to regard divergence just as a special result ∞, that, like infinite traces (cf. Definition 5.1) and wrong

(cf. Section 5.2), can only be propagated by big-step rules. To this end, we define yet another construction, extending a

given big-step semantics.

Let us assume a big-step semantics ⟨C, R,R⟩ . Then, the extended judgement has shape c⇒ r∞ where r∞ ∈ R∞ =

R + {∞}, that is, it is either a result or divergence. To define the extended semantics, we construct, starting from R, a
new set of rules R∞ as follows:

Definition 6.1 (Rules for divergence). The set of rules R∞ is obtained by adding to R the following rules:

divergence propagation rules For each rule 𝜌 = rule(j1 . . . j𝑛, c, r) in R and index 𝑖 ∈ 1..𝑛, define rule prop(𝜌, 𝑖,∞)
as

j1 . . . j𝑖−1 C (j𝑖 ) ⇒∞
c⇒∞

These additional rules propagate divergence, that is, if a configuration in the premises of a rule in R diverges, then

the subsequent premises are ignored and the configuration in the conclusion diverges as well. This is very similar to

infinite trace rules, but here we do not need to construct traces to represent divergence. Note that the triple ⟨C, R∞,R∞⟩
is a big-step semantics according to Definition 3.1.

Now the question is: how do we interpret such rules? The standard inductive interpretation of big-step rules, as

for trace semantics, is not enough in this setting, since there is no axiom introducing ∞, hence it cannot be derived

by finite derivations. In other words, the inductive interpretation of R∞ can only capture converging computations,

hence it is equivalent to the inductive interpretation of R. On the other hand, differently from trace semantics, even the

coinductive interpretation cannot provide the expected semantics: it allows the derivation of too many judgements. For

instance, in Fig. 7, we report the divergence propagation rules obtained starting from meta-rule (app) of the example in

Fig. 1 (for other meta-rules the outcome is analogous); then, using these rules (and the original ones in Fig. 1), we can

build the following infinite derivation for Ω, which is correct for any r∞ ∈ R∞.

𝜔⇒ 𝜔 𝜔⇒ 𝜔

.

.

.

Ω = (x x) [𝜔/x] ⇒ r∞
Ω⇒ r∞

Intuitively, we would like to allow infinite derivations only to derive divergence, namely, judgments of shape c⇒∞.

Inference systems with corules are precisely the tool enabling this kind of refinement. That is, in addition to divergence

propagation rules, we can add appropriate corules Rco for divergence, as defined below.

Definition 6.2 (Coaxioms for divergence). The set of corules Rco consists of the following coaxioms:

coaxioms for divergence for each configuration c ∈ C, define coaxiom divco (c) as
c⇒∞

.

As described in Section 2, coaxioms impose additional conditions on infinite derivations to be considered correct: a

judgement c⇒ r∞ is derivable in ⟨R∞,Rco⟩ iff it has an arbitrary (finite or infinite) derivation in R∞, whose nodes all
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have a finite derivation in R∞ ∪ Rco, that is, using both rules and corules. We will write ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r∞ when

c⇒ r∞ is derivable in ⟨R∞,Rco⟩ .
In the above example, ⟨R∞,Rco⟩ ⊢𝜈 Ω⇒ r∞ holds iff r∞ = ∞, because Ω⇒ r has no finite derivation in R∞ ∪ Rco,

for any r ∈ R. In the case of the trace construction (cf. Section 5.1), coaxioms are not needed as rules are productive,

because the trace in the conclusion is always strictly larger than those in the premises, see Definition 5.1.

To check that the construction in Definition 6.1 and Definition 6.2 is a correct extension of the given big-step

semantics, as for trace semantics, we have to show it is conservative, in the sense that it does not affect the semantics of

converging computations, as formally stated below.

Theorem 6.3. ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r iff R ⊢𝜇 c⇒ r.

Proof. The right-to-left implication is trivial as R ⊆ R∞ by Definition 6.1. To get the other direction, note that

if ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r then we have R∞ ∪ Rco ⊢𝜇 c⇒ r . Hence, we prove by induction on rules in R∞ ∪ Rco that, if

R∞ ∪ Rco ⊢𝜇 c⇒ r then R ⊢𝜇 c⇒ r . The cases of coaxiom divco (c) and divergence propagation prop(𝜌, 𝑖,∞) are both
empty, as the conclusion of such rules has shape c⇒∞. The only relevant case is that of a rule 𝜌 ∈ R, for which the

thesis follows immediately. □

Inference systems with corules come with the bounded coinduction principle (cf. Theorem 2.2). Thanks to such

principle, we can define a coinductive proof principle, which allows us to prove that a predicate on configurations

ensures the existence of a non-terminating computation.

Lemma 6.4. Let S ⊆ C be a set. If, for all c ∈ S, there are 𝜌 = rule(j1 . . . j𝑛, c, r) in R and 𝑖 ∈ 1..𝑛 such that

(1) for all 𝑘 < 𝑖 , R ⊢𝜇 j𝑘 , and

(2) C (j𝑖 ) ∈ S

then, for all c ∈ S, ⟨R∞,Rco⟩ ⊢𝜈 c⇒∞.

Proof. Consider the set S′ = {⟨c,∞⟩ | c ∈ S} ∪ {⟨c, r⟩ | R ⊢𝜇 c⇒ r}, then the proof is by bounded coinduction

(cf. Theorem 2.2).

Boundedness We have to show that, for all ⟨c, r∞⟩ ∈ S′
, R∞ ∪ Rco ⊢𝜇 c⇒ r∞ holds. This is easy because, if

r∞ = ∞, then this holds by coaxiom divco (c), otherwise r∞ ∈ R and R ⊢𝜇 c⇒ r∞, hence this holds since

R ⊆ R∞ ⊆ R∞ ∪ Rco.

Consistency We have to show that, for all ⟨c, r∞⟩ ∈ S′
, there is a rule ⟨j1 . . . j𝑛, c⇒ r∞⟩ ∈ R∞ such that, for all

𝑘 ∈ 1..𝑛, ⟨C (j𝑘 ), R∞ (j𝑘 )⟩ ∈ S′
. There are two cases:

• If r∞ = ∞, then by hypothesis (Item 1), we have a rule 𝜌 = rule(j1 . . . j𝑛, c, r) ∈ R and an index 𝑖 ∈ 1..𝑛 such

that, for all 𝑘 < 𝑖 , R ⊢𝜇 j𝑘 and C (j𝑖 ) ∈ S. Then, the needed rule is prop(𝜌, 𝑖,∞).
• If r∞ ∈ R, then, by construction of S′

, we have R ⊢𝜇 c⇒ r∞, hence, there is a rule 𝜌 = rule(j1 . . . j𝑛, c, r∞) ∈
R ⊆ R∞, where, for all 𝑘 ∈ 1..𝑛, R ⊢𝜇 j𝑘 holds, and so ⟨C (j𝑘 ), R(j𝑘 )⟩ ∈ S′

.

□

The reader may have noticed that most definitions and results in this section are very similar to those provided for

trace semantics in Section 5.1. This is not a coincidence, indeed, we now formally prove this semantics is an abstraction

of trace semantics.
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Intuitively, if we are only interested in modelling convergence or divergence, traces are useless, in the sense that it is

only relevant to know whether the trace is infinite or not and, in case it is finite, the final result. We can model this

intuition by a (surjective) function 𝑢 : Tr
C

R
→ R∞ simply forgetting traces, that is, 𝑢 (⟨t, r⟩) = r and 𝑢 (𝜎) = ∞, with

t ∈ C
★
and 𝜎 ∈ C

𝜔
.

Then, we aim at proving the following result:

Theorem 6.5. ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r∞ iff Rtr ⊢𝜈 c⇒tr rtr, for some rtr such that r∞ = 𝑢 (rtr).

In a diagrammatic form, Theorem 6.5 says that the following diagram commutes:

℘(TrC
R
)

𝑢! // ℘(R∞)

C

⟦−⟧tr

bb

⟦−⟧∞

==

where 𝑢! : ℘(Rtr) → ℘(R∞) is the direct image of 𝑢, ⟦−⟧tr : C → ℘(TrC
R
) is defined by ⟦c⟧tr = {rtr ∈ Tr

C

R
| Rtr ⊢𝜈

c⇒tr rtr}, and ⟦−⟧∞ : C → ℘(R∞) is defined by ⟦c⟧tr = {r∞ ∈ R∞ | ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r∞}.

Proof. The statement can be split in the following two points:

(1) ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r iff Rtr ⊢𝜈 c⇒tr ⟨t, r⟩, for some t ∈ C
★
, and

(2) ⟨R∞,Rco⟩ ⊢𝜈 c⇒∞ iff Rtr ⊢𝜈 c⇒tr 𝜎 , for some 𝜎 ∈ C
𝜔
.

The first point follows immediately from Theorem 5.3 and Theorem 6.3, as ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r and Rtr ⊢𝜈 c⇒tr ⟨t, r⟩
are both equivalent to R ⊢𝜇 c⇒ r . Then, we have only to prove the second point.

The left-to-right implication follows applying Lemma 5.4 to the set S∞ = {c ∈ C | ⟨R∞,Rco⟩ ⊢𝜈 c⇒∞}. If
c ∈ S∞, then c⇒∞ is derived by a rule prop(𝜌, 𝑖,∞) for some 𝜌 = rule(j1 . . . j𝑛, c, r) in R and 𝑖 ∈ 1..𝑛, hence we have

⟨R∞,Rco⟩ ⊢𝜈 j𝑘 , which implies R ⊢𝜇 j𝑘 by Theorem 6.3, for all 𝑘 < 𝑖 , and ⟨R∞,Rco⟩ ⊢𝜈 C (j𝑖 ) ⇒∞, that is, C (j𝑖 ) ∈ S∞,

because these judgements are the premises of prop(𝜌, 𝑖,∞). Therefore, the hypotheses of Lemma 5.4 are satisfied and

we get, for all c ∈ S∞, Rtr ⊢𝜈 c⇒tr 𝜎c , for some 𝜎c ∈ C
𝜔
, hence 𝑢 (𝜎c) = ∞.

Similarly, the right-to-left implication follows applying Lemma 6.4 to the setStr = {c ∈ C | Rtr ⊢𝜈 c⇒tr 𝜎 for some 𝜎 ∈
C
𝜔 }. If c ∈ Str, then, for some 𝜎 ∈ C

𝜔
, c⇒tr 𝜎 is derived by a rule trace∞ (𝜌, 𝑖, t1, . . . , t𝑖−1, 𝜎 ′), for some 𝜌 =

rule(j1 . . . j𝑛, c, r) in R and 𝑖 ∈ 1..𝑛, hence we have Rtr ⊢𝜈 C (j𝑘 ) ⇒tr ⟨t𝑘 , R(j𝑘 )⟩, which implies R ⊢𝜇 j𝑘 by Theo-

rem 5.3, for all 𝑘 < 𝑖 , and Rtr ⊢𝜈 C (j𝑖 ) ⇒tr 𝜎
′
, that is, C (j𝑖 ) ∈ Str, because these judgements are the premises of

the rule trace∞ (𝜌, 𝑖, t1, . . . , t𝑖−1, 𝜎 ′). Therefore, the hypotheses of Lemma 6.4 are satisfied and we get, for all c ∈ Str,

⟨R∞,Rco⟩ ⊢𝜈 c⇒∞. □

As an immediate consequence of Theorem 6.5 and Theorem 5.7, we get the following corollary, stating that the

construction given by Definitions 6.1 and 6.2 correctly models diverging computations:

Corollary 6.6. ⟨R∞,Rco⟩ ⊢𝜈 c⇒∞ iff

c⇒ ?
−−−−→𝜔

R .

Total semantics. We now briefly describe how we can combine the presented constructions in order to get a semantics

modelling all computations as defined in Section 4.2. In particular, we will use the wrong construction to model stuck

computations and the construction in this section to model divergence, because they are more similar to each other.

Let us consider a big-step semantics ⟨C, R,R⟩ . We add to R two special values to model stuckness and divergence,

defining Rtot = R + {wrong} + {∞}. Then, we have to add appropriate rules to handle these two special results: the idea
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is to add “simultanously” rules from Definition 5.5 and from Definition 6.1, that is, we define Rtot = Rwr ∪ R∞. Note

that, since both Rwr and R∞ extend R, we have R ⊆ Rtot. In addition, the triple ⟨C, Rtot,Rtot⟩ is a big-step semantics

according to Definition 3.1. Finally, to properly model divergence, we have to add corules from Definition 6.2, so that

infinite derivations are only allowed to prove divergence.

Since, as we have noticed, all the presented constructions yield a big-step semantics, starting from another one,

we can also try to combine them “sequentially”. Of course, there are two possibilities: either we first apply the wrong

construction or the divergence construction. Nicely, it is not difficult to check that all these possibilities yield the same

big-step semantics ⟨C, Rtot,Rtot⟩ , as depicted below:

⟨C, R,R⟩ � wr //
_

∞
��

�
tot

''

⟨C, Rwr,Rwr⟩_

∞
��

⟨C, R∞,R∞⟩ �
wr

// ⟨C, Rtot,Rtot⟩

Thanks to the commutativity of the above diagram, we can exploit results proved for the various constructions to

get properties of this last construction, as stated below.

Proposition 6.7. The following facts hold:

(1) ⟨Rtot,Rco⟩ ⊢𝜈 c⇒ r iff R ⊢𝜇 c⇒ r,

(2) ⟨Rtot,Rco⟩ ⊢𝜈 c⇒ wrong iff Rwr ⊢𝜇 c⇒ wrong,

(3) ⟨Rtot,Rco⟩ ⊢𝜈 c⇒∞ iff ⟨R∞,Rco⟩ ⊢𝜈 c⇒∞.

Proof. All right-to-left implication are trivial, asR,Rwr,R∞ ⊆ Rtot. The other implications follow fromTheorems 5.6

and 6.3, relying on the above commutative diagram. □

Corollary 6.8. For any configuration c ∈ C, one of the following holds:

• either ⟨Rtot,Rco⟩ ⊢𝜈 c⇒ r, for some r ∈ R,

• or ⟨Rtot,Rco⟩ ⊢𝜈 c⇒∞,

• or ⟨Rtot,Rco⟩ ⊢𝜈 c⇒ wrong.

Proof. Straightforward from Proposition 6.7 and Theorems 5.7, 5.12 and 6.5, since the partial evaluation tree

c⇒ ?

