Escalations in Workflow Management Systems

E. Panagos and M. Rabinovich

AT&T Labs —

Research

{thimios, misha}®research.att.com

Abstract

Workflow management systems (WFMSs) have been used to sup-
port the modeling, execution, and monitoring of business processes.
Business processes consist of multiple activities, and their enact-
ment is carried out by human agents and software systems. Typi-
cally, business processes and the activities constituting them have
deadlines. When an activity misses its deadline, special actions
may be triggered, referred to as escalation. Escalations affect busi-
ness processes, and they may even lead to the abortion of some of
them. Consequently, escalations may entail a high cost to an or-
ganization. In this paper, we present on-going research addressing
workflow escalations. Our goal is twofold: (a) minimize the num-
ber of escalations during process execuotion and (b) reduce the cost
associated with escalations when they cannot be avoided.

1 Introduction

Workflow management systems (WFMSs) are increasingly
used by organizations to streamline, antomate, and manage
their business processes. These systems provide tools to
support the modeling of business processes at a conceptual
level, coordinate the execution of component activities
according to the model, monitor the progress of business
processes, and report “important statistics” of both the
business processes and the systems involved in the execution
of them [GHS95, KS95].

WFMSs are based on the concept of a workflow, which is
an abstraction of a business process. A workflow consists
of activities, which correspond to process steps, and agents
that execute these activities. The workflow specification
describes the activities constituting the workflow and the
(partial) order in which these activities must be executed.
Activitics may have deadlines that determine the maximum
allowable execution time for each of themn, When an activity
misses its deadline, the workflow model may specify that
a special activity, referred to as escalation. be triggered

Pmmhmkcdlpuvhmdoomuoﬂllorpmofﬂmmm-lfor
personal or classroom use i praked without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right natice, the title of the publication and its dato appear. and notice is
given that copyright ia by permission of the ACM, Inc. To copy otherwise,
to republish, to past on servers or to redistribute to lists, requires specific
perntission and/or fee

DART *96 Rockville MD, USA

Copyright 1997 ACM 0-89791-948-3/96/11 ..$3.50

automatically. The effects of an escalation may depend on
the semantics of the activity that missed its deadline and,
often, humsan intervention is required to proceed.

In genecral, the effects of an escalation may be one of
the following: (a) the activity that riggered the escalation
is restarted, (b) a new &activity is executed and the activity
that triggered the escalation resumes execution, (€) a new
activity replaces the one that trigpered the escalation, or (d)
the business process is affected, and it is cither aborted as a
whole or some of the executed activities are compensated. In
all cases, invoking escalation results in an increased cost for

‘a business process due to the additional activities that have

to be executed, or becanse completed work is rolled back,
or becanse intervention of highly-paid workers is required.
Therefore, it is desirable to reduce the number of workflow
executions that result in escalations.

In this paper, we address the problem of reducing both the
number of workflow executions that result in escalations and
the cost associated with escalations. The main observation
behind our techniques is that as long as we guarentee that
activities are given at least as much time as originally
assigned by the business analyst, we can delay the invocation
of escalations for some of them by giving them more time to
complete normally. To achieve this, we note that deadlines
are usually assigned to activities based on the estimated
execution times of these activities and on the need o meet the
overall deadline of the business process. On the other hand,
the actual time required for a particular activity to complete
varies from one instance to the next due to variations of
load, work conditions, etc. Consequently, if an activity in
a given workflow execution finishes faster than its estimated
execution ume, the rest of the activities can be given extra
time before escalation is invoked. 'This can be accomplished
by extending their deadlines using the available slack time.

Although our work shares similar goals with research
efforts in real-time systems (namely, that of reducing the
mumber of tasks that miss their deadlines), the focus of our
work is completely different. Real-time systems atternpt
to minimize the number of missed deadlines by optimizing
scheduling of tasks so that cach task better ufilizes its
allowable execution time, which is assumed to be fixed. Our
wofk, on the other hand, attempts to minimize the missed

http://crossmark.crossref.org/dialog/?doi=10.1145%2F352302.352309&domain=pdf&date_stamp=1996-11-01

deadlines by medifying the deadlines themselves, without
changing the scheduling policy. The key observation is that,
in the workflow application domain, one can do that without
changing the semantics of the business process. In other
words, our deadline adjustment is transparent to the users.

