
Escalations in Workflow Management Systems

E. P a n a g o s and M . R a b i n o v i c h

A T & T L a b s - Resea r ch

{thimios, misha} Oresearch.at t .corn

A b s t r a c t

Work:flow m.negement systems (WFMSs) have been used to sup-
port the modeling, execution, and monitoring of business processes.
Business processes consist of multiple activities, and their enact-
ment is carried out by human agents and software systems. "Dypi-
cally, business processes and the activities constituting them have
deadlines. When an activity misses its deadline, special actions
may be triggered, ~efermd to as escalation. E~c.I.Hnns ~d~ect busi-
ness processes, and they may even lead to the abortion of some of
them. Consequently, escalafion~ may entail a high cost to an or-
gAnlg~tlnU. II1 th~ paper, we present on-going research addressing
wod~ow escalations. Our goal is twofold: (a) minimize the rtum-
bet of escalations during process execution and (b) reduce the cost
associated with escalations when they cannot be avoided.

1 I n t r o d u c t i o n

Workflow mmn.~ement systems (WFMSs) are increasingly
used by orgfmiT~tiOll~ to S _ffem~lin~ alltomato.+ 8nd m~nm~e
their business processes. These systemg provide tools to
support the modeling of business processes at a conceptual
level, coordinate the execution of component activities
according to the model, monitor the progress of business
processes, and report "important statistiCS" of both the
business processes and the systems involved in the execution
of them [GHS95, KS95].

WFMSs are based on the concept of a workflow, which is
an abstraction of a business process. A workflow consists
of activities, which correspond to Process steps, and agents
that execute these f i c t i v i t i ~ . The worldiow specification
desaibes the activities constituting the wotkflow and the
(partial) order in which these activities mnst be executed.
Activities may have dcmtline8 that d~t~minc the msxJmum
allowable execution time for each of them. When an activity
misses its deadline, the workflow model may specify that
a special activity, referred to as escalation, be triggered

Pc~rmimim m mmk~ digi~Wlmrd c~'h= °f ~U ~ Pm °f this nmm'/d fro"
l~mml ~. ~room m m ~ ~i~t~ fm p~x,v/ded tlm ~ oopia
m~e not made er diatn'buted fcr l ~ t or w,m,a'ci.I advanlage, the oopy-
not m,ica, the title of the ~bfic,tioa ,ad ~ d,te apmu', mxt mtice is
0vm em ~ s h t i. by pm.i~im e~the ACM. ~ . To oopy otK~i~.,
to mlmbi/sh, m po.t oa m'vm or to mlim'a, ut~ to ibm, requirm specific
pamia~oa mdior fm
DAM" "~6 Rodh~//e MD, USA
CC4~p~ght 1997/ACM 0-89791-948-3/96/I l ..$3.50

autonmfically. The effects of an escalation may depend on
the sem~mdcs of the activity that missed its dean|he and,
often, btmmn intervention is required to proceed.

In general, the effects of an esc~letion may be one of
the following." (a) the activity that triggered the esc~lmtion
is restarted, (b) a new acti~ty is ¢tecuted and the activity
that triggered the escalation resumes execution, (c) a new
activity replaces the one that Iriggeted the ¢scahtion, or (d)
the business process is affected, and it is either aborted as a
whole or some of the executed activities are compensated. In
all cases, invoking esr~lAfion results in an increased cost for
a l~ incss process due to the additional activities t ~ t bare
to be executed, or be~-~e completed work is rolled badr.
or because intervention of highly-paid workers is required.
Therefore, it is desirable to reduce the nnmher of workflow
executions that result in ~-~l~t/ons.

In thig paper, we address the problem of reducing both the
number of worktlow executions that result in ~c~l.Hons and
the cost associated with escalations. The main observation
behind our technique4g is thmt as long as we guarantee that
activities are givtm at least as much time as originally
assigned by the l~$iness AnAlyst, we can delay the invocation
of escalations for some of them by giving them more time to
complete nornmlly. To achieve this, we note mat deadlines
8ire usually assigned to 8ctivifie8 based on the e$fimmod
execution times of these activities and on the need to meet the
overall _ ~ l i n e of the business process. On the other hand,
the actual time required for a partiodar activity to complete
varies from one instance to the next due to variations of
load, work conditions, etc. Consequently, if an activity in
a giveil wofkflow ezC~.ltlon finighe$ faster dum its estimated
execution fime~ the rest of the activities can be given extra
time before escalation is invoked. This can be accom#ished
by extending their deadlines using the available slack time.