,

either converges to a tree, which is either complete or stuck, or diverges. □

Note that these three possibilities in general are not mutually exclusive, that is, for instance, a configuration can both

converge to a result and diverge. This is due to the fact that big-step rules can define a non-deterministic behaviour.

7 EXPRESSING AND PROVING SOUNDNESS

A predicate (for instance, a typing judgment) is sound when, informally, a program satisfying such predicate (e.g., a

well-typed program) cannot go wrong, following Robin Milner’s slogan [39]. In small-step style, as firstly formulated by

Wright and Felleisen [53], this is naturally expressed as follows: well-typed programs never reduce to terms which

neither are values, nor can be further reduced (called stuck terms). The standard technique to ensure soundness is by

subject reduction (well-typedness is preserved by reduction) and progress (a well-typed term is not stuck).

In standard (inductive) big-step semantics, soundness, as described above, cannot even be expressed, because diverging

and stuck computations are not distinguishable.
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Constructions presented in the previous sections make this distinction explicit, hence they allow us to reason about

soundness with respect to a big-step semantics. In this section, we discuss how soundness can be expressed and we will

provide sufficient conditions. In other words, we provide a proof technique to show the soundness of a predicate with

respect to a big-step semantics.

It is important to highlight the following about the presented approach to soundness. First, even though type systems

are the paradigmatic example, we will consider a generic predicate on configurations, hence our approach could be

instantiated with other kinds of predicates. Second, depending on the kind of construction considered, we can express

different flavours of soundness, which will have different proof techniques. Finally, and more importantly, as mentioned

in the introduction, the extended semantics is only needed to prove the correctness of the technique, whereas to apply

the technique for a given big-step semantics it is enough to reason on the original rules.

7.1 Expressing soundness

In the following, we assume a big-step semantics ⟨C, R,R⟩ , and an indexed predicate on configurations and results,

that is, a family Π = ⟨ΠC

𝜄 ,Π
R

𝜄 ⟩𝜄∈I , for I set of indexes, with ΠC

𝜄 ⊆ C and ΠR

𝜄 ⊆ R. A representative case is that, as in

the examples of Section 8, predicates on configurations and results are typing judgments and the indexes are types;

however, this setting is more general and so the proof technique could be applied to other kinds of predicates. When

there is no ambiguity, we also denote by ΠC
and ΠR

, respectively, the corresponding predicates

⋃
𝜄∈I Π

C

𝜄 and

⋃
𝜄∈I Π

R

𝜄

on C and R (e.g., to be well-typed with an arbitrary type).

To discuss how to express soundness of Π, first of all note that, in the non-deterministic case (that is, there is possibly

more than one computation for a configuration), we can distinguish two flavours of soundness, see, e.g., [29]:

soundness-must (or simply soundness) no computation can be stuck

soundness-may at least one computation is not stuck

Soundness-must is the standard soundness in small-step semantics, and can be expressed by the wrong construction as

follows:

soundness-must If c ∈ ΠC
, then Rwr ⊬𝜇 c⇒ wrong

Soundness-must cannot be expressed by the constructions making divergence explicit, because stuck computations are

not explicitly modelled. In contrast, soundness-may can be expressed, for instance, by the divergence construction as

follows:

soundness-may If c ∈ ΠC
, then ⟨R∞,Rco⟩ ⊢𝜈 c⇒ r∞, for some r∞ ∈ R∞

whereas it cannot be expressed by the wrong construction, since diverging computations are not modelled. Note that,

instead, using the total semantics, we can express both flavours of soundness, as it models both diverging and stuck

computations.

Of course soundness-must and soundness-may coincide in the deterministic case. Finally, note that indexes (e.g., the

specific types of configurations and results) do not play any role in the above statements. However, they are relevant

in the notion of strong soundness, introduced by Wright and Felleisen [53]. Strong soundness holds (in must or may

flavour) if soundness holds (in must or may flavour), and, moreover, configurations satisfying ΠC

𝜄 (e.g., having a given

type) produce results, if any, satisfying ΠR

𝜄 (e.g., of the same type). Note that soundness alone does not even guarantee to

obtain a result satisfying ΠR
(e.g., a well-typed result). The sufficient conditions introduced in the following subsection

actually ensure strong soundness.

Manuscript submitted to ACM



26 Francesco Dagnino

In Section 7.2, we provide sufficient conditions for soundness-must, showing that they ensure soundness as stated

above (Theorem 7.6). Then, in Section 7.3, we provide (weaker) sufficient conditions for soundness-may, and show that

they ensure soundness-may (Theorem 7.9).

7.2 Conditions ensuring soundness-must

The three conditions which ensure the soundness-must property are local preservation, ∃-progress, and ∀-progress. The
names suggest that the former plays the role of the type preservation (subject reduction) property, and the latter two of

the progress property in small-step semantics. However, as we will see, the correspondence is only rough, since the

reasoning here is different.

Considering the first condition more closely, we use the name preservation rather than type preservation since, as

already mentioned, the proof technique can be applied to arbitrary predicates. More importantly, local means that the

condition is on single rules rather than on the semantic relation as a whole, as standard subject reduction; the semantic

relation is only used in the hypotheses of the condition, so that, when checking it, one can rely on stronger assumptions.

The same holds for the other two conditions.

Definition 7.1 (Local preservation (lp)). For each 𝜌 = rule(j1 . . . j𝑛, c, r) in R, if c ∈ ΠC

𝜄 , then there exists 𝜄1, . . . , 𝜄𝑛 ∈ I

such that

(1) for all 𝑘 ∈ 1..𝑛, if, for all ℎ < 𝑘 , R ⊢𝜇 jℎ and R(jℎ) ∈ ΠR

𝜄ℎ
, then C (j𝑘 ) ∈ ΠC

𝜄𝑘
, and

(2) if, for all 𝑘 ∈ 1..𝑛, R ⊢𝜇 j𝑘 and R(j𝑘 ) ∈ ΠR

𝜄𝑘
, then r ∈ ΠR

𝜄 .

Thinking to the paradigmatic case where the indexes are types, to check that this condition holds, for each rule

𝜌 = rule(j1 . . . j𝑛, c, r) where c, the conclusion, has type 𝜄, we have to find types 𝜄1, . . . , 𝜄𝑛 , which can be assigned to

(configurations and results in) the premises, and, when all the premises satisfy the chosen type, r , the result in the

conclusion, must have type 𝜄, that is, the same type of c. More precisely, we will proceed as follows: we start finding type

𝜄1, and successively find the type 𝜄𝑘 for (the configuration in) the 𝑘-th premise assuming that all previous premises are

derivable and their results have the expected types, and, finally, we have to check that the final result r has type 𝜄 assuming

all premises are derivable and their results have the expected type. Indeed, if all such previous premises are derivable,

then the expected type should be preserved by their results; if some premise is not derivable, the considered rule is

“useless”. For instance, considering (an instantiation of) meta-rule (app) rule(e1⇒ 𝜆x .e e2⇒ v2 e[v2/x] ⇒ v, e1 e2, v)
in Fig. 1, we prove that e[v2/x] has the type T of e1 e2 under the assumption that 𝜆x .e has type T ′ → T , and v2 has

type T
′
(see the proof example in Section 8.1 for more details). A counter-example to condition (lp) is discussed at the

beginning of Section 8.3.

The following lemma states that local preservation actually implies preservation of the semantic relation as a whole.

Lemma 7.2 (Preservation). Let ⟨C, R,R⟩ and Π = ⟨ΠC

𝜄 ,Π
R

𝜄 ⟩𝜄∈I satisfy condition (lp). If R ⊢𝜇 c⇒ r and c ∈ ΠC

𝜄 , then

r ∈ ΠR

𝜄 .

Proof. The proof is by a double induction From the hypotheses, we know that c⇒ r has a finite derivation in R
and c ∈ ΠC

𝜄 . The first induction is on the derivation of c⇒ r . Suppose the last applied rule is 𝜌 = rule(j1 . . . j𝑛, c, r)
and denote by 𝑅𝐻 the induction hypothesis. Then, we prove by complete arithmetic induction on 𝑘 ∈ 1..𝑛 (the second

induction) that C (j𝑘 ) ∈ Π𝜄𝑘 , for all 𝑘 ∈ 1..𝑛 and for some 𝜄1, . . . , 𝜄𝑛 ∈ I . Let us denote by 𝐼𝐻 the second induction

hypothesis. By (lp), there are indexes 𝜄1, . . . , 𝜄𝑛 ∈ I , satisfying Items 1 and 2 of (lp) (cf. Definition 7.1). Let 𝑘 ∈ 1..𝑛, then
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by 𝐼𝐻 we know that C (jℎ) ∈ ΠC

𝜄ℎ
, for allℎ < 𝑘 . Then, by 𝑅𝐻 , we get that R(jℎ) ∈ ΠR

𝜄ℎ
. Hence, by (lp) (cf. Definition 7.1 (1)),

we get C (j𝑘 ) ∈ Π𝜄𝑘 , as needed.

Now, since C (j𝑘 ) ∈ ΠC

𝜄𝑘
, for all 𝑘 ∈ 1..𝑛, as we have just proved, again by 𝑅𝐻 , we get that R(j𝑘 ) ∈ ΠR

𝜄𝑘
, for all 𝑘 ∈ 1..𝑛.

Then, by (lp) (cf. Definition 7.1 (2)), we conclude that r ∈ ΠR

𝜄 , as needed. □

The following proposition is a form of local preservation where indexes (e.g., specific types) are not relevant, simpler

to use in the proofs of Theorems 7.6 and 7.9.

Proposition 7.3. Let ⟨C, R,R⟩ and Π = ⟨ΠC

𝜄 ,Π
R

𝜄 ⟩𝜄∈I satisfy condition (lp). For each rule 𝜌 = rule(j1 . . . j𝑛, c, r) and
𝑘 ∈ 1..𝑛, if c ∈ ΠC

and, for all ℎ < 𝑘 , R ⊢𝜇 jℎ , then C (j𝑘 ) ∈ ΠC
.

Proof. By hypothesis we know that c ∈ ΠC

𝜄 , for some 𝜄 ∈ I , thus by condition (lp), there are indexes 𝜄1, . . . , 𝜄𝑛 ∈ I ,

satisfying Items 1 and 2 of (lp) (cf. Definition 7.1). We show by complete arithmetic induction that, for all 𝑘 ∈ 1..𝑛,

C (j𝑘 ) ∈ ΠC

𝜄𝑘
, which implies the thesis. Assume the thesis for all ℎ < 𝑘 , then, since by hypothesis we have R ⊢𝜇 jℎ for all

ℎ < 𝑘 , we get, by induction hypothesis, C (jℎ) ∈ ΠC

𝜄ℎ
, for all ℎ < 𝑘 . By Lemma 7.2, we also get R(jℎ) ∈ ΠR

𝜄ℎ
, hence, by

condition (lp) (cf. Definition 7.1 (1)), we get C (j𝑘 ) ∈ ΠC

𝜄𝑘
, as needed. □

The second condition, named ∃-progress, ensures that, for configurations satisfying Π (e.g., well-typed), we can start

the evaluation, that is, the construction of an evaluation tree.

Definition 7.4 (∃-progress (∃p)). For each c ∈ ΠC
, there exists a rule 𝜌 ∈ R such that C (𝜌) = c.

The third condition, named ∀-progress, ensures that, for configurations satisfying Π (e.g., well-typed), we can continue

the evaluation, that is, the construction of the evaluation tree. This condition uses the equivalence on rules introduced

in Definition 4.12.

Definition 7.5 (∀-progress (∀p)). For each rule 𝜌 = rule(j1 . . . j𝑛, c, r) with c ∈ ΠC
, for each 𝑘 ∈ 1..𝑛, if, for all ℎ < 𝑘 ,

R ⊢𝜇 jℎ and R ⊢𝜇 C (j𝑘 ) ⇒ r
′
, for some r

′ ∈ R, then there is a rule 𝜌 ′ ∼𝑘 𝜌 such that R(𝜌 ′, 𝑘) = r
′
.

We have to check, for each rule 𝜌 = rule(j1 . . . j𝑛, c, r), the following: if the configuration c in the conclusion satisfies

the predicate (e.g., is well-typed), then, for each 𝑘 ∈ 1..𝑛, if the configuration in the 𝑘-th premise evaluates to some

result r
′
(that is, R ⊢𝜇 C (j𝑘 ) ⇒ r

′
), then there is a rule (𝜌 itself or another rule with the same configuration in the

conclusion and the same first 𝑘 − 1 premises) with such judgement as 𝑘-th premise. This check can be done under the

assumption that all the previous premises are derivable. For instance, consider again (an instantiation of) the meta-rule

(app) rule(e1⇒ 𝜆x .e e2⇒ v2 e[v2/x] ⇒ v, e1 e2, v). Assuming that e1 evaluates to some v1, we have to check that there

is a rule with first premise e1⇒ v1, in practice, that v1 is a 𝜆-abstraction; in general, checking (∀p) for a (meta-)rule

amounts to show that configurations in the premises evaluate to results with the required shape (see also the proof

example in Section 8.1).

We now prove the claim of soundness-must expressed by means of the wrong construction (cf. Section 5.2).

Theorem 7.6 (Soundness-must). Let ⟨C, R,R⟩ and Π = ⟨ΠC

𝜄 ,Π
R

𝜄 ⟩𝜄∈I satisfy conditions (lp), (∃p) and (∀p). If c ∈ ΠC
,

then Rwr ⊬𝜇 c⇒ wrong.

Proof. To prove the statement, we assume Rwr ⊢𝜇 c⇒ wrong and look for a contradiction. The proof is by induction

on the derivation of c⇒ wrong. We split cases on the last applied rule in such derivation.
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Case: wrong(c) By construction (cf. Definition 5.5), we know that there is no rule 𝜌 ∈ R such that C (𝜌) = c, and this

violates condition (∃p), since c ∈ ΠC
, by hypothesis.

Case: wrong(𝜌, 𝑖, r ′) Suppose 𝜌 = rule(j1 . . . j𝑛, c, r), hence 𝑖 ∈ 1..𝑛, then, by hypothesis, for all 𝑘 < 𝑖 , we have

Rwr ⊢𝜇 j𝑘 , and Rwr ⊢𝜇 C (j𝑖 ) ⇒ r
′
, and these judgments can also be derived in R by conservativity (cf. Theorem 5.6).