The remainder of the paper is organized as follows.
Section 2 introduces the workflow model. Section 3 presents
several algorithms that adjust the deadlines of the remaining
activities on-line. ‘Section 4 compares our work with related
research. Finally, Section S summarizes the work presented
in this paper and addresses on-going research,

2 Workflow Process Model

We consider a business process (i.e., a workflow) consisting
of n activities T3, . . ., 7, with a partial order defined by a
successor function [CCPP96] which associates every activity
T: with a set of activities, named successors, that are
executed after 7. Each soocessor activity is executed
unconditionally or only when a condition associated with
it evaluates to true. Moreover, we assume that repeated
execution of activities is not allowed, and there is only one
activity that marks the completion of the business process.

Although the class of workflows supported by our model
is a proper subset of the class of workflows supported by
the Workflow Management Coalition model [Gro94], it is
particularly important because it frequently appears as a
building block for more complex workflows. Therefore,
workflows containing groups of activities that follow our
model can benefit from our algorithms by applying them
to these groups. Moreover, while our algorithms are not
applicable to workflows that do not comply with our model,
these workflows are still allowed in the system.

In order to simplify our presentation, we further restrict
the above model. In particular, we assume that a business
pracess consists of m sequential activities T3, . . ., T;,. Each
activity 7; may consist of n; sub-activities T;', ..., ;" to
be executed in parallel. Each sub-activity may be executed
either conditionally or unconditionally, and it cannot be
decomposed any further. In addition, we make the following
assumptions regarding the workflow management system
and the information that is available about the activities
constituting the business process.

» Scheduling of the activities that are ready for execution
is not based on the deadlines assigned to them®. To the
best of our knowledge, the above assumption is true for
all commercial workflow products and existing research
Prototypes.

+ Each activity has a deadline, which specifies the allow-
able execution time for the activity. We assume that
deadlines are assigned by a business analyst based on the

1Under the earliest deadline first scheduling policy, the acheduling
priority of a task decreases as the task's deadline increases. Consequently,
cr algorithma may increase the number of escalations becauss they extend
deadlines.

26

activities' estimated/predicted execution times and on the
need to meet the overall business process deadline.,

In addition, some of our algorithms assume that the follow-
ing information is available.

« An estimate of the expected execution time for each
activity. This estimate corresponds to the time it takes
the agent, which will execite the activity, to complete
the activity after the activity is submitted for execution.
Most existing WFMSs maintain such estimates based on
the accumulated history of prior executions.

s An escalation cost associated with each activity?, Esca-
lation costs are assigned by business analysts based on
the effects of escalation should the activity miss its dead-
line. We assume that the escalation cost is an integer
number greater or equal to one. The higher the number
the mare costly the escalation procedure is.

3 Dynamic Deadline Adjustment

In this section, we present a subset of the algorithms we
are currently developing for dynamic deadline adjustment
of workflows that conform to the model and assumptions
presented in the previous section. Associated with an activity
T are the attributes denoted by the following functions
(similar to the notation used in [KGM93a, KGM93b]).

di(T) = deadline assignedto 7.

ex(T) = ecstimated execution time of 7'
si(T) = slack of T after its execution
ce(T) = costof escalation assigned to 7

The slack of T is computed after T finishes execntion, and
it is equal to the difference between T"s deadline and T"s
actnal execution time.

With each business process instance we associate a vari-
able Slack that corresponds to the available slack time for
the process instance at any point in time during its execu-
tion. Before the very first activity of the process is submitted
for execution, the value of Slaek is set to 0. Before an activ-
ity T} is submitted for execution, its deadline is adjusted by
adding to it a portion of Slack, which is determined by the
algorithms presented below, and the new value of Stack be-
comes equal to its previous value minus the portion assigned
to T's deadline. When T}, finigshes execution, the value of
Slack is incremented by sl(T}).

Total Slack (TSL): Without any knowledge about the esti-
mated execution times or escalation costs of the activities,
we adjust the deadline of the activity that is going to be exe-
cuted next by adding the available slack time to it.

dl(Ti) = di(T}) + Slack

2 Typically, WFMSs allow user-defined attributes to be associated with
activities and, thus, one of thess attributes could be used for cacalation costs.