Although our work ghAlr~s similar goals with research
efforts in real-time systems (n~an~ly, that of reduc:ing the
number of ~ that miss their de~'Uines), the focus of our
work is completely differenL Real-time. systems ~ttempt
to minimiTe the number o f mbtsed _dPm'llinc8 by optimizing
schoOnling of m.~kg SO that each t~gk better etiliT~ its
allowable execution time, which is ass,nned to be fixed. Our
work, on the Other hand, attesnpt~ to millimizc the missed

2 5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F352302.352309&domain=pdf&date_stamp=1996-11-01

0e~dlines by modifying the d e~ t l i nes themseives, without
changing the sched,ling policy. The key observation is that;
in the workflow application domain, one can do that without
changing the ~rnantics of the business process. In other
words, our deadline adjusunent is transparent to the users.

The remainder of the paper is Ol~aniTl~d as follows.
Section 2 introduces the workflow model. Section 3 presents
several algorithms that adjust the deadlines of the remaining
activities on-fine. Section 4 compares our work with related
research. Finally, Section 5 summarizes the work presented
in this paper and addresses on-going reseamh.

2 W o r k f l o w P r o c e s s M o d e l

We consider a business process (i.e., a workflow) consisting
of n activities T 1 , . . . , T,~ with a partial order defined by a
successor function [CCPP96] which associates every activity

with a set of activities, n~ned successors, that are
executed after ~ . Each successor activity is executed
unconditionally or only when a condition associated with
it evaluates to tt'ue. Moreover, we assmne that
execution of activities is not allowed, and there is only one
activity that marks the completion of the business process.

Although the class of workflows supported by our model
is a proper subset of the class of workflows supported by
the Workflow Management Coalition model [Gro94], it is
particularly important becanse it f]requently appears as a
building block for more complex workflows. Therefore,
workflows containing groups of activities that follow our
model can benefit from our algorithms by applying them
to these groups. Moreover, while our algorithms are not
applicable to workflows that do not comply with our model,
these workflows are still allowed in the system.

In order to simplify Our presenta t ion , we further restrict
the above model. In particular, we assmne that a business
process consists o f m sequential activities T1, . . •, Tin. Each
activity ~ may consist of n~ sub-activities ~ 1,..., ~nl to
be executed in parallel. Fm'h sub-activity may be executed
either conditionally or unconditionally, and it cannot be
decomposed any further. In addition, we make the following
assumptions regarding the work:flow manage~nent system
and the information that is available about the activities
constituting the business process.

• Sched-ling of the activities that are ready for execution
is not based on the de.chines assigned to thegn 1. To the
best of our knowledge, the above assumption is true for
all comnu~'cial workflow products and existing research
prototypes.

• Each activity has a deadline, which specifies the allow-
able execution time for the activity. We assume that
deadlines are assigned by a business analyst based on the

1Under the i nd ic t denrn'_~ t i n t sdleduling poficy, the ache~hding
priority of a task decreases as the task's deadline increases. Consequently,
our Idgorithms may increase the number of escalations because they extend
deadlines.

activities' estimated/predicted execution times and on the
need to meet the overall buginess process d_e,~tlin¢.

In addition, some of our algorithms assume that the follow-
ing information is av'ailahle.

An estimate of the expected execution time for each
activity. This estimam corresponds to the time it takes
the agent, which will execute the activity, to complete
the activity after the activity is submitted for execution.
Most existing WFMSs maintain such estimates based on
the 8ccuIDnlated history of prior exectitious.

An ~u.~lation cost associated with each activity 2. Esca-
lation costs are assigned by business analysts based on
the effects of ~r~lation should the activity mi~ its dead-
fine. We assume that the escalation cost is an integer
number greater or equal to one. The higher the n , mher
the more costly the es~lation procedure is.

3 D y n a m i c D e a d l i n e A d j u s t m e n t

In this section, we present a subset of the algorithms we
ctul"ently developing for dynamic d_¢y~dline adjustment

of workflows that conform to the model and assmnpfious
presented in the previous section. Associated with an activity
T are the atUibutes denoted by the following functions
(similar to the notation used in [KGM93a, KGM93b]).

dl(T) = demtline assigned to T.
ex(T) = estimated execution time of T
sl(T) = slack of T after its execution
ce(T) = cost of escalation assigned to T

The slack of T is computed after T finishes execution, and
it is equal to the difference between T 's d e.wlline and T'S
actual execution lime.

With each blsiness process instance we associate a vari-
able Slack that corresponds to the available slack time for
the process instance at any point in time during its execu-
tion. Before the very first activity of the process is submitted
for execution, the value of Slack is set to 0. Before an activ-
ity Tk is submitted for execution, its deadline is adjusted by
adding to it a portion of Slack, which is determined by the
algorithms presented below, and the new value of Slack be-
comes equal to its previous value mimls the portion assigned
to Tk's deadline. When Tk finishes execution, the value of
Slack is incremented by sl(Tk).