Furthermore, by construction (cf. Definition 5.5), we know that there is no other rule 𝜌 ′ ∼𝑖 𝜌 such that R(𝜌 ′, 𝑖) = r
′
,

and this violates condition (∀p), since c ∈ ΠC
by hypothesis.

Case: prop(𝜌, 𝑖,wrong) Suppose 𝜌 = rule(j1 . . . j𝑛, c, r), hence 𝑖 ∈ 1..𝑛, then, by hypothesis, for all 𝑘 < 𝑖 , we have

Rwr ⊢𝜇 j𝑘 , and these judgments can also be derived in R by conservativity (cf. Theorem 5.6). Then, by Proposition 7.3

(which requires condition (lp)), since c ∈ ΠC
, we have C (j𝑖 ) ∈ ΠC

, hence we get the thesis by induction hypothesis,

because Rwr ⊢𝜇 C (j𝑖 ) ⇒ wrong holds by hypothesis.

□

Note that conditions (lp), (∃p) and (∀p), actually ensure strong soundness, because, by Lemma 7.2, which is applicable

since we assume (lp), we have that converging computations preserve indexes of the predicate.

7.3 Conditions ensuring soundness-may

As discussed in Section 7.1, if we explicitly model divergence rather than stuck computations, we can only express a

weaker form of soundness: at least one computation is not stuck (soundness-may). Actually, we will state soundness-may

in a different, but equivalent, way, which is simpler to prove, that is, a configuration that does not converge, diverges.

As the reader can expect, to ensure this property weaker sufficient conditions are enough: namely, condition (lp),

and another condition, named may-progress, defined below. We write “R ⊬𝜇 c⇒ ” if c does not converge (there is no r

such that R ⊢𝜇 c⇒ r).

Definition 7.7 (May-progress (mayp)). For each c ∈ ΠC
, there is a rule 𝜌 = rule(j1 . . . j𝑛, c, r) such that, if there is a

(first) 𝑘 ∈ 1..𝑛 such that R ⊬𝜇 j𝑘 and, for all ℎ < 𝑘 , R ⊢𝜇 jℎ , then R ⊬𝜇 C (j𝑘 ) ⇒ .

This condition can be informally understood as follows: we have to show that there is an either finite or infinite

computation for c. If we find a rule where all premises are derivable (there is no 𝑘), then there is a finite computation.

Otherwise, c cannot converge. In this case, we should find a rule where the configuration in the first non-derivable

premise 𝑘 cannot converge as well. Indeed, by coinductive reasoning (cf. Theorem 7.9), this implies that c diverges. The

following proposition states that this condition is indeed a weakening of (∃p) and (∀p).

Proposition 7.8. Conditions (∃p) and (∀p) imply condition (mayp).

Proof. For each c ∈ C, let us define 𝑏c ∈ N as max{#𝜌 | C (𝜌) = c}, which is well-defined and finite by condition (BP)

in Definition 3.1. For each rule 𝜌 with C (𝜌) = c, let us denote by 𝑛𝑑 (𝜌) the index of the first premise of 𝜌 which is not

derivable, if any, otherwise set 𝑛𝑑 (𝜌) = 𝑏c +1. For each c ∈ ΠC
, we first prove the following fact: (★) for each rule 𝜌 , with

C (𝜌) = c, there exists a rule 𝜌 ′ such that C (𝜌 ′) = c, 𝑛𝑑 (𝜌 ′) ≥ 𝑛𝑑 (𝜌) and, if 𝑛𝑑 (𝜌 ′) ≤ 𝑏c , then R ⊬𝜇 C (𝜌 ′, 𝑛𝑑 (𝜌 ′)) ⇒ .

Note that the requirement in (★) is the same as that of condition (mayp). The proof is by complete arithmetic induction

on ℎ(𝜌) = 𝑏c + 1 − 𝑛𝑑 (𝜌). If ℎ(𝜌) = 0, hence 𝑛𝑑 (𝜌) = 𝑏c + 1, then the thesis follows by taking 𝜌 ′ = 𝜌 . Otherwise, we

have two cases: if there is no r ∈ R such that R ⊢𝜇 C (𝜌, 𝑛𝑑 (𝜌)) ⇒ r , then we have the thesis taking 𝜌 ′ = 𝜌 ; otherwise,

by condition (∀p), there is a rule 𝜌 ′′ ∼𝑛𝑑 (𝜌) 𝜌 such that R(𝜌 ′′, 𝑛𝑑 (𝜌)) = r , hence 𝑛𝑑 (𝜌 ′′) > 𝑛𝑑 (𝜌). Then, we have
ℎ(𝜌 ′′) < ℎ(𝜌), hence we get the thesis by induction hypothesis.

Now, by (∃p), there is a rule 𝜌 with C (𝜌) = c, and applying (★) to 𝜌 we get (mayp). □
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We now prove the claim of soundness-may expressed by means of the divergence construction (cf. Section 6).

Theorem 7.9 (Soundness-may). Let ⟨C, R,R⟩ and Π = ⟨ΠC

𝜄 , R𝜄⟩𝜄∈I satisfy conditions (lp) and (mayp). If c ∈ ΠC
, then

⟨R∞,Rco⟩ ⊢𝜈 c⇒ r∞, for some r∞ ∈ R∞.

Proof. First note that, thanks to Theorem 6.3, the statement is equivalent to the following:

If c ∈ ΠC
and R ⊬𝜇 c⇒ , then ⟨R∞,Rco⟩ ⊢𝜈 c⇒∞.

Then, the thesis follows by Lemma 6.4. We set S = {c ∈ C | c ∈ ΠC
and R ⊬𝜇 c⇒ }, and show that, for all c ∈ S, there

are 𝜌 = rule(j1 . . . j𝑛, c, r) and 𝑘 ∈ 1..𝑛 such that, for all ℎ < 𝑘 , R ⊢𝜇 jℎ and C (j𝑘 ) ∈ S.
Consider c ∈ S, then, by (mayp) (cf. Definition 7.7), there is 𝜌 = rule(j1 . . . j𝑛, c, r). By definition of S, we have

R ⊬𝜇 c⇒ , hence there exists a (first) 𝑘 ∈ 1..𝑛 + 1 such that R ⊬𝜇 j𝑘 , since, otherwise, we would have R ⊢𝜇 c⇒ r .

Then, since 𝑘 is the first index with such property, for all ℎ < 𝑘 , we have R ⊢𝜇 jℎ , hence, again by condition (mayp)

(cf. Definition 7.7), we have that R ⊬𝜇 C (j𝑘 ) ⇒ . Finally, since c ∈ ΠC
and, for all ℎ < 𝑘 , we have R ⊢𝜇 jℎ , by

Proposition 7.3 we get C (j𝑘 ) ∈ ΠC
, hence C (j𝑘 ) ∈ S, as needed. □

Note that conditions (lp) and (mayp) actually ensure strong soundness, because, by Lemma 7.2, which is applicable

since we assume (lp), we have that converging computations preserve indexes of the predicate.

8 EXAMPLES OF SOUNDNESS PROOFS

In this section, we show how to use the technique introduced in Section 7 to prove soundness of a type system with

respect to a big-step semantics, by several examples. We focus on the technique for soundness-must, as it is the usual

notion of soundness for type systems. Section 8.1 explains in detail how a typical soundness proof can be rephrased in

terms of our technique, by reasoning directly on big-step rules. Section 8.2 shows a case where this is advantageous,

since the property to be checked is not preserved by intermediate computation steps, whereas it holds for the whole

computation. Section 8.3 considers a more sophisticated type system, with intersection and union types. Section 8.4

shows another example where types are not preserved, whereas soundness can be proved with our technique. This

example is intended as a preliminary step towards a more challenging case. In Section 8.5 we show how our technique

can also deal with imperative features.

8.1 Simply-typed 𝜆-calculus with recursive types

As a first example, we take the 𝜆-calculus with natural constants, successor, and non-deterministic choice introduced in

Fig. 1. We consider a standard simply-typed version with (equi)recursive types, obtained by interpreting the production

in the top section of Fig. 8 coinductively. Introducing recursive types makes the calculus non-normalising and permits

to write interesting programs such as Ω (see Section 5.1).

The typing rules are recalled in the bottom section of Fig. 8 and, as usual, they are interpreted inductively. Type

environments, written Γ, are finite maps from variables to types, and Γ{T/x} denotes the map which returns T on x

and coincides with Γ elsewhere. We write ⊢ e : T for ∅ ⊢ e : T .
Let ⟨C1, R1,R1⟩ be the big-step semantics described in Fig. 1 (C1 is the set of expressions and R1 is the set of values),

and let Π1C
𝑇
= {e ∈ C1 |⊢ e : T } and Π1R

𝑇
= {v ∈ R1 |⊢ v : T }, where T is a type, defined in Fig. 8, that is, Π1C

T
and

Π1R
T
are the sets of expressions and values of type T , respectively. To prove the three conditions (lp), (∃p) and (∀p) of

Section 7.2, we need lemmas of inversion, substitution and canonical forms, as in the standard technique for small-step

semantics.
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T ::= Nat | T1 → T2 types

(t-var)

Γ ⊢ x : T

Γ (x) = T (t-const)

Γ ⊢ n : Nat

(t-abs)

Γ {T ′/x } ⊢ e : T
Γ ⊢ 𝜆x .e : T ′ → T

(t-app)

Γ ⊢ e1 : T ′ → T Γ ⊢ e2 : T ′

Γ ⊢ e1 e2 : T

(t-succ)

Γ ⊢ e : Nat
Γ ⊢ succ e : Nat (t-choice)

Γ ⊢ e1 : T Γ ⊢ e2 : T
Γ ⊢ e1 ⊕ e2 : T

Fig. 8. 𝜆-calculus: type system

Lemma 8.1 (Inversion). The following hold:

(1) If Γ ⊢ x : T, then Γ(x) = T.

(2) If Γ ⊢ n : T, then T = Nat.

(3) If Γ ⊢ 𝜆x .e : T, then T = T1 → T2 and Γ{T1/x} ⊢ e : T2.
(4) If Γ ⊢ e1 e2 : T, then Γ ⊢ e1 : T ′ → T and Γ ⊢ e2 : T ′

.

(5) If Γ ⊢ succ e : T, then T = Nat and Γ ⊢ e : Nat.
(6) If Γ ⊢ e1 ⊕ e2 : T, then Γ ⊢ e𝑖 : T with 𝑖 ∈ 1, 2.

Lemma 8.2 (Substitution). If Γ{T ′/x} ⊢ e : T and Γ ⊢ e′ : T ′
, then Γ ⊢ e[e′/x] : T.

Lemma 8.3 (Canonical Forms). The following hold:

(1) If ⊢ v : T
′ → T, then v = 𝜆x .e.

(2) If ⊢ v : Nat, then v = n.

Theorem 8.4 (Soundness). The big-step semantics ⟨C1, R1,R1⟩ and the indexed predicate Π1 satisfy the conditions

(lp), (∃p) and (∀p) of Section 7.2.

Proof. Since the aim of this first example is to illustrate the proof technique, we provide a proof where we explain

the reasoning in detail.

Proof of (lp): We should prove this condition for each (instantiation of meta-)rule in Fig. 1.

Case: (app) Assume that ⊢ e1 e2 : T holds. We have to find types for the premises. We proceed as follows:

(1) First premise: by Lemma 8.1 (4), ⊢ e1 : T ′ → T .

(2) Second premise: again by Lemma 8.1 (4), ⊢ e2 : T ′
(without needing the assumption ⊢ 𝜆x .e : T ′ → T ).

(3) Third premise: ⊢ e[v2/x] : T should hold (assuming ⊢ 𝜆x .e : T
′ → T , ⊢ v2 : T

′
). Since ⊢ 𝜆x .e : T

′ → T , by

Lemma 8.1 (3) we have x:T
′ ⊢ e : T , so by Lemma 8.2 and ⊢ v2 : T ′

we have ⊢ e[v2/x] : T .
Finally, we have to show ⊢ v : T , assuming ⊢ 𝜆x .e : T ′ → T , ⊢ v2 : T ′

and ⊢ v : T , which is trivial from the third

assumption.

Case: (succ) Assume that ⊢ succ e : T holds. By Lemma 8.1 (5), T = Nat, and ⊢ e : Nat, hence we find Nat as type for

the premise. Moreover, ⊢ n + 1 : Nat holds by rule (t-const).

Case: (choice) Assume that ⊢ e1 ⊕ e2 : T holds. By Lemma 8.1 (6), we have ⊢ e𝑖 : T , with 𝑖 ∈ 1, 2. Hence we find T as type

for the premise. Finally, we have to show ⊢ v : T , assuming ⊢ v : T , which is trivial.

Case: (val) Trivial by assumption.
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Proof of (∃p): We should prove that, for each configuration (here, expression e) such that ⊢ e : T holds for some T ,

there is a rule with this configuration in the conclusion. The expression e cannot be a variable, since a variable cannot

be typed in the empty environment. Application, successor, choice, abstraction and constants appear as consequence in

the big-step rules (app), (succ), (choice) and (val).

Proof of (∀p): We should prove this condition for each (instantiation of meta-)rule.

Case: (app) Assuming ⊢ e1 e2 : T , again by Lemma 8.1 (4) we get ⊢ e1 : T ′ → T .

(1) First premise: if e1⇒ v is derivable, then there should be a rule with e1 e2 in the conclusion and e1⇒ v as first

premise. Since we proved (lp), by preservation (Lemma 7.2) ⊢ v : T
′ → T holds. Then, by Lemma 8.3 (1), v

has shape 𝜆x .e, hence the required rule exists. As noted at page 27, in practice checking (∀p) for a (meta-)rule

amounts to show that configurations in the premises evaluate to results which have the required shape (to be a

𝜆-abstraction in this case).

(2) Second premise: if e1⇒ 𝜆x .e, and e2⇒ v, then there should be a rule with e1 e2 in the conclusion and e1⇒ 𝜆x .e,

e2⇒ v as first two premises. This is trivial since the meta-variable v2 can be freely instantiated in the meta-rule.

(3) Third premise: trivial as the previous one.

Case: (succ) Assuming ⊢ succ e : T , again by Lemma 8.1 (5) we get ⊢ e : Nat. If e⇒ v is derivable, there should be a rule

with succ e in the conclusion and e⇒ v as first premise. Indeed, by preservation (Lemma 7.2) and Lemma 8.3 (2), v

has shape n.