However, assigning the whole slack to the next activity
may sometimes be suboptimal. By using up the entire
slack in activity T}, we may avoid escalation for T}, at the
expense of increasing the risk of an even more expensive
escalation for some later activity. In addition, the fact that an
activity is not finished within a certain time period is often
an indication of a long-lasting problem and, thus, delaying
escalation beyond a certain point may not be cost effective.

Proportional Execution (PFEX): Knowing the estimated
execution times of the activities constituting the business
process, we distribute the available slack in proportion to
these times. For parallel activities, the estimated execution
time is set to the maximum of the estimated execution times
of their sub-activities. If the next activity t0 be executed is
Tk, the following formula is used.

ez(Tk)
Z_;n:k ez(T;)

Proportional Escalation (PES): The proportional escala-
tion mechanism discriminates among activities with different
escalation costs. In particular, activities with higher escala-
tion costs are assigned larger portion of the available slack
time. For parallel activities, the escalation cost is set to the
maximum of the escalation costs of their sub-activities. If
the next activity to be executed is 7, the following formula
is used.

dl(T}) = di(Ti) + Slack *

ce(Tk)

a(Tu) = d(Te) + Stack + s © s

4 Related Work

Dynamic deadline adjustment is principally different from
dynamic modification of workflows supported by some ex-
isting workflow products and research prototypes. The latter
is done to reflect changes in the model of the tusiness pro-
cess or a particular instance of the process. In contrast, our
goal is to minimize the operation cost without modifying the
business process model. In this, it is somewhat similar to
scheduling in real-time systems [LL73, AGM88, HSTRE9].
However, real-time systems use deadlines for scheduling
system components such as CPU and I/O. We view schedul-
ing and dynamic deadline adjustment as complimentary
mechanisms. 'We will report separately on more sophisti-
cated scheduling policies as well as on inter-dependencies of
policies for scheduling and deadline adjustment.

Our work is related to the work described in [MN95]. In
[MN95], the authors present priority~driven CPU scheduling
algorithms for transactional workflows. Each workilow
process consists of several sequential tasks. Each task is
an ACID transaction having an average response time goal.
The assignment of priorities is based on the performance of
the tasks relative to their original response time goals. In
contrast to these algorithms, our work does not concentrate
on CPU scheduling. In addition, our algorithms are not

27

restricted to transactional workflows, and they allow both
sequential, conditional, and parallel execution of tasks.

In [KGM93a, KGM93b], the authors study the problem
of how the deadline of a real-time activity is automatically
translated to the deadlines of all sequential and parallel sub-
tasks constituting the activity. Each sub-task deadline is as-
signed just before the sub-task is submitted for execution,
and the algorithms for deadline assignment assume that the
earliest deadline first schedvling policy is used. Similar
to our work, the goal of the proposed algorithms is that of
minimizing the number of missed deadlines. In contrast to
these algorithms, our work assumes that all sub-tasks have
heen assigned deadlines before the activity is submitted for
execution and, thus, we focus on adjusting sub-task dead-
lines on-line rather than assigning deadlines. In addition,
[KGM93a, KGM93b] assume a soft real-time environment
where sub-tasks may miss their deadlines without triggering
other sub-tasks. In our environment, however, escalations
caused by missed deadlines may result in the execntion of
new activities, and our algorithms take into account the cost
assaciated with these escalations.

In active, real-time databases transactions may trigger new
transactions during their execution. The triggered transac-
tons are executed immediately or after the original ransac-
tion finishes execution. In [SSDTR96], the authors present
algorithms that try to minimize the number of triggering
transactions that miss their deadlines under a priority-driven
scheduling policy. The proposed algorithms assign pricrities
to the triggered transactions, and they dynamically reassign
the priorities of the triggering transgactions. In contrast, our
algorithms modify the deadlines assigned to activities with-
out altering their priorities, if any. Consequently, our work
could be complemented with the scheduling algorithms pro-
posed in [SSDTRY96].

5 Summary and Future Work

Workflow processes consist of several activities which are
executed by human and software agents. In many cases,
activities have deadlines and escalation takes place when a
deadline is missed. Minimizing the number of escalations
during the enactment of business processes is highly desir-
able because escalations usually result in high cost to an or-
ganization.

