
Impact of Timing Constraints on Real-Time Database Recovery

Jiag Huang
IBM Corporation

5 West Kirkwond, Room 3530
Roanoke, TX 76299

jingh @vnetJbm.com

Le Gruenwald
School of Computer Science
The University of Oklahoma

Norman, OK 73019
gruenwai@cs.ou.edu

ABSTRACT In this paper, we discuss how timing constznints
affect three major database recovery activities: logging, check-
pointing and dAtAbase reloading. We then present several
schemes to handle these activities in a real-time main memory
database system and their performance results obtained via
simulation. Further improvement of these schemes is also pro-
vided.

1. INTRODUCTION

Time is an important aspect of real-time database sys-
tems (RTDBS). In such an environment, not only transactions are
associated with timing constraints but also some tempora/data
may lose their validity after a certain time interval. In order to
specify absolute temporal consistency requirements, two attrib-
utes, timestamp and absolute validity interval, are usually asso-
ciated with a temporal data item. Tbnestamp indicates when the
current value of the data item was obtained and absolute validity
interval is the length of the time interval during which the cur-
rent of the data item is considered to be valid. The value of a
temporal data item x is said to be valid or meet the absolute tem-
poral consistency requirement at the current time ~ ff
/'now -- tx _< a x holds, where tz is the timestamp of x, and a~ is
the absolute validity interval o fx [18].

There is a number of appfications such as air traffic
control, stock-trading, and telecommunicatious where RTDBS
might be applicable. One aspect of these examples is that they all
involve gathering data from the environment, processing of gath-
ered information in the context of information acquired in the
past, and providing timely response. Another aspect of these
examples is that they may process both temporal data as well as
persistent data which remain valid regardless of time [15]. The
main goal of an RTDBS is to meet the timing conslraints cf
transactions and data as much as possible [19]. In order to
achieve a higher system performance, the use of a main memory
d~tabase (MMDB) is a good choice. This is because in an
MMDB environment, all or a major portion of the database can
be memory-resident, thus transaction processing can be satisfied
with few I/Os [1]. An MMDB system therefore has a potential
for obtaining a substantial performance improvement over a disk-
resident database system for real-time applica-
lions.
This research is funded in part by the National Science Founda-
tion under grant NSF-9201596

P w to make disital/hard copies of all o¢ pat of this material for
pmmml m" damroom uge is grained witlmut fec i~ovided that tl~ topic s
~e mt made er dimibeted fer profit or ~ advamage, the copy.
nghl n o t i ~ the title of the publicalion lad it- date appear, imd not i~ is
given that ceIpyright is by permimkm ofllhe ACM, hw.. To copy eltherwise,
te repebli~h, to pm oe ~ v m er to redimribete te lira, rcquira ~l,ecifi¢
pmaimion ud/w fee
DART ~6 Roda,ills MD, U.~4
Cepydght 1997 ACM 0-89791-948-3/96/11 ..$3.~t0

However, due to the volatility of semiconductor mem-
ory, the contents of main memory may be lost at the time of a
system failure which may occur due to an error in the d ataha,~
management system code, an operating system fault, a hardware
failure or a power outage. As the database is not available when
a system failure occurs, for a high performance system, such as
those processing 1000 transactions or more per second [3], many
transactions might be backlogged during system recovery. On
average, a system failure occurs once every few weeks [4]. This
may cause many transactions to miss their deadlines and a large
amount of temporal data to lose their validity before they can be
used. The degr~ntlon of the system performance may result in a
catastrophe for safety.critical activities, such as those that re-
spond to fife or environment-threatening emergency situations
[19]. Besides system failure, a transaction may fail to reach its
successful end because of a deadlock, violations of consistency,
time-ont, user abort., and so on [4]. In order to guarantee the re-
coverability of a real-time MMDB system, logging and check-
pointing activities must be performed during normal operations
and reloading activities must be invoked at the time of a system
crash.

A great number of recovery techniques have been
studied for conventional database systems ([5], [6], [9], [11],
[13]); however, not much work has been done for real-time data-
base systems [2]. Sivasankaran et ai [17] has recently studied
some issues of real-time database recovery, but no detailed
schemes were given in their work. In this paper, we discuss sev-
eral techniques to handle real-time MMDB recovery activities
which include logging, checkpointing and reloading. Key factors
which affect the performance of these techniques are also studied
via simulation. Finally, suggestions for further improvement ¢ff
the proposed schemes are discussed.

2. LOGGING

2.L Preposed Sehmes
Logging notes on a stable storage called a log all up-

dates made to the database [4]. When a system or transaction
failure occurs, in order to construct the consistency of the datw
base, all the effects w,de by successful transactions must be
reflected in the database which is accomplished through REDO
operations, and all the modifications done by incomplete trans-
actions must be removed from the database by using UNDO op-
erations. A REDO operation is performed by applying After Im-
ages (AFI s), which are the values of rl~m items after they are
modified, of all committed transactions m the database, while an
UNDO operation is accomplished by copying to the database
BeFore Images (BFIMs), which are the values of data items be-
fore they are modified, of all unfinished and aborted transac-
tions.