Case: (choice) Trivial since the meta-variable v can be freely instantiated.

Case: (val) Empty, because there are no premises.

□

An interesting remark is that, differently from the standard approach, there is no induction in the proof: everything

is by cases. This is a consequence of the fact that, as discussed in Section 7.2, the three conditions are local, that is,

they are conditions on single rules. Induction is “hidden” once and for all in the proof that those three conditions are

sufficient to ensure soundness.

If we drop in Fig. 1 rule (succ), then condition (∃p) fails, since there is no longer a rule for the well-typed configuration
succ n. If we add the (fool) rule ⊢ 0 0 : Nat, then condition (∀p) fails for rule (app), since 0⇒ 0 is derivable, but there is no

rule with 0 0 in the conclusion and 0⇒ 0 as first premise.

8.2 MiniFJ&𝜆

In this example, the language is a subset of FJ&𝜆 [13], a calculus extending Featherweight Java (FJ) with 𝜆-abstractions

and intersection types, introduced in Java 8. To keep the example small, we do not consider intersections and focus on

one key typing feature: 𝜆-abstractions can only be typed when occurring in a context requiring a given type (called

the target type). In a small-step semantics, this poses a problem: reduction can move 𝜆-abstractions into arbitrary

contexts, leading to intermediate terms which would be ill-typed. To maintain subject reduction, Bettini et al. [13]

decorate 𝜆-abstractions with their initial target type. In a big-step semantics, there is no need of intermediate terms and

annotations.

The syntax is given in the first part of Fig. 9. We assume sets of variables x, class names C, interface names I, J, field

names f, and method names m. As usual, we assume a special variable this, used in method bodies to refer to the

receiver object. Interfaces which have exactly one method (dubbed functional interfaces) can be used as target types.
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e ::= x | e.f | new C(e1, . . . , e𝑛) | e.m(e1, . . . , e𝑛) | 𝜆xs.e | (T)e expression

T ::= C | I type

c ::= ⟨e, e⟩ configuration

v ::= [vs]C | 𝜆xs.e result (value)

(var) ⟨e, x ⟩⇒ v

e(x) = v (new)

⟨e, e𝑖 ⟩⇒ v𝑖 ∀𝑖 ∈ 1..𝑛

⟨e, new C(e1, . . . , e𝑛)⟩⇒ [v1, . . . , v𝑛 ]C

(field-access)

⟨e, e⟩⇒ [v1, . . . , v𝑛 ]C
⟨e, e.f𝑖 ⟩⇒ v𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(invk)

⟨e, e0 ⟩⇒ [vs]C
⟨e, e𝑖 ⟩⇒ v𝑖 ∀𝑖 ∈ 1..𝑛

⟨x1:v1, . . . , x𝑛 :v𝑛, this:[vs]C, e⟩⇒ v

⟨e, e0.m(e1, . . . , e𝑛)⟩⇒ v

mbody(C,m) = ⟨x1 . . . x𝑛, e⟩

(𝜆-invk)

⟨e, e0 ⟩⇒ 𝜆x1 . . . x𝑛 .e

⟨e, e𝑖 ⟩⇒ v𝑖 ∀𝑖 ∈ 1..𝑛

⟨x1:v1, . . . , x𝑛 :v𝑛, e⟩⇒ v

⟨e, e0.m(e1, . . . , e𝑛)⟩⇒ v

(𝜆) ⟨e, 𝜆xs.e⟩⇒ 𝜆xs.e
(upcast)

⟨e, e⟩⇒ v

⟨e, (T)e⟩⇒ v

Fig. 9. MiniFJ&𝜆: syntax and big-step semantics

Expressions are those of FJ, plus 𝜆-abstractions, and types are class and interface names. Throughout this section xs and

vs denote lists of variables and values, respectively. In 𝜆xs.e we assume that xs is not empty and e is not a 𝜆-abstraction.

For simplicity, we only consider upcasts, which have no runtime effect, but are important to allow the programmer to

use 𝜆-abstractions, as exemplified in discussing typing rules.

To be concise, the class table is abstractly modelled as follows:

• fields(C) gives the sequence of field declarations T1 f1;..T𝑛 f𝑛; for class C

• mtype(T ,m) gives, for each methodm in class or interface T , the pair T1 . . . T𝑛 → T
′
consisting of the parameter

types and return type

• mbody(C,m) gives, for each method m in class C, the pair ⟨x1 . . . x𝑛, e⟩ consisting of the parameters and body

• <: is the reflexive and transitive closure of the union of the extends and implements relations, stating that

two class or interface names are related iff they occur in the class table connected by the keywords extends or

implements

• !mtype(I) gives, for each functional interface I, mtype(I,m), where m is the only method of I.

The big-step semantics is given in the last part of Fig. 9. MiniFJ&𝜆 shows an example of instantiation of the framework

where configurations include an auxiliary structure, rather than being just language terms. In this case, the structure is

an environment e (a finite map from variables to values) modelling the current stack frame. Furthermore, results are not

particular configurations: they are either objects, of shape [vs]C, or 𝜆-abstractions.
Rules for FJ constructs are straightforward. Note that, since we only consider upcasts, casts have no runtime effect.

Indeed, they are guaranteed to succeed on well-typed expressions. Rule (𝜆-invk) shows that, when the receiver of a
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(t-conf)

⊢ v𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛 x1:T
′
1
, . . . , x𝑛 :T

′
𝑛 ⊢ e : T

⊢ ⟨x1:v1, . . . , x𝑛 :v𝑛, e⟩ : T
T𝑖 <: T

′
𝑖

∀𝑖 ∈ 1..𝑛

(t-var)

Γ ⊢ x : T

Γ (x) = T (t-upcast)

Γ ⊢ e : T
Γ ⊢ (T)e : T

(t-field-access)

Γ ⊢ e : C
Γ ⊢ e.f : T𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)

Γ ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ ⊢ new C(e1, . . . , e𝑛) : C

fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-invk)

Γ ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 0..𝑛

Γ ⊢ e0.m(e1, . . . , e𝑛) : T

e0 not of shape 𝜆xs.e

mtype(T0,m) = T1 . . . T𝑛 → T

(t-𝜆)
x1:T1, . . . , x𝑛 :T𝑛 ⊢ e : T

Γ ⊢ 𝜆x1 . . . x𝑛 .e : I
!mtype(I) = T1 . . . T𝑛 → T

(t-object)

Γ ⊢ v𝑖 : T ′
𝑖

∀𝑖 ∈ 1..𝑛

Γ ⊢ [v1, . . . , v𝑛 ]C : C

fields(C) = T1 f1; . . . T𝑛 f𝑛;
T
′
𝑖
<: T𝑖 ∀𝑖 ∈ 1..𝑛

(t-sub)

Γ ⊢ e : T
Γ ⊢ e : T ′

e not of shape 𝜆xs.e

T <: T ′

Fig. 10. MiniFJ&𝜆: type system

method is a 𝜆-abstraction, the method name is not significant at runtime, and the effect is that the body of the function

is evaluated as in the usual application.

The type system, consisting of judgements for configurations, expressions and values, is given in Fig. 10. The

following assumptions formalize standard FJ typing constraints on the class table.

(FJ1) Method bodies are well-typed with respect to method types:

• either mbody(C,m) and mtype(C,m) are both undefined

• or mbody(C,m) = ⟨x1 . . . x𝑛, e⟩, mtype(C,m) = T1 . . . T𝑛 → T , and x1:T1, . . . , x𝑛 :T𝑛, this:C ⊢ e : T .
(FJ2) Fields are inherited, no field hiding:

if T <: T ′
, and fields(T ′) = T1 f1; . . . T𝑛 f𝑛;, then fields(T ) = T1 f1; . . . T𝑚 f𝑚;,𝑚 ≥ 𝑛, and f𝑖 ≠ f𝑗 for 𝑖 ≠ 𝑗 .

(FJ3) Methods are inherited, no method overloading, invariant overriding:

if T <: T ′
, and mtype(T ′,m) is defined, then mtype(T ,m) = mtype(T ′,m).

Besides the standard typing features of FJ, the MiniFJ&𝜆 type system ensures the following.

• A functional interface I can be assigned as type to a 𝜆-abstraction which has the functional type of the method,

see rule (t-𝜆).

• A 𝜆-abstraction should have a target type determined by the context where the 𝜆-abstraction occurs. More

precisely, as described by Gosling et al. [31, p. 602], a 𝜆-abstraction in our calculus can only occur as return

expression of a method or argument of constructor, method call or cast. Then, in some contexts a 𝜆-abstraction

cannot be typed, in our calculus when occurring as receiver in field access or method invocation, hence these

cases should be prevented. This is implicit in rule (t-field-access), since the type of the receiver should be a class

name, whereas it is explicitly forbidden in rule (t-invk). Finally, a 𝜆-abstraction cannot be the main expression of a
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program, as also in this case the target type is not well defined. For simplicity, this requirement is not enforced

by typing rules, but it can be easily recovered as an assumption on the source program.

• A 𝜆-abstraction with a given target type J should have type exactly J: a subtype I of J is not enough. Consider, for

instance, the following class table:

interface J {}

interface I extends J { A m(A x); }

class C { J f; }

class D {

D m(I y) { return new D().n(y); }

D n(J y) { return new D(); }

}

In the main expression new D().n(𝜆x .x), the 𝜆-abstraction has target type J, which is not a functional interface,

hence the expression is ill-typed in Java (the compiler has no functional type against which to typecheck the

𝜆-abstraction). On the other hand, in the body of method m, the parameter 𝑦 of type I can be passed, as usual, to

method n expecting a supertype. For instance, the main expression new D().m(𝜆x .x) is well-typed, since the

𝜆-abstraction has target type I, and can be safely passed to method n, since it is not used as function there. To

formalise this behaviour, it is forbidden to apply subsumption to 𝜆-abstractions, see rule (t-sub).

• However, 𝜆-abstractions occurring as results rather than in source code (that is, in the environment and as fields

of objects) are allowed to have a subtype of the required type, see the explicit side condition in rules (t-conf) and

(t-object). For instance, in the above class table, the expression new C((I)𝜆x .x) is well-typed, whereas new C(𝜆x .x)

is ill typed, since rule (t-sub) cannot be applied to 𝜆-abstractions. When the expression is evaluated, the result is

[𝜆x .x]C, which is well-typed.

As mentioned at the beginning, the obvious small-step semantics would produce not typable expressions. In the above

example, we get

new C((I)𝜆x .x) −→ new C(𝜆x .x) −→ [𝜆x .x]C

and new C(𝜆x .x) has no type, while new C((I)𝜆x .x) and [𝜆x .x]C have type C.

As expected, to show soundness (Theorem 8.7) lemmas of inversion and canonical forms are handy: they can be

easily proved as usual. Instead, we do not need a substitution lemma, since environments associate variables with

values.

Lemma 8.5 (Inversion). The following hold:

(1) If ⊢ ⟨x1:v1, . . . , x𝑛 :v𝑛, e⟩ : T, then x1:T1, . . . , x𝑛 :T𝑛 ⊢ e : T, ⊢ v𝑖 : T ′
𝑖
and T

′
𝑖
<: T𝑖 for all 𝑖 ∈ 1..𝑛.

(2) If Γ ⊢ x : T, then Γ(x) <: T.
(3) If Γ ⊢ e.f𝑖 : T, then Γ ⊢ e : C and fields(C) = T1 f1; . . . T𝑛 f𝑛; and T𝑖 <: 𝑇 where 𝑖 ∈ 1..𝑛.

(4) If Γ ⊢ new C(e1, . . . , e𝑛) : T, then C <: T and fields(C) = T1 f1; . . . T𝑛 f𝑛; and Γ ⊢ e𝑖 : T𝑖 for all 𝑖 ∈ 1..𝑛.

(5) If Γ ⊢ e0.m(e1, . . . , e𝑛) : T, then e0 not of shape 𝜆xs.e and Γ ⊢ e𝑖 : T𝑖 for all 𝑖 ∈ 0..𝑛 and mtype(T0,m) =

T1 . . . T𝑛 → T
′
with T

′ <: T.

(6) If Γ ⊢ 𝜆xs.e : T, then T = I and !mtype(I) = T1 . . . T𝑛 → T
′
and x1:T1, . . . , x𝑛 :T𝑛 ⊢ e : T ′

.

(7) If Γ ⊢ (T ′)e : T, then Γ ⊢ e : T ′
and T

′ <: T.

(8) If Γ ⊢ [v1, . . . , v𝑛]C : T, then C <: T and fields(C) = T1 f1; . . . T𝑛 f𝑛; and Γ ⊢ v𝑖 : T ′
𝑖
and T

′
𝑖
<: T𝑖 for all 𝑖 ∈ 1..𝑛.

Manuscript submitted to ACM



A meta-theory for big-step semantics 35

Lemma 8.6 (Canonical Forms). The following hold:

(1) If ⊢ v : C, then v = [vs]D and D <: C.

(2) If ⊢ v : I, then either v = [vs]C and C <: I or v = 𝜆xs.e and I is a functional interface.

We write Γ ⊢ e :<: T as short for Γ ⊢ e : T ′
and T

′ <: T for some T
′
. In order to state soundness, set ⟨C2, R2,R2⟩

the big-step semantics defined in Fig. 9, and let Π2C
T
= {⟨e, e⟩ ∈ C2 |⊢ ⟨e, e⟩ :<: T } and Π2R

T
= {v ∈ R2 |⊢ v :<: T }, for T

defined in Fig. 9.

Theorem 8.7 (Soundness). The big-step semantics ⟨C2, R2,R2⟩ and the indexed predicate Π2 satisfy the conditions

(lp), (∃p) and (∀p) of Section 7.2.

Proof. Proof of (lp): The proof is by cases on instantiations of meta-rules. In all such cases, we have a configuration

⟨e, e⟩ in the conclusion, with e = 𝑦1:v̂1, . . . , 𝑦𝑝 :v̂𝑝 , such that ⊢ ⟨𝑦1:v̂1, . . . , 𝑦𝑝 :v̂𝑝 , e⟩ :<: T̂ , hence, by Lemma 8.5 (1), we

get ⊢ v̂ℓ :<: T̂ℓ for all ℓ ∈ 1..𝑝 and Γ ⊢ e : T with Γ = 𝑦1:T̂1, . . . , 𝑦𝑝 :T̂𝑝 and T <: T̂ , for some T̂1, . . . , T̂𝑝 .