Total Slack (TSL): Without any knowledge about the esti-
mated execution times or escalation costs of the activities,
we adjust the OPJulline of the activity that is going to be exe-
cuted next by adding the available slack time to it.

dl(Tk) = dl(T~) + Slack

2Typically, WFMSs allow user-defined attri'l~-e~ to be a.uociated with
activities and, thus, one of these attn'butes could be used for esculafion ccets.

2 6

However, assigning the whole ~l~ck to the next activity
may sometimes be suboptimal, By ,.qing up the entire
~lwk in a~dvity Tk, we may avoid es~lation for Tk at the
expense of in(~'e.qLqing the risk of an even more expensive
e~w~lation for some later activity. In addition, the fact that an
activity is not finished within a ce*taln time period is often
an indication of a long-las~g problem and, thus, delaying
escalation beyond a certain point may not be cost effective.

Proportional Execution (PEX): Knowing the estimated
execution times of the activities constituting the business
process, we distribute the available slack in proportion to
these times. For parallel activities, the estimated exe(Xltion
time is set to the n~'4~imum of the estimated execution times
of their sub-activities. If the next activity to be executed is
T~, the following formula is use&

dl(Tk) = dl(Ti) + Slack *

Proportional Escalation (PES): The proportional escaLa-
tion mechanism discriminate8 among activities with diffea-e~t
escalation costs. In particular, activities with higher escala-
tion COSts are assigned 181~e* portion of the available slack
time. For parallel activities, the escalation COst is set to the
maximum of the escalation costs of their sub-activities. If
the next activity to be executed is Tk, the following formula
is used.

c (Tk)
dl(Tk) = dl(Tk) + Slack * ~ = k ce(Tj)

4 Related Work

DynAmic deadline adjustment is principally diffmmt from
dynmnic modification of workflows SUPlXwted by some ex-
isting workflow products and research prototypes. The latter
is done to reflect changes in the model of the business pro-
cess or a particnlar instance of the process. In contrast, our
goal is to minimiTe the operation COSt without modifying the
business process model. In thi.% it is somewhat .gimil~r to
SCh(xlnling in real-time systems ILL73, AGM88, HSTR89].
However, real-time systems use deadlines for scho~ding
system components such as CPU and I/O. We view schedul-
ing and dynamic d(~dline adjustment as complimentary
mechanisms. We wiU report separately on more sophisti-
cated schechlling policies as well as on inter-depeIldencies of
policies for S~Ilednling and de~rlline adjustment.

Our work is reJated to the work described in [MN95]. In
[MN95], the authors present priority-driven CPU schedu.ling
algorithmg for hauSactional workflows. Each workflow
process congigts of several sequential ta(tkg. Each t~gk is
an ACH) transaction having an average response time goal.
The assignment of priorities is based on the performance of
the t~dc.~ relative tO their original response, time goals. In
contrast to these algorithm% our work does not concentrate
on CPU schednling. In addition, our algorithms 8re not

restricted to transactional workflows, and they allow both
sequential, conditional and parallel execution of tasks.

In [KGM93a, KGM93b], the authors study the problem
of how the deadline of a real-time activity is automatically
translated to the deadlines of all sequential and parallel sub-
tasks constituting the activity. ~ - h sub-task _deadline is as-
signed just before the sub-t~.k is submitted for execution,
and the algorithms for deadline assignment ass,me that the
earliest deadl/ne first scheduling policy is used. Similar
to our work, the goal of the proposed algorithm.~ is that of
minimizing the number of missed d e~dllnes. In contrast to
these algorithms, our work assumes that 811 sub-tasks have
been assigned de~tlines before the activity is submitted for
execution and, thus, we focus on adjusting sub-task dead-
lines on-line rathe, than assigning deadlines. In addition,
[KGM93a, KGM93b] assume a soft real-time environment
whe*e sub-tasks may miss their deaullines without triggering
othe, sub-m~kx. In our environment, however, esodations
caused by m i ~ d deadlines may result in the execution of
new activities, and our algorithms take into account the cost
associated with these escalations.

In active, renl-time dmabases transactions may Irigge,new
transactions during their execution. The triggered transac-
tions are executed immediately or after the original
lion finighes execLltion. In [SSDTR96], the authors present
algorithm.q that try to minimize the number of triggering
~ o n s that miss their deadlines under a priority-driven
schednling policy. The proposed algorJthm.~ assign priorities
to the triggered transactions, and they dyrmmically reassign
the priorities of the triggering transactions. In contrast, our
algorithmg modify the d(~dlines assigned to activities with-
out altering their priorities, if any. Consequently, our work
could be complemented with the schednling algorithm.g pro-
posed in [SSDTR96].