In this paper, we have presented several technigues
that aim at reducing the number of escalations during the
execution of business processes. Our algorithms adjust the
deadlines of the activities that remain (0 be executed by
distributing any available slack time to them. Currently, we
are extending our algorithms so that: (a) the load of the
agents responsible for the enhactment of activities is taken
into accoumt, and (b) empirical kmowledge regarding the
conditional execution of activities is nsed for distributing
slack 1o the various branches. Furthermore, we are planning
to evaluate our algorithms by implementing them on top of a
commercial WEMS.

Although the techniques presented in this paper try to
reduce the number of escalations, escalations cannot be
always eliminated (e.g., when the resources required for the
enactment of an activity are not available for a time period
greater than the overall deadline of the business process). In
such cases, it hay be beneficial to force escalation at an early
Stage during the process execution to reduce the escalation
cost. We are in the process of developing algorithms to
decide whether and when to force escalation by exploiting
knowledge about the costs of the escalation procedures that
may be invoked during the process enactment as well as
information regarding the status (load, availability, etc.) of
the agents participating in the execution of the process.

Another research avenue we are currently pursuing is
that of providing mechaniems for antomatically assigning
deadlines to activities when only an end-te-¢nd deadline
is known about the workflow process. Although having a
single deadline is simple, it is not adequate for monitoring
the progress of individual activities and detecting abnormal
conditions and potential problems early enough, However,
the automatic assignment of dead!ines to individual activities
is not trivial. The main obstacle is the fact that activities
may be executed repeatedly, with the number of iterations
determined only at run-time. In addition, activities may be
executed conditionally based on information that becomes
available at run-time. Finally, activities may have different
resource requirements and escalation costs, which should
also be taken into account.

References

[AGMS88] R. Abbott and H. Garcia-Molina. Scheduling real-
time transactions: a performance evaluation, In
Proceedings of the 14th International Conference on
Very Large Data Bases, pages 1-12, Los Angeles,
CA, 1988.

F. Casat, S. Ceri, B. Pernici, and G. Pozzi. Workflow
evolution. In Proceeding of the ER'96 International
Conference, Berlin, October 1996.

D. Georgakopoulos, M. Homick, and A. Sheth. An
overview of workflow management: From process
modeling to workflow automation infrastructure. Dis-
tributed and Parallel Darabases, 3(2):119-153, 1995,

The Workflow Management Coalition Greup. A
workflow management coalition specification. Tech-
nical report, The Workflow Management Coalition,
November 1994. hitp://swww.aini.ed.ac.uk/WEMC/.

J. Huang, I.A. Stankovic, D. Towsley, and K. Ramam-
ritham. Experimental evaliation of real-time transac-
tion processing. In Proceeding of the 10th Real-Time
Systems Symposium, December 1989.

B. Kao and H. Garcia-Molina. Deadline assignment
in a distributed soft real-time system. In Proceedings
of the 13th International Conference on Distributed
Computing Systems, pages 428437, 1993,

B. Kao and H. Garcia-Molina. Subtask deadline
assignment for complex distributed soft real-time

[CCPP96]

[GHS95]

[Gro94)

[HSTR89]

{KGM93a]

[KGM93b]

28

tasks. Technical Report 93-1491, Stanford University,
1993,

N. Krishnakumer and A. Sheth. Managing het-
erogeneous multi-system tasks to support enterprise-
wide operations. Distributed and Parallel Databases,
3(2):1-33, 1995.

CL. Lin and J. Layland. Scheduling algorithms for
multiprogramming in hard real-time environments.
Journal of the Association of Computing Machinery,
20(1):4661, January 1973.

M. Marazakiz and C. Nikolaou. Towards adap-
tive scheduling of tasks in transactional workflows.
In Winter Simulation Conference, Washington D.C.,
1995,

[SSDTR96] RM. Sivasankaran, J.A. Stankovic, B. Purimetla
D. Towsley, and K. Ramamritham. Priority assign-
ment in real-time active databases. The VLDE Jour-
nal, 5(1):19-34, 1996.

[KS95]

[LL73]

[MN95]