Case: (var) Lemma 8.5 (2) applied to Γ ⊢ x : T implies x = 𝑦𝑖 and T̂𝑖 <: T for some 𝑖 ∈ 1..𝑝 . Then, the thesis follows by

transitivity of subtyping since e(x) = v̂𝑖 and ⊢ v̂𝑖 :<: T̂𝑖 .
Case: (field-access) Lemma 8.5 (3) applied to Γ ⊢ e.f𝑖 : T implies Γ ⊢ e : D and fields(D) = T1 f1; . . . T𝑚 f𝑚; and T𝑖 <: 𝑇

where 𝑖 ∈ 1..𝑚. Since ⟨e, e⟩⇒ [v1, . . . , v𝑛]C is a premise we assume ⊢ [v1, . . . , v𝑛]C :<: D, which implies C <: D

and fields(C) = T
′
1
f
′
1
; . . . T ′

𝑛 f
′
𝑛; and Γ ⊢ v𝑗 :<: T ′

𝑗
for all 𝑗 ∈ 1..𝑛 by Lemma 8.5 (8). From C <: D and assumption

(FJ2) we have𝑚 ≤ 𝑛 and T𝑗 = T
′
𝑗
and f𝑗 = f

′
𝑗
for all 𝑗 ∈ 1..𝑚. We conclude ⊢ v𝑖 :<: T .

Case: (new) Lemma 8.5 (4) applied to Γ ⊢ new C(e1, . . . , e𝑛) : T implies C <: T and fields(C) = T1 f1; . . . T𝑛 f𝑛; and

Γ ⊢ e𝑖 : T𝑖 for all 𝑖 ∈ 1..𝑛. Since ⟨e, e𝑖 ⟩⇒ v𝑖 is a premise we assume ⊢ v𝑖 :<: T𝑖 for all 𝑖 ∈ 1..𝑛. Using rule (t-object) we

derive ⊢ [v1, . . . , v𝑛]C :<: T .

Case: (invk) Lemma 8.5 (5) applied to Γ ⊢ e0.m(e1, . . . , e𝑛) : T implies e0 not of shape 𝜆xs.e and Γ ⊢ e𝑖 : T𝑖 for all 𝑖 ∈ 0..𝑛

and mtype(T0,m) = T1 . . . T𝑛 → T
′
with T

′ <: T . Since ⟨e, e0⟩⇒ [vs′]C is a premise we assume ⊢ [vs′]C :<: T0,

which implies C <: T0 by Lemma 8.5 (8). Since ⟨e, e𝑖 ⟩⇒ v𝑖 is a premise we assume ⊢ v𝑖 :<: T𝑖 for all 𝑖 ∈ 1..𝑛. We

have mtype(C,m) = T1 . . . T𝑛 → T
′
since mtype(T0,m) = T1 . . . T𝑛 → T

′
and C <: T0 by assumption (FJ3). By

assumption (FJ1), 𝑥1:T1, . . . , x𝑛 :T𝑛, this:C ⊢ e : T
′
. Therefore, by rule (t-conf) and since T

′ <: T , we can derive

⊢ ⟨x1:v1, . . . , x𝑛 :v𝑛, this:[vs′]C, e⟩ :<: T .
Case: (𝜆-invk) Lemma 8.5 (5) applied to Γ ⊢ e0.m(e1, . . . , e𝑛) : T implies Γ ⊢ e𝑖 : T𝑖 for all 𝑖 ∈ 0..𝑛 and mtype(T0,m) =
T1 . . . T𝑛 → T

′
with T

′ <: T . Since ⟨e, e0⟩⇒ 𝜆xs.e is a premise we assume ⊢ 𝜆xs.e :<: T0, which implies I <: T0

and !mtype(I) = T1 . . . T𝑛 → T
′
and x1:T1, . . . , x𝑛 :T𝑛 ⊢ e : T ′

by Lemma 8.5 (6). Since ⟨e, e𝑖 ⟩⇒ v𝑖 is a premise we

assume ⊢ v𝑖 :<: T𝑖 for all 𝑖 ∈ 1..𝑛. Therefore we derive ⊢ ⟨x1:v1, . . . , x𝑛 :v𝑛, e⟩ :<: T .
Case: (𝜆) The thesis is trivial as the configuration and the final result are the same.

Case: (upcast) Lemma 8.5 (7) applied to Γ ⊢ (T ′)e : T implies Γ ⊢ e :<: T . From ⟨e, e⟩⇒ v we conclude ⊢ v :<: T .

Proof of (∃p): It is easy to verify that if ⊢ ⟨e, e⟩ :<: T , then there is a rule in Fig. 9, whose conclusion is ⟨e, e⟩, just
because for every syntactic construct there is a corresponding rule and side conditions in typing rules imply those

of big-step rules. The only less trivial case is that of variables: if ⊢ ⟨e, x⟩ :<: T , then by Lemma 8.5 (1,2), x ∈ dom(e),
hence rule (var) is applicable, as the side condition is satisfied.

Proof of (∀p): Rule (field-access) requires that ⟨e, e⟩ reduces to an object with a field f𝑖 , and this is assured by the typing rule

(t-field-access), which prescribes a class type for the expression e with the field f𝑖 , together with the validity of condition
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T ::= Nat | T1 → T2 | T1 ∧ T2 | T1 ∨ T2 type

(∧ I)

Γ ⊢ e : T Γ ⊢ e : S
Γ ⊢ e : T ∧ S

(∧ E)

Γ ⊢ e : T ∧ S

Γ ⊢ e : T (∧ E)

Γ ⊢ e : T ∧ S

Γ ⊢ e : S

(∨ I)

Γ ⊢ e : T
Γ ⊢ e : T ∨ S

(∨ I)

Γ ⊢ e : S
Γ ⊢ e : T ∨ S

Fig. 11. Intersection and union types: syntax and typing rules

(lp) (which assures type preservation by Lemma 7.2) and Lemma 8.6 (1). For a well-typed method call e0.m(e1, . . . , e𝑛)

the configuration ⟨e, e0⟩ can reduce either to an object or to a 𝜆-expression. In the first case we can apply rule (invk) and

in the second case rule (𝜆-invk). In both cases the typing assures that the arguments are in the right number, while the

condition is trivial for the last premise. □

8.3 Intersection and union types

We enrich the type system of Fig. 8 by adding intersection and union type constructors and the corresponding typing

rules, see Fig. 11. Intersection types for the 𝜆-calculus have been widely studied, e.g., by Barendregt et al. [12]. Union

types naturally model conditionals [32] and non-deterministic choice [30].

The production in the top section of Fig. 11 is again interpreted coinductively to allow possibly infinite types, but, as

usual with recursive types, we only consider contractive types [44], that is, we require an infinite number of arrows in

each infinite path in a type (viewed as a tree). On the other hand, typing rules are still interpreted inductively.

The typing rules for the introduction and the elimination of intersection and union are standard, except for the

absence of the union elimination rule:

(∨𝐸)
Γ{T/x} ⊢ e : 𝑉 Γ{S/x} ⊢ e : 𝑉 Γ ⊢ e′ : T ∨ S

Γ ⊢ e[e′/x] : 𝑉
As a matter of fact, rule (∨𝐸) is unsound for ⊕. For example, let split the type Nat into Even and Odd and add the expected

typings for natural numbers. The prefix addition + has type (Even → Even → Even) ∧ (Odd → Odd → Even) and we

derive

𝑥 :Even ⊢+𝑥 𝑥 :Even 𝑥 :Odd ⊢+𝑥 𝑥 :Even

⊢ 1 : Odd
⊢ 1 : Even ∨ Odd

⊢ 2 : Even
⊢ 2 : Even ∨ Odd

⊢ (1 ⊕ 2) : Even ∨ Odd

⊢ +(1 ⊕ 2) (1 ⊕ 2) : Even
We cannot assign the type Even to 3, which is a possible result, so strong soundness is lost. In addition, in the

small-step approach, we cannot assign Even to the intermediate term + 1 2, so subject reduction fails. In the big-step

approach, there is no such intermediate term; however, condition (lp) fails for the big-step rule for +. Indeed, considering
the following instantiation of the rule:

(+)
1 ⊕ 2⇒ 1 1 ⊕ 2⇒ 2

+(1 ⊕ 2) (1 ⊕ 2) ⇒ 3

and the type Even for the conclusion: we cannot assign this type to the final result as required by (lp) (cf. Definition 7.1 (2)).

Intersection types allow to derive meaningful types also for expressions containing variables applied to themselves,

for example we can derive ⊢ 𝜆x .x x : (T → S) ∧T → S. With union types all non-deterministic choices between typable

expressions can be typed too, since we can derive Γ ⊢ e1 ⊕ e2 : T1 ∨ T2 from Γ ⊢ e1 : T1 and Γ ⊢ e2 : T2.
We now state standard lemmas for the type system, which are handy towards the soundness proof. We first define

the subtyping relation T ≤ S as the smallest preorder such that:
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• S ≤ T1 and S ≤ T2 imply S ≤ T1 ∧ T2;

• T ∧ S ≤ T and T ∧ S ≤ S;

• T ≤ T ∨ S and T ≤ S ∨ T .

It is easy to verify that T ≤ S iff Γ, x:T ⊢ x : S for an arbitrary variable x, using rules (∧I), (∧E) and (∨I).

Lemma 8.8 (Inversion). The following hold:

(1) If Γ ⊢ x : T, then Γ(x) ≤ T.

(2) If Γ ⊢ n : T, then Nat ≤ T.

(3) If Γ ⊢ 𝜆x .e : T, then Γ{S𝑖/x} ⊢ e : 𝑉𝑖 for 𝑖 ∈ 1..𝑚 and

∧
𝑖∈1..𝑚 (S𝑖 → 𝑉𝑖 ) ≤ T.

(4) If Γ ⊢ e1 e2 : T, then Γ ⊢ e1 : S𝑖 → 𝑉𝑖 and Γ ⊢ e2 : S𝑖 for 𝑖 ∈ 1..𝑚 and

∧
𝑖∈1..𝑚 𝑉𝑖 ≤ T.

(5) If Γ ⊢ succ e : T, then Nat ≤ T and Γ ⊢ e : Nat.
(6) If Γ ⊢ e1 ⊕ e2 : T, then Γ ⊢ e𝑖 : T ′

with T
′ ≤ T and 𝑖 ∈ 1..2.

Lemma 8.9 (Substitution). If Γ{T ′/x} ⊢ e : T and Γ ⊢ e′ : T ′
, then Γ ⊢ e[e′/x] : T.

Lemma 8.10 (Canonical Forms). The following hold:

(1) If ⊢ v : T
′ → T, then v = 𝜆x .e.

(2) If ⊢ v : Nat, then v = n.

In order to state soundness, let Π3C
T
= {e ∈ C1 |⊢ e : T } and Π3R

T
= {v ∈ R1 |⊢ v : T }, for T defined in Fig. 11.

Theorem 8.11 (Soundness). The big-step semantics ⟨C1, R1,R1⟩ and the indexed predicate Π3 satisfy the conditions

(lp), (∃p) and (∀p) of Section 7.2.

Proof Sketch. We prove conditions only for rule (app), the other cases are similar (cf. proof of Theorem 8.4).

Proof of (lp): The proof is by cases on instantiations of meta-rules. For rule (app) Lemma 8.8 (4) applied to ⊢ e1 e2 : T
implies ⊢ e1 : S𝑖 → 𝑉𝑖 and ⊢ e2 : S𝑖 for 𝑖 ∈ 1..𝑚 and

∧
𝑖∈1..𝑚 𝑉𝑖 ≤ T . Now, from assumptions of (lp), we get

⊢ 𝜆x .e : S𝑖 → 𝑉𝑖 and ⊢ v2 : S𝑖 for 𝑖 ∈ 1..𝑚. Lemma 8.8 (3) implies x : S𝑖 ⊢ e : 𝑉𝑖 , so by Lemma 8.9 we have ⊢ e[v2/x] : 𝑉𝑖
for 𝑖 ∈ 1..𝑚. We can derive ⊢ e[v2/x] : T using rules (∧I), (∧E) and (∨I).

Proof of (∃p): The proof is as in Theorem 8.4.

Proof of (∀p): The proof is by cases on instantiations of meta-rules. For rule (app) Lemma 8.8 (4) applied to ⊢ e1 e2 : T
implies ⊢ e1 : S𝑖 → 𝑉𝑖 for 𝑖 ∈ 1..𝑚. If e1⇒ v we get ⊢ v : S𝑖 → 𝑉𝑖 for 𝑖 ∈ 1..𝑚 by (lp) and Lemma 7.2. Lemma 8.10 (1)

applied to ⊢ v : S𝑖 → 𝑉𝑖 implies v = 𝜆x .e as needed. □

8.4 MiniFJ
∨

A well-known example in which proving soundness with respect to small-step semantics is extremely challenging is

the standard type system with intersection and union types [11] w.r.t. the pure 𝜆-calculus with full reduction. Indeed,

the standard subject reduction technique fails
8
, since, for instance, we can derive the type

(T → T → 𝑉 ) ∧ (S → S → 𝑉 ) → (𝑈 → T ∨ S) → 𝑈 → 𝑉

8
For this reason, Barbanera et al. [11] prove soundness by an ad-hoc technique, that is, by considering parallel reduction and an equivalent type system à

la Gentzen, which enjoys the cut elimination property.
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for both 𝜆𝑥.𝜆𝑦.𝜆𝑧.𝑥 ((𝜆𝑡 .𝑡) (𝑦 𝑧)) ((𝜆𝑡 .𝑡) (𝑦 𝑧)) and 𝜆𝑥.𝜆𝑦.𝜆𝑧.𝑥 (𝑦 𝑧) (𝑦 𝑧), but the intermediate expressions 𝜆𝑥.𝜆𝑦.𝜆𝑧.𝑥 ((𝜆𝑡 .𝑡) (𝑦 𝑧)) (𝑦 𝑧)
and 𝜆𝑥.𝜆𝑦.𝜆𝑧.𝑥 (𝑦 𝑧) ((𝜆𝑡 .𝑡) (𝑦 𝑧)) do not have this type.

As the example shows, the key problem is that rule (∨E) can be applied to expression e where the same subexpression

e
′
occurs more than once. In the non-deterministic case, as shown by the example in the previous section, this is

unsound, since e
′
can reduce to different values. In the deterministic case, instead, this is sound, but cannot be proved

by subject reduction. Since using big-step semantics there are no intermediate steps to be typed, our approach seems

very promising to investigate an alternative proof of soundness. Whereas we leave this challenging problem to future

work, here as first step we describe a calculus with a much simpler version of the problematic feature.