5 Summary and Future Work

Workflow processes consist of several activities which are
executed by bnman and software agents. In many cases,
activities have d e*~lline.~ and estmlation takes place when a
deadline is missed. Minimizing the number of escalations
during the enactment of business processes is highly desir-
able because escalations usually result in high cost to an or-
gsmiT~tion.

In this paper, we have presented several techniques
that aim at reducing the number of esGEflSfiOns during the
execution of lmsiness processes. Our algorithmg adjust the
desdlil3es of the activities that r~Jnain to be e~ug~ted by
distributing any awilahle slack time to them. ~ t l y , we
are extending our algorjthmq so that: (a) the load of the
agents responsible for the enacunent of activities is taken
into account, and (b) empirical knowledge regarding the
conditional execution of activities is used for distributing
slack to the various branches. Furthermore, we are planning
to evalnato our algorithms by implementing them on top of a
comme~ial WFMS.

27

Although the techniques presented in this paper try to
reduce the number of est-~dations, escalations cannot be
always eliminated (e.g., when the resources required for the
enactment of an activity are not available for a time period
greater than the overall deadline of the business process). In
such cases, i tmay be beneficial to force escalation at an early
stage during the process execution to reduce the escalation
cost. We are in the process of developing algorithms to
decide whether and when to force escalation by exploiting
knowledge about the costs of the escalation procedures that
may be invoked during the process enactment as well as
information regarding the status (load, avanahility, etc.) of
the agents particil~ting in the execution of the process.

Another research avenue we are currently pursuing is
that of providing mechanigm.g for antommti(,~lly assigning
deadlines to activities when only an end-to-end deadline
is known about the workflow process. Although having a
single deadline is simple, it is not adequate for monitoring
the progress of individual activities and detecting abnormal
conditions and potential problems early enough. However,
the automatic assignment of deadlines to individual activities
is not trivial. The main obstacle is the fact that activities
may be executed repeatedly, with the number of iterations
determined only at run-time. Ill addition, activities may be
executed conditionally based on information that becomes
availahle at rtm-timo. Finally, activities may have different
resource requirements and escalation costs, which should
also be taken into account.

[KS95]

[LL73]

[MN95]

[SSDTR96]

tasks. Technic, el Report 93-1491, Stanford University,
1993.

N. Krishnakumar and A. Sheth. Managing het-
erogencous multi-system tasks to support ente~3ri~-
wide operations. Distributed and Parallel Databases,
3(2):1-33, 1995.

C.L. Lin and J. Layland. Schedufing algorithmR for
multiprogramming in hard z~tl-time environments.
Journal of the Association of Computing Machinery,
20(1):46--61, January 1973.

M. Marazal~ and C. Nikohtou. Towards edap-
live scheduling of tasks in transactional workflows.
In W~nter Simulation Conference, Washington D.C.,
1995.

R.M. Sivasankaran, J.A. Stanktwic, B. Purimetla
D. Towsley, and IL Ramamritham+ Priority assign-
ment in real-time active databases. The VLDB Jour-
nal, 5(1):19-34, 1996.

R e f e r e n c e s

[AGM88] g. Abbott and H. Garcia-Molin& Scheduling real-
time transactions: a performance evaluation. In
Proceedings of the 14th International Conference on
Very Large Data Bases. pages 1-12. Los Angeles,
CA, 1988.

[CCPP96] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow
evolution. In Proceeding of the ER'96 International
Conference, Berlin, October 1996.

[GHS95] D. Georgakopoulos, M. Hornick, and A. Sheth. An
overview of workflow mRmtgement: From process
modeling to workflow automation infrastructme. D/s-
tribgted and Parallel Databases, 3(2): 119-153, 1995.

The Workflow Management Coalition Group. A
workflow management coalition specification. Tech-
nical report, The Workflow Management Coalition,
November 1994. http'J/www.alal.ed.sc.uk/WfMC/.

J. Huang, J.A. Sta-kovic, D. Towsl©y, and K. Ramam-
ritham. Experimental evalualion of real-~ne transac-
tion processing. In Proceeding of the lOth Real-Ttme
Systems Symposium, December 1989.

B. Kao and H. Gat~ia-Molina. Deadline assignment
in a distributed soft x~d-thne system In Proceedings
of the 13th International Conference on Distributed
Computing Systems, pages 428-437, 1993.

B. Kao and H. Garcia-Molina. Subtask deadline
assignment for complex distributed soft real-lhne

[Gro94]

[HSTRS9]

[KGM93a]

[KGM93b]

28