The calculus is a variant of FJ∨, introduced by Igarashi and Nagira [33], an extension of FJ [34] with union types. As

discussed more extensively by Igarashi and Nagira [33], this gives the ability to define a supertype even after a class

hierarchy is fixed, grouping independently developed classes with similar interfaces. In fact, given some types, their

union type can be viewed as an interface type that “factors out” their common features. With respect to FJ∨, we do not

consider cast and type-case constructs and, more importantly, in the typing rules we handle differently union types,

taking inspiration directly from rule (∨E) of the 𝜆-calculus. With this approach, we enhance the expressivity of the type

system, since it becomes possible to eliminate unions simultaneously for an arbitrary number of arguments, including

the receiver, in a method invocation, provided that they are all equal to each other. We dub this calculus MiniFJ
∨
.

Fig. 12 gives the syntax, big-step semantics and typing rules of MiniFJ
∨
. The subtyping relation <: is the reflexive

and transitive closure of the union of the extends relation and the standard rules for union:

T1 <: T1 ∨ T2 T2 <: T1 ∨ T2

T1 <: T T2 <: T

T1 ∨ T2 <: T

The functions mtype, fields and mbody are defined as for MiniFJ&𝜆, apart that here fields, method parameters and

return types can be union types as well, still assuming the conditions on the class table (FJ1), (FJ2), and (FJ3).

Clearly rule (t-∨-elim) is inspired by rule (∨E), but restricted only to some specific contexts, named (union) elimination

contexts. Elimination contexts are field access and method invocation, where the latter has 𝑛 > 0 holes corresponding to

the receiver and (for simplicity the first) 𝑛 − 1 parameters. Thanks to this restriction, we are able to prove a standard

inversion lemma, which is not known for the general rule in the 𝜆-calculus.

Given an elimination context E, we denote by E[e] the expression obtained by filling all holes of E by e.

This rule allows us to make the type system more “structural”, with respect to FJ, similarly to what happens in FJ∨.
Let us consider the following classes:

class C {

A f; Object g;

C update(A x) {...}

Bool eq(C x) {..}

}

class D {

A f;

D update(A x) {...}

Bool eq(D x) {...}

}
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e ::= x | e.f | new C(e1, . . . , e𝑛) | e.m(e1, . . . , e𝑛) expression

if e then e1 else e2 | true | false
v ::= new C(v1, . . . , v𝑛) | true | false value

T ::= C | Bool | T1 ∨ T2 type

E ::= [].f | [ ].m([], . . . , [], e1, . . . , e𝑛) elimination context

(field)

e⇒ new C(v1, . . . , v𝑛)

e.f𝑖 ⇒ v𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(new)

e𝑖 ⇒ v𝑖 ∀𝑖 ∈ 1..𝑛

new C(e1, . . . , e𝑛)⇒ new C(v1, . . . , v𝑛)

(invk)

e0 ⇒ new C(vs′)
e𝑖 ⇒ v𝑖 ∀𝑖 ∈ 1..𝑛

e [v1/x1 ] . . . [v𝑛/x𝑛 ] [new C(vs′)/this] ⇒ v

e0.m(e1, . . . , e𝑛)⇒ v

mbody(C,m) = ⟨x1 . . . x𝑛, e⟩

(true)

true⇒ true
(false)

false⇒ false

(if-t)

e⇒ true e1 ⇒ v

if e then e1 else e2 ⇒ v

(if-f)

e⇒ false e2 ⇒ v

if e then e1 else e2 ⇒ v

(t-var)

Γ ⊢ x : T

Γ (x) = T (t-bool)

Γ ⊢ b : Bool
b ∈ {true, false}

(t-fld)

Γ ⊢ e : C
Γ ⊢ e.f𝑖 : T𝑖

fields(C) = T1 f1; . . . T𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)

Γ ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ ⊢ new C(e1, . . . , e𝑛) : C

fields(C) = T1 f1; . . . T𝑛 f𝑛;

(t-invk)

Γ ⊢ e : C Γ ⊢ e𝑖 : T𝑖 ∀𝑖 ∈ 1..𝑛

Γ ⊢ e.m(e1, . . . , e𝑛) : T

mtype(C,m) = T1 . . . T𝑛 → T

(t-if)

Γ ⊢ e : Bool Γ ⊢ e1 : T Γ ⊢ e2 : T
Γ ⊢ if e then e1 else e2 : T

(t-sub)

Γ ⊢ e : T
Γ ⊢ e : T ′ T <: T ′

(t-∨-elim)
Γ ⊢ e : ∨𝑖∈1..𝑚 C𝑖 Γ, x:C𝑖 ⊢ E [𝑥 ] : T ∀𝑖 ∈ 1..𝑚

Γ ⊢ E [e] : T x fresh

Fig. 12. MiniFJ
∨
: syntax, big-step semantics and type system

They share a common structure, but they are not related by inheritance (there is no common superclass abstracting

shared features), hence in standard FJ they cannot be handled uniformly. By means of (t-∨-elim) this is possible: for

instance, we can write a wrapper class that, in a sense, provides the common interface of C and D “ex-post”

class CorD {

C ∨ D el;

A getf() { this.el.f }

CorD update(A x) { new CorD(this.el.update(x)) }

}
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Bodies of methods getf and update in class CorD are well-typed thanks to rule (t-∨-elim), as shown by the following

derivation for update, where Γ = 𝑥 :A, this:CorD.

Γ ⊢ this.el : C ∨ D

Γ, 𝑦:C ⊢ 𝑦.update(𝑥) : C

Γ, 𝑦:C ⊢ 𝑦.update(𝑥) : C ∨ D

Γ, 𝑦:D ⊢ 𝑦.update(𝑥) : D

Γ, 𝑦:D ⊢ 𝑦.update(𝑥) : C ∨ D

Γ ⊢ this.el.update(𝑥) : C ∨ D

Γ ⊢ new CorD(this.el.update(𝑥)) : CorD

The above example can be typed in FJ∨ as well, even though with a different technique.
9
On the other hand, with

our more uniform approach inspired by rule (∨E), we can type examples where the same subexpression having a union

type occurs more than once, and soundness relies on the determinism of evaluation, as in the example at the beginning

of this section.

To illustrate this, let us consider an example. Assuming the above class table, consider the expression e = if false then newC( . . . ) else newD( . . . ).

By rule (t-if), the expression e has type C ∨ D, and, by rule (t-∨-elim), the expression e.eq(e) has type Bool, as shown by

the following derivation:

⊢ e : C ∨ D x:C ⊢ x.eq(x) : Bool x:D ⊢ x.eq(x) : Bool

⊢ e.eq(e) : Bool

This expression cannot be typed in FJ∨, because there is no way to eliminate the union type assigned to e when it

occurs as an argument.

Quite surprisingly, subject reduction fails for the expected small-step semantics, even if there are no intersection

types, which are the source, together with the (∨E) rules, of the problems in the 𝜆-calculus. Indeed, we have the following

small-step reduction:

e.eq(e) −→ new D( . . . ).eq(e) −→ new D( . . . ).eq(new D( . . . ))

where the intermediate expression cannot be typed, because e has a union type. This happens because intersection

types are in a sense hidden in the class table: the method eq occurs in two different classes with different types, hence,

roughly, we could assign it the intersection type (CC → Bool) ∧ (DD → Bool).
As in previous examples, the soundness proof uses an inversion lemma and a substitution lemma. The canonical

forms lemma is trivial since the only values of type C are objects (constructor calls with values as arguments) instances

of a subclass. In addition, we need a lemma (dubbed “key”) which assures that a value typed by a union of classes can

also be typed by one of these classes. The proof of this lemma is straightforward, since values having class types are

just new constructors, as shown by canonical forms.

Lemma 8.12 (Substitution). If Γ{T ′/x} ⊢ e : T and Γ ⊢ e′ : T ′
, then Γ ⊢ e[e′/x] : T ′

.

Lemma 8.13 (Canonical forms). The following hold:

(1) If Γ ⊢ v : Bool, then v = true or v = false.

(2) If Γ ⊢ v : C, then v = new D(v1, . . . , v𝑛) and D <: C.

Lemma 8.14 (Inversion). The following hold:

(1) If Γ ⊢ x : T, then Γ(x) <: T.

9
When the receiver of a method call has a union type, look-up (functionmtype) is directly performed and gives a set of method signatures; arguments

should comply all parameter types and the type of the call is the union of return types.
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(2) If Γ ⊢ e.f : T, then Γ ⊢ e : ∨𝑖∈1..𝑚 C𝑖 and, for all 𝑖 ∈ 1..𝑚, fields(C𝑖 ) =
𝑇𝑖1 f𝑖1; . . . T𝑖𝑛𝑖 f𝑖𝑛𝑖 ; and f = f𝑖𝑘𝑖 and T𝑖𝑘𝑖 <: 𝑇 for some 𝑘𝑖 ∈ 1..𝑛𝑖 .

(3) If Γ ⊢ new C(e1, . . . , e𝑛) : T, then C <: T and fields(C) = T1 f1; . . . T𝑛 f𝑛; and Γ ⊢ e𝑖 : T𝑖 for all 𝑖 ∈ 1..𝑛.

(4) If Γ ⊢ e0.m(e1, . . . , e𝑛) : T, then Γ ⊢ e0 :

∨
𝑖∈1..𝑚 C𝑖 and, there is 𝑝 ∈ 0..𝑛 such that e0 = . . . = e𝑝 and, for all

𝑖 ∈ 1..𝑚,

• mtype(C𝑖 ,m) = T𝑖1 . . . T𝑖𝑛 → T𝑖 , and

• for all 𝑘 ∈ 1..𝑝 , C𝑖 <: T𝑖𝑘 , and

• for all 𝑘 ∈ 𝑝 + 1..𝑛, Γ ⊢ e𝑘 : T𝑖𝑘 , and

• T𝑖 <: T.

(5) If Γ ⊢ if e then e1 else e2 : T, then Γ ⊢ e : Bool and Γ ⊢ e𝑖 : T ′
with T

′ <: T and 𝑖 ∈ 1..2.

Proof Sketch. We prove only points 2 and 4.

(2) The proof is by induction on the derivation of Γ ⊢ e.f : T . For rule (t-fld), we have Γ ⊢ e : C, fields(C) =

T1 f1; . . . T𝑛 f𝑛;, f𝑖 = f and T𝑖 = T , for some 𝑖 ∈ 1..𝑛. For rule (t-sub), the thesis is immediate by induction

hypothesis. For rule (t-∨-elim), we have E = [].f, Γ ⊢ e :

∨
𝑖∈1..𝑚 C𝑖 and Γ, x:C𝑖 ⊢ E[x] : T , for all 𝑖 ∈ 1..𝑚,

then, by induction hypothesis, for all 𝑖 ∈ 1..𝑚, we get Γ, x:C𝑖 ⊢ x :

∨
𝑗 ∈1..𝑚𝑖

D𝑖 𝑗 and, for all 𝑗 ∈ 1..𝑚𝑖 ,

fields(D𝑖 𝑗 ) = T𝑗11 f𝑗1; . . . T𝑗𝑛 𝑗
f𝑗𝑛 𝑗

; and T𝑗𝑘 𝑗
<: T , for some 𝑘 𝑗 ∈ 1..𝑛 𝑗 . Since Γ, x:C𝑖 ⊢ x :

∨
𝑗 ∈1..𝑚 𝑗

D𝑖 𝑗 , we

have C𝑖 <:
∨

𝑗 ∈1..𝑚 𝑗
D𝑖 𝑗 , hence C𝑖 <: D𝑖 𝑗𝑖 , for some 𝑗𝑖 ∈ 1..𝑚𝑖 , by definition of subtyping. Then the thesis

follows easily by assumption (FJ2).

(4) The proof is by induction on the derivation of Γ ⊢ e0.m(e1, . . . , e𝑛) : T . For rule (t-invk), we have Γ ⊢ e0 : C0,

𝑝 = 0, mtype(C0,m) = T1 . . . T𝑛 → T , and, for all 𝑘 ∈ 1..𝑛, Γ ⊢ e𝑘 : T𝑘 . For rule (t-sub), the thesis is immediate by

induction hypothesis. For rule (t-∨-elim), we have E = [].m([], . . . , [], e𝑝+1, . . . , e𝑛), hence 𝑝 is the number of holes

in E and e0 = . . . = e𝑝 , and Γ ⊢ e0 :

∨
𝑖∈1..𝑚 C𝑖 and, for all 𝑖 ∈ 1..𝑚, Γ, x:C𝑖 ⊢ E[x] : T , with x fresh. By induction

hypothesis, we know that, for all 𝑖 ∈ 1..𝑚, Γ, x:C𝑖 ⊢ x :

∨
𝑗 ∈1..𝑚𝑖

D𝑖 𝑗 and there is 𝑝𝑖 ∈ 1..𝑛 such that the first 𝑝𝑖

arguments of E[x] are equal to the receiver, namely x and this implies 𝑝𝑖 ≤ 𝑝 because x is fresh. Let 𝑖 ∈ 1..𝑚.

Since Γ, x:C𝑖 ⊢ x :

∨
𝑗 ∈1..𝑚𝑖

D𝑖 𝑗 , we get C𝑖 <:
∨

𝑗 ∈1..𝑚 𝑗
D𝑖 𝑗 , thus C𝑖 <: D𝑖 𝑗𝑖 , for some 𝑗𝑖 ∈ 1..𝑚𝑖 , by definition of

subtyping. Therefore, by induction hypothesis and assumption (FJ3), we get mtype(C𝑖 ,m) = T𝑖1 . . . T𝑖𝑛 → T𝑖

and, for all 𝑘 ∈ 1..𝑝𝑖 , D𝑖 𝑗𝑖 <: T𝑖𝑘 , hence C𝑖 <: T𝑖𝑘 , and, for all 𝑘 ∈ 𝑝𝑖 + 1..𝑝 , Γ, x:C𝑖 ⊢ x : T𝑖𝑘 , hence C𝑖 <: T𝑖𝑘

and, for all 𝑘 ∈ 𝑝 + 1..𝑛, Γ, x:C𝑖 ⊢ e𝑘 : T𝑖𝑘 , hence, because x does not occur in e𝑘 as it is fresh, by contraction we

get Γ ⊢ e𝑘 : T𝑖𝑘 , and, finally, T𝑖 <: T .

□

Lemma 8.15 (Key). If Γ ⊢ v :

∨
1≤𝑖≤𝑛 C𝑖 , then Γ ⊢ v : C𝑖 for some 𝑖 ∈ 1 . . . 𝑛.

In order to state soundness, let ⟨C4, R4,R4⟩ be the big-step semantics defined in Fig. 12 (C4 is the set of expressions

and R4 is the set of values), and let Π4C
T
= {e ∈ C4 |⊢ e : T } and Π4R

T
= {v ∈ R4 |⊢ v : T }, for T defined in Fig. 12. We

need a last lemma to prove soundness:

Lemma 8.16 (Determinism). If R4 ⊢𝜇 e⇒ v1 and R4 ⊢𝜇 e⇒ v2, then v1 = v2.

Proof. Straightforward induction on rules in R4, because every syntactic construct has a unique big-step meta-

rule. □
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e ::= x | e.f | new C(e1, . . . , e𝑛) | e.m(e1, . . . , e𝑛) | e.f=e′ | 𝜄 expressions

c ::= ⟨M, e⟩ configurations

r ::= ⟨M, 𝜄 ⟩ results

(obj) ⟨M, 𝜄 ⟩⇒ ⟨M, 𝜄 ⟩ (fld)

⟨M, e⟩⇒ ⟨M′, 𝜄 ⟩
⟨M, e.f𝑖 ⟩⇒ ⟨M′, 𝜄𝑖 ⟩

M′ (𝜄) = new C(𝜄1, . . . , 𝜄𝑛)
fields(C) = C1 f1; . . .C𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(new)

⟨M𝑖 , e𝑖 ⟩⇒ ⟨M𝑖+1, 𝜄𝑖 ⟩ ∀𝑖 ∈ 1..𝑛

⟨M, new C(e1, . . . , e𝑛)⟩⇒ ⟨M′, 𝜄 ⟩

M1 = M
M′ = M𝑛+1 {new C(𝜄1, . . . , 𝜄𝑛)/𝜄 }
𝜄 fresh

(invk)

⟨M𝑖 , e𝑖 ⟩⇒ ⟨M𝑖+1, 𝜄𝑖 ⟩ ∀𝑖 ∈ 0..𝑛

⟨M𝑛+1, e [𝜄1/x1 ] . . . [𝜄𝑛/x𝑛 ] [𝜄0/this] ⟩ ⇒ ⟨M′, 𝜄 ⟩
⟨M, e0.m(e1, . . . , e𝑛)⟩⇒ ⟨M′, 𝜄 ⟩

M0 = M
M1 (𝜄0) = new C(_)
mbody(C,m) = ⟨x1 . . . x𝑛, e⟩

(fld-up)

⟨M, e⟩⇒ ⟨M′, 𝜄 ⟩ ⟨M′, e′⟩⇒ ⟨M′′, 𝜄′⟩
⟨M, e.f𝑖=e′⟩⇒ ⟨M′′

[𝜄.𝑖=𝜄′ ] , 𝜄
′⟩

M(𝜄) = new C(𝜄1, . . . , 𝜄𝑛)
fields(C) = C1 f1; . . .C𝑛 f𝑛;
𝑖 ∈ 1..𝑛

Fig. 13. Imperative FJ: syntax and big-step semantics

Theorem 8.17 (Soundness). The big-step semantics ⟨C4, R4,R4⟩ and the indexed predicate Π4 satisfy the conditions

(lp), (∃p) and (∀p) of Section 7.2.

Proof Sketch. We sketch the proof only of (lp) for rule (invk), other cases and conditions are similar to previous

proofs.

For rule (invk), Lemma 8.14 (4) applied to ⊢ e0.m(e1, . . . , e𝑛) : T implies ⊢ e0 :
∨

𝑖∈1..𝑚 C𝑖 and, there is 𝑝 ∈ 0..𝑛 such

that e0 = . . . = e𝑝 and, for all 𝑖 ∈ 1..𝑚, mtype(C𝑖 ,m) = T𝑖1 . . . T𝑖𝑛 → T𝑖 , and for all 𝑘 ∈ 1..𝑝 , C𝑖 <: T𝑖𝑘 , and for all

𝑘 ∈ 𝑝 + 1..𝑛, ⊢ e𝑖 : T𝑖𝑘 , and T𝑖 <: T . Assuming ⊢ new C(vs) :

∨
𝑖∈1..𝑚 C𝑖 , by Lemma 8.15 and Lemma 8.13, we get

C <: C𝑖 for some 𝑖 ∈ 1..𝑚. Since mtype(C𝑖 ,m) = T𝑖1 . . . T𝑖𝑛 → T𝑖 and mbody(C,m) = ⟨x1 . . . x𝑛, e⟩, by assumption

(FJ3) and (FJ1), this:C, x1:T𝑖1, . . . , x𝑛 :T𝑖𝑛 ⊢ e : T𝑖 . Assume, for all 𝑘 ∈ 1..𝑝 , ⊢ v𝑘 :

∨
𝑖∈1..𝑚 C𝑖 and, for all 𝑘 ∈ 𝑝 + 1..𝑛,

⊢ v𝑘 : T𝑖𝑘 , then, since e0 = . . . = e𝑝 , by Lemma 8.16, we get v1 = . . . = v𝑝 = new C(vs), hence ⊢ v𝑘 : T𝑖𝑘 , for all 𝑘 ∈ 1..𝑝 ,

because C <: C𝑖 <: T𝑖𝑘 for all 𝑘 ∈ 1..𝑝 . Lemma 8.12 gives ⊢ e[v1/x1] . . .[v𝑛/x𝑛] [new C(vs)/this] : T𝑖 . Finally, we can
conclude ⊢ v : T by rule (t-sub), as T𝑖 <: T . □

8.5 Imperative FJ

We show here how our technique behaves in an imperative setting. In Fig. 13 and Fig. 14 we show a minimal imperative

extension of FJ. We assume a well-typed class table and we use the notations introduced in Section 8.2. Expressions

are enriched with field assignment and object identifiers 𝜄, which only occur in runtime expressions. A memory M
maps object identifiers to object states, which are expressions of shape new C(𝜄1, . . . 𝜄𝑛). Results are configurations

of shape ⟨M, 𝜄⟩. We denote by M [𝜄.𝑖=𝜄′ ] the memory obtained from M by replacing by 𝜄 ′ the 𝑖-th field of the object

state associated with 𝜄. The type assignment Σ maps object identifiers into types (class names). We write Σ ⊢ e : C for

∅; Σ ⊢ e : C.
As for the other examples, to prove soundness we need some standard properties of the typing rules: inversion and

substitution lemmas.
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(t-conf)

Σ ⊢ M(𝜄) : Σ(𝜄) ∀𝜄 ∈ dom(M) Σ ⊢ e : C
Σ ⊢ ⟨M, e⟩ : C dom(Σ) = dom(M)

(t-var)

Γ; Σ ⊢ x : C

Γ (x) = C

(t-fld)

Γ; Σ ⊢ e : C
Γ; Σ ⊢ e.f𝑖 : C𝑖

fields(C) = C1 f1; . . .C𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-new)

Γ; Σ ⊢ e𝑖 : C𝑖 ∀𝑖 ∈ 1..𝑛

Γ; Σ ⊢ new C(e1, . . . , e𝑛) : C

fields(C) = C1 f1; . . .C𝑛 f𝑛;

(t-invk)

Γ; Σ ⊢ e𝑖 : C𝑖 ∀𝑖 ∈ 0..𝑛

Γ; Σ ⊢ e0.m(e1, . . . , e𝑛) : C

mtype(C0,m) = C1 . . .C𝑛 → C

(t-fld-up)

Γ; Σ ⊢ e : C
Γ; Σ ⊢ e′ : C𝑖

Γ; Σ ⊢ e.f𝑖=e′ : C𝑖

fields(C) = C1 f1; . . .C𝑛 f𝑛;
𝑖 ∈ 1..𝑛

(t-oid)

Γ; Σ ⊢ 𝜄 : C Σ(𝜄) = C (t-sub)

Γ; Σ ⊢ e : C
Γ; Σ ⊢ e : C′ C <: C′

Fig. 14. Imperative FJ: typing rules

Lemma 8.18 (Inversion). The following hold:

(1) If Σ ⊢ ⟨M, e⟩ : C, then Σ ⊢ M(𝜄) : Σ(𝜄) for all 𝜄 ∈ dom(M) and Σ ⊢ e : C and dom(Σ) = dom(M).
(2) If Γ; Σ ⊢ x : C, then Γ(x) <: C.
(3) If Γ; Σ ⊢ e.f𝑖 : C, then Γ; Σ ⊢ e : D and fields(D) = C1 f1; . . .C𝑛 f𝑛; and C𝑖 <: C where 𝑖 ∈ 1..𝑛.

(4) If Γ; Σ ⊢ new C(e1, . . . , e𝑛) : D, then C <: D and fields(C) = C1 f1; . . .C𝑛 f𝑛; and Γ; Σ ⊢ e𝑖 : C𝑖 for all 𝑖 ∈ 1..𝑛.

(5) If Γ; Σ ⊢ e0.m(e1, . . . , e𝑛) : C, then Γ; Σ ⊢ e𝑖 : C𝑖 for all 𝑖 ∈ 0..𝑛 and mtype(C0,m) = C1 . . .C𝑛 → D with D <: C.

(6) If Γ; Σ ⊢ e.f𝑖=e
′
: C, then Γ; Σ ⊢ e : D and fields(D) = C1 f1; . . .C𝑛 f𝑛;, with 𝑖 ∈ 1..𝑛, and Γ; Σ ⊢ e

′
: C𝑖 and

C𝑖 <: C.

(7) If Γ; Σ ⊢ 𝜄 : C, then Σ(𝜄) <: C.

Lemma 8.19 (Substitution). If Γ{C′/x}; Σ ⊢ e : C and Γ; Σ ⊢ e′ : C′
, then Γ; Σ ⊢ e[e′/x] : C.

Let ⟨C5, R5,R5⟩ be the big-step semantics defined in Fig. 13. We can prove the soundness of the indexed predicate

Π5 defined by: Π5C⟨Σ,C⟩ = {⟨M, e⟩ ∈ C5 | Σ′ ⊢ ⟨M, e⟩ : C for some Σ′ s.t. Σ ⊆ Σ′} and Π5R⟨Σ,C⟩ = R5 ∩ Π5C⟨Σ,C⟩ . The

type assignment Σ′ is needed, since memory can grow during evaluation.

Theorem 8.20 (Soundness). The big-step semantics ⟨C5, R5,R5⟩ and the indexed predicate Π5 satisfy the conditions

(lp), (∃p) and (∀p) of Section 7.2.

Proof. We prove separately the three conditions. The most interesting aspect here is that the presence of a memory

induces a dependency between subsequent premises in each big-step rule and the hypotheses provided by the soundness

conditions are essential to handle such a dependency.

Proof of (lp): The proof is by cases on instantiations of meta-rules.

Case: (obj) Trivial from the hypothesis.

Case: (fld) Lemma 8.18 (1) applied to Σ ⊢ ⟨M, e.f𝑖 ⟩ : C implies Σ ⊢ M(𝜄) : Σ(𝜄) for all 𝜄 ∈ dom(M) and Σ ⊢ e.f𝑖 : C and

dom(Σ) = dom(M). Lemma 8.18 (3) applied to Σ ⊢ e.f𝑖 : C implies Σ ⊢ e : D and fields(D) = C1 f1; . . .C𝑛 f𝑛; and
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C𝑖 <: Cwhere 𝑖 ∈ 1..𝑛. Since ⟨M, e⟩⇒ ⟨M ′, 𝜄⟩ is a premise we assume Σ′ ⊢ ⟨M ′, 𝜄⟩ : Dwith Σ ⊆ Σ′. Lemma 8.18 (1)

and Lemma 8.18 (7) imply Σ′(𝜄) <: D. Lemma 8.18 (4) allows us to getM ′(𝜄) = new C′(𝜄1, . . . 𝜄𝑚) with 𝑛 ≤ 𝑚 and

C
′ <: D and Σ′ ⊢ 𝜄𝑖 : C𝑖 . So we conclude Σ′ ⊢ ⟨M ′, 𝜄𝑖 ⟩ : C by rules (t-sub) and (t-conf).

Case: (new) Lemma 8.18 (1) applied to Σ ⊢ ⟨M, new C(e1, . . . , e𝑛)⟩ : D implies Σ ⊢ M(𝜄) : Σ(𝜄) for all 𝜄 ∈ dom(M) and
Σ ⊢ new C(e1, . . . , e𝑛) : D and dom(Σ) = dom(M). Lemma 8.18 (4) applied to Σ ⊢ new C(e1, . . . , e𝑛) : D implies

C <: D and fields(C) = C1 f1; . . .C𝑛 f𝑛; and Σ ⊢ e𝑖 : C𝑖 for all 𝑖 ∈ 1..𝑛. Since ⟨M, e𝑖 ⟩⇒ ⟨M𝑖+1, 𝜄𝑖 ⟩ is a premise we

assume Σ𝑖 ⊢ ⟨M𝑖+1, 𝜄𝑖 ⟩ : C𝑖 for all 𝑖 ∈ 1..𝑛 with Σ ⊆ Σ1 ⊆ · · · ⊆ Σ𝑛 . Lemma 8.18 (1) and Lemma 8.18 (7) imply

Σ𝑖 (𝜄𝑖 ) <: C𝑖 for all 𝑖 ∈ 1..𝑛. Using rules (t-oid), (t-new) and (t-sub) we derive Σ𝑛 ⊢ new C(𝜄1, . . . , 𝜄𝑛) : D. We then conclude

Σ𝑛, 𝜄 : D ⊢ ⟨M𝑛+1, 𝜄⟩ : D by rules (t-oid) and (t-conf).

Case: (invk) Lemma 8.18 (1) applied to Σ0 ⊢ ⟨M0, e0.m(e1, . . . , e𝑛)⟩ : C implies Σ0 ⊢ M0 (𝜄) : Σ0 (𝜄) for all 𝜄 ∈ dom(M0)
and Σ0 ⊢ e0.m(e1, . . . , e𝑛) : C and dom(Σ0) = dom(M0). Lemma 8.18 (5) applied to Σ0 ⊢ e0.m(e1, . . . , e𝑛) : C

implies Σ𝑖 ⊢ e𝑖 : C𝑖 for all 𝑖 ∈ 0..𝑛 and mtype(C0,m) = C1 . . .C𝑛 → D with D <: C. Since ⟨M𝑖 , e𝑖 ⟩⇒ ⟨M𝑖+1, 𝜄𝑖 ⟩ is
a premise we assume Σ𝑖 ⊢ ⟨M𝑖+1, 𝜄𝑖 ⟩ : C𝑖 for all 𝑖 ∈ 0..𝑛 with Σ0 ⊆ · · · ⊆ Σ𝑛 . Lemma 8.18 (1) gives Σ𝑖 ⊢ 𝜄𝑖 : C𝑖 for

all 𝑖 ∈ 0..𝑛. The typing of the class table implies x1:C1, . . . , x𝑛 :C𝑛, this:C0 ⊢ e : D. Lemma 8.19 gives Σ𝑛 ⊢ e
′
: D

where e
′ = e[𝜄1/x1] . . .[𝜄𝑛/x𝑛] [𝜄0/this]. Using rules (t-sub) and (t-conf) we derive Σ𝑛 ⊢ ⟨M𝑛+1, e′⟩ : C. Since

⟨M𝑛+1, e′⟩⇒ ⟨M ′, 𝜄⟩ is a premise we conclude Σ′ ⊢ ⟨M ′, 𝜄⟩ : C with Σ𝑛 ⊆ Σ′.

Case: (fld-up) Lemma 8.18 (1) applied to Σ ⊢ ⟨M, e.f𝑖=e
′⟩ : C implies Σ ⊢ M(𝜄) : Σ(𝜄) for all 𝜄 ∈ dom(M) and

Σ ⊢ e.f𝑖=e
′
: C and dom(Σ) = dom(M). Lemma 8.18 (6) applied to Σ ⊢ e.f𝑖=e

′
: C implies Σ ⊢ e : D and

fields(D) = C1 f1; . . .C𝑛 f𝑛; and Σ ⊢ e
′
: C𝑖 and C𝑖 <: C. Since ⟨M, e⟩⇒ ⟨M ′, 𝜄⟩ and ⟨M ′, e′⟩⇒ ⟨M ′′, 𝜄 ′⟩ are

premises we assume Σ′ ⊢ ⟨M ′, 𝜄⟩ : D and Σ′′ ⊢ ⟨M ′′, 𝜄 ′⟩ : C𝑖 , with Σ ⊆ Σ′ ⊆ Σ′′. Notice thatM ′′(𝜄) andM ′′
[𝜄.𝑖=𝜄′ ] (𝜄)

have the same types for all 𝜄 by construction. We conclude Σ′′ ⊢ ⟨M ′′
[𝜄.𝑖=𝜄′ ] , 𝜄

′⟩ : C𝑖 .

Proof of (∃p): All the closed expressions appear as conclusions in the reduction rules.

Proof of (∀p): Since the only values are configurations with object identifiers it is easy to verify that the premises of the

reduction rules are satisfied, being the conditions on memory and object identifiers assured by the typing rules. □

9 CONCLUDING DISCUSSIONS

The big-step style can be useful for abstracting details or directly deriving the implementation of an interpreter. However,

reasoning on properties involving infinite computations, such as the soundness of a type system, is non-trivial, because

standard big-step semantics is able only to capture finite computations, hence it cannot distinguish between stuck and

infinite ones.

In this paper, we address this problem, providing a systematic analysis of big-step semantics. The first, and funda-

mental, methodological feature of our analysis is that we want to be independent from specific languages, developing an

abstract study of big-step semantics in itself. Therefore, we provide a definition of what a big-step semantics is, so our

results will be applicable, as we show by several examples, to all concrete big-step semantics matching our definition.

A second important building block of our approach is that we take seriously the fact that big-step rules implicitly

define an evaluation algorithm. Indeed, we make such intuition formal by showing that starting from the rules we can

define a transition relation on incomplete derivations, abstractly modeling such evaluation algorithm. Relying on this

transition relation, we are able to define computations in the big-step semantics in the usual way, as possibly infinite

sequences of transition steps; thus we can distinguish converging, diverging and stuck computations, even though
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big-step rules only define convergence. This shows that diverging and stuck computations are, in a sense, implicit in

standard big-step rules, and the transition relation makes them explicit.

Finally, the third feature of our approach is that we provide constructions that, starting from a usual big-step semantics,

produce an extended one where the distinction between diverging and stuck computation is explicit. Such constructions

show that we can distinguish stuckness and divergence directly by a big-step semantics, without resorting to a transition

relation: we rely on the above described transition relation on incomplete derivations only to prove that the constructions

are correct. Corules are crucial to define extended big-step semantics precisely modelling divergence just as a special

result, thus avoiding the redundancy introduced by traces.

Building on this systematic study, we show how one can reason about soundness of a predicate directly on a big-step

semantics. To this end, we design proof techniques for two flavours of soundness, based on sufficient conditions on

big-step rules.

9.1 Related work

The research presented in this paper follows a stream of work dating back to Cousot and Cousot [21], who proposed

a stratified approach, investigated by Leroy and Grall [36] as well, with a separate judgment for divergence, defined

coinductively. In this way, however, there is no unique formal definition of the behaviour of the modelled system. An

alternative possibility, also investigated by Leroy and Grall [36], is to interpret coinductively the standard big-step rules

(coevaluation). Unfortunately, coevaluation is non-deterministic, allowing the derivation of spurious judgements, and,

thus, may fail to correctly capture the infinite behavior of a configuration: a diverging term, such as Ω, evaluates to any

value, hence it cannot be properly distinguished from converging terms. Furthermore, in coevaluation there are still

configurations, such as Ω (0 0), for which no judgment can be derived, here because no judgment can be derived for

the subterm 0 0; basically, this is due to the fact that divergence of a premise should be propagated and this cannot be

correctly handled by coevaluation as divergence is not explicitly modelled.

Pretty big-step semantics by Charguéraud [18] handles the issue of duplication of meta-rules by a unified judgment

with a unique set of (meta-)rules and divergence modelled by a special value. Rules are interpreted coinductively, hence

they allow the derivation of spurious judgements, but, thanks to the use of a special value for divergence and the

particular structure of rules, they can solve most of the issues of coevaluation. However, this particular structure of rules

is not as natural as usual big-step rules and, more importantly, it requires the introduction of new specific syntactic

forms representing intermediate computation steps, as in small-step semantics, hence making the big-step semantics

less abstract. This may be a problem, for instance, when proving soundness of a type system, as such intermediate

configurations may be ill-typed.

Poulsen and Mosses [48] subsequently present flag-based big-step semantics, which further streamlines the approach

by combining it with the M-SOS technique (modular structural operational semantics), thereby reducing the number of

(meta-)rules and premises, avoiding the need for intermediate configurations. The key idea is to extend configurations

and results by flags explicitly modelling convergence and divergence, used to properly handle divergence propagation.

To model divergence, they interpret rules coinductively, hence they allow the derivation of spurious judgements.

Differently from all the previously cited papers, which consider specific examples, the work by Ager [4] shares with

us the aim of providing a generic construction to model non-termination, basing on an arbitrary big-step semantics.

Ager considers a big-step judgement of shape 𝜌 ⊢ 𝑡 ⇓ 𝑣 where 𝜌 is an environment, 𝑡 a syntactic term and 𝑣 a final value,

and values, environments and the signature for terms are left unspecified. Then, given a big-step semantics, he describes

a method to extract an abstract machine from it, which models a proof-search algorithm. In this way, converging,
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diverging and stuck computations are distinguished. This approach is somehow similar to our transition relation on

partial evaluation trees, even tough a different style is used: we have no syntactic components and the transition system

we propose is directly defined on evaluation trees and corresponds to a partial order on them, modelling refinement.

Moreover, Ager’s notion of big-step semantics is not fully formal, in particular, it is not clear whether he works with

plain rules or meta-rules.

Another piece of work whose aim is to define a general framework for operational semantics specification is the

one by Bodin et al. [14] on skeletal semantics. Here the key idea is to specify the semantics of a language by a set of

skeletons, one for each syntactic construct, which describe how to evaluate each of them. Skeletons are very much like

big-step rules, indeed they can be regarded as an ad-hoc syntax for specifying them. This syntax is quite unusual, but

probably better suited for the Coq implementation which the framework comes with. This approach is not specifically

tailored for big-step semantics: a skeletal specification can give rise to semantics in different styles, such as big-step,

small-step or abstract machines. However, given the similarity between skeletons and big-step rules, it may be possible

to adapt the proof technique we propose to this setting, but this is matter for future work.

Ancona et al. [9] firstly show that with corules one can define a unified big-step judgment with a unique set of rules

avoiding spurious evaluations. This can be seen as constrained coevaluation. Indeed, corules add constraints on the

infinite derivations to filter out spurious results, so that, for diverging terms, it is only possible to get ∞ as result. This

is extended to include observations as traces by Ancona et al. [10]. A further step is done by Ancona et al. [7], where

observations are modelled by an arbitrary monoid and a variant of the construction described in Section 6 is considered.

Other proposals, by Amin and Rompf [5], Owens et al. [43], are inspired by definitional interpreters [49], based on a

step-indexed approach (a.k.a.“fuel”-based semantics) where computations are approximated to some finite amount of

steps (typically with a counter); in this way divergence can be modeled by induction. Owens et al. [43] investigates

functional big-step semantics for proving by induction compiler correctness. Amin and Rompf [5] explore inductive

proof strategies for type soundness properties for the polymorphic type systems 𝐹<:, and equivalence with small-step

semantics. An inductive proof of type soundness for the big-step semantics of a Java-like language is proposed by

Ancona [6].

Coinductive trace semantics in big-step style have been studied by Nakata and Uustalu [40, 41, 42]. Their investigation

started with the semantics of an imperativeWhile language with no I/O [40], where traces are possibly infinite sequences

of states; semantic rules are all coinductive and define two mutually dependent judgments. Based on such a semantics,

they define a Hoare logic [41]. They provide a constructive theory and metatheory, together with a Coq formalization

of their results. Differently from our approach, weak bisimilarity between traces is needed for proving that programs

exhibit equivalent observable behaviors. This is due to the fact that “silent effects” (that is, non-observable internal

steps) must be explicitly represented to guarantee guardedness conditions which ensure productivity of corecursive

definitions. This is a natural consequence of having computable definitions. By using corules, we can avoid bisimilarity,

accepting an approach which is not fully constructive.

This semantics has been subsequently extended with interactive I/O [42], by exploiting the notion of resumption

monad: a tree representing possible runs of a program to model its non-deterministic behavior due to input values.

Also in this case a big-step trace semantics is defined with two mutually recursive coinductive judgments, and weak

bisimilarity is needed; however, the definition of the observational equivalence is more involved, since it requires

nesting inductive definitions in coinductive ones. A generalised notion of resumption has been introduced later by

Piróg and Gibbons [45] in a category-theoretic and coalgebraic context.
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Danielsson [28], inspired by Leroy and Grall [36], relying on the coinductive partiality monad, defines big-step

semantics for 𝜆-calculi and virtual machines as total, computable functions able to capture divergence.

The resumption monad of Nakata and Uustalu [42] and the partiality monad of Danielsson [28] are inspired by the

seminal work of Capretta [15] on the delay monad, where coinductive types are exploited to model infinite computations

by means of a type constructor for partial elements, which allows the formal definition of convergence and divergence

and a type-theoretic representation of general recursive functions; this type constructor is proved to constitute a strong

monad, upon which subsequent related papers [2, 17, 38] elaborated to define other monads for managing divergence.

In particular, McBride [38] has proposed a more general approach based on a free monad for which the delay monad is

an instantiation obtained through a monad morphism. All these proposals are based on the step-indexed approach.

More recently, interaction trees (ITrees) [54] have been presented as a coinductive variant of free monads with the

main aim of defining the denotational semantics for effectful and possibly nonterminating computations, to allow

compositional reasoning for mutually recursive components of an interactive system, with fully mechanized proofs in

Coq. Interaction trees are coinductively defined trees which directly support a more general fixpoint combinator which

does need a step-indexed approach, as happens for the general monad of McBride. A Tau constructor is introduced to

represent a silent step of computation, to express silently diverging computations without violating Coq’s guardedness

condition; as a consequence, a generic definition of weak bisimulation on ITrees is required to remove any finite number

of Taus, similarly as what happens in the approach of Nakata and Uustalu.

9.2 Future work

There are several directions for further research. A first direction is to study other approaches to model divergence in

big-step semantics using our general meta-theory, that is, defining yet other constructions, such as adding a counter

and timeout, as done by Amin and Rompf [5], Owens et al. [43], or adding flags, as done by Poulsen and Mosses [48].

This would provide a general account of these approaches, allowing to study their properties in general, abstracting

away particular features of concrete languages. A further direction is to consider other computational models such as

probabilistic computations, which are quite difficult to model in big-step style, as shown by Dal Lago and Zorzi [27].

Concerning proof techniques for soundness, we also plan to compare our proof technique with the standard one

for small-step semantics: if a predicate satisfies progress and subject reduction with respect to a small-step semantics,

does it satisfy our soundness conditions with respect to an equivalent big-step semantics? To formally prove such a

statement, the first step will be to express equivalence between small-step and big-step semantics, and such equivalence

has to be expressed at the level of big-step rules, as it needs to be extendible to stuck and infinite computations. Note

that, as a by-product, this will provide us with a proof technique to show equivalence between small-step and big-step

semantics. Ancona et al. [7] make a first attempt to express such an equivalence for a more restrictive class of big-step

semantics. On the other hand, the converse does not hold, as shown by the examples in Section 8.2 and Section 8.4.

Furthermore, it would be interesting to extend such techniques for soundness to big-step semantics with observations,

taking inspiration from type and effect systems [37, 52].

Last but not least, to support reasoning by our framework on concrete examples, such as those in Section 8, it is

desirable to have a mechanisation of our meta-theory and related techniques. A necessary preliminary step in this

direction is to provide support for corules in proof assistants. An Agda library supporting (generalised) inference systems

is described by Ciccone et al. [19] and can be found at https://github.com/LcicC/inference-systems-agda. Moreover, in

the paper we lazily relied on the usual setting of classical logic (even though we try not to abuse of it), however, towards

a formalisation, we will have to carefully rearrange definitions and proofs to fit the logic of the choosen proof assistant.
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