Unlike conventional lot,~t, ing, renl-time logging must
not only ensure that data values are recovered correctly but also
guarantee that timing conslraints of dAtA items are reflected

54

http://crossmark.crossref.org/dialog/?doi=10.1145%2F352302.352316&domain=pdf&date_stamp=1996-11-01

properly. As we mentioned before, to reflect the temporal consis-
tency requirements, each temporal da~ item is associated with
two attributes: time stamp and absolute valid interval. This
means that for each temporal data item not only its data value
needs to be maintained in a log record as in conventional logging
for persistent data, but also its time stamp and absolute valid
interval need to be kept in the log record. One simple way to
achieve this goal is to adopt the conventional logging approach.
For each persistent data item, the corresponding log record
maintains its APIM and/or BFIM depending on the update policy
selected; for each temporal data item, besides AFIM/BFIM,
ATIME/BTIME and INTERVAL are also kept in the log record.
BTIME and ATIME are time stamps before and after a temporal
data item is modified, respectively, and INTERVAL represents
the absolute valid interval. Only one log buffer is used in the
system, which means that both persistent data log records and
temporal data log records are kept in the same log buffer. It is
obvious that this approach is simple and easy to implement;

Alternative 1 !
Using M u l t i p l e L o g Buffers No

Logg ing Inva l i d T e m p o r a l Da t a Yes

however, as persistent data and temporal data have the different
log record formats, extra overhead will be incurred during recov-
ery time in order to check the log record format. To eliminate
this overhes_ad~ multiple log buffers could be used which store
persistent data and temporal data log records separately.

Another point needs to be noted is that some temporal
data may have very short temporal valid intervals and thus may
become invalid at the time when they are updated. It is not nec-
essary to keep their old values in log records, which consequently
leads to a smaller log record size and less amount of log infor-
marion that needs to be processed at recovery time. Based on
whether multiple log buffers are used and whether the values of
invalid temporal data will be maintained in log records, we have
four alternatives, as summarized in Table 1, to do real-time
MMDB logging. The detailed description of the four logging
alternatives can be found in ([7], [8]).

Alternative 2 Alternative 3 Alternative 4
No Yes Yes

No Yes No

Table 1. Four Real-Trine MMDB Logging Alternatives

In order to evaluate the performance of the above alter-
natives, we have built a simulation model using the simulation
language SLAM H [14]. Based on the results obtained, we found
that the key factors that affect the performance of real-time
MMDB logging are multiple log buffers and validity of temporal
data Specifically, we observed two important points. First, the
use of multiple buffers eliminates the need for a log format indi-
cator and thus successfully reduces the amount of information
that needs to be maintained in a log record. This in tam lessens
the logging overhead imposed on normal transaction processing
and reduces the amount of work needed at recovery time. Sec-
ond, even though ignoring logging invalid temporal data can
reduce the amount of log information that needs to be processed
for recovery, as the overhead involved in checking the validity of
temporal data during nLamal processing and database recovery
outweighs the time saved from reducing memory access, the
overall performance is not improved.

We also observed that the amount of temporal data
does affect the performance of logging techniques. The more
temporal data the system has, the higher overhead will be in-
curred during the logging process, and the worse the system per-
formance becomes. Under this situation, in order to reduce the
interference of logging activities with normal operations, an ef-
fieient logging scheme is desired.

Fur ther Improvement
One drawback of the above logging approaches is that

all temporal data is treated the same regardless of the length of
their valid intervals. Usually a real-time database system con-
rains some temporal data whose valid intervals may be very
short. For these kind of temporal data, as discussed in [17], their
values are likely to become invalid after they are recovered fi'om
a system crash. It is thus not necessary to perform UNDO or
REDO operations for these data items at database recovery time.
When immediate update is used, which allows modified data to
be propagated to the primary database at any time, to ensure that
the effects of an aborted transaction can be removed completely

during normal operation, the system needs to maintain only
BFIMs for short temporal dart ' s update~s. No AFIMs need to be
recorded. When deferred update is appfied, in which modified
data by a transaction cannot be appfied to the d~tabase until a
successful completion of the transaction is assured, neither
BFIMs nor AFIMs are required to be kept for short temporal
data. In this way, both the overhead incurred in the logging pmo-
ess as well as the time required to perform post-crash log proo-
essing are reduced.

Another possible drawback of the existing logging
techniques is that only one update policy (immediate or deferred)
is employed at a time. Based on our studies, when transaction
abort rate is low, the immediate update policy offers a better
performance in terms of transactions and data meeting timing
constraints than the deferred update policy does. This is because
immediate upd~t~ enables tl'ansactions to be processed faster
than deferred update does. However, if transaction abort rate is
high, due to a high abort overhead incurred in immediate update
which may result in a poor system performance, the deferred
update scheme is a good choice.

An RTDBS usually consists of two types of transac-
tions [18]: periodic transaction and aperiodic transaction (or
normal transaction). Periodic transactions are usually responsible
for updating a sensor data item or reading several temporal d~ta
and deriving a temporal data item; they are likely to be short and
have fewer chances to be aborted. Besides, as values of temporal
data change frequently with time, it is desired that updates of
temporal data can be reflected in the database as quickly as pos-
sible. Based on these considerations, the immediate update ap-
proach seems to be a good choice for periodic transactions.

Normal transactions is the transactions found in con-
ventional database system which can read and write persistent
data but can read only temporal d a t a For- this type of lransac-
tions, they are usually longer than periodic transactions and thus
have more chances to miss their deadlines. Depending on a
transaction's characteristics, some transactions (for instance, firm
deadline transactions), may be aborted ff they cannot complete

55

within their deadlines. For this type of transactions, perhaps
deferred upd_~_te is a suitable selection. Therefore, a logging
technique which appfies both immediate update and deferred
update at the same time may provide a better performance for a
real-time MMDB sysi~m. This is an interesting topic for further
research.

3. CHECKPOINTING

3.1. Proposed Schemes
Checkpoinfing is a process used to maintain on disks

an up-to-date copy of the database. It is needed as it limits the
time required to recover the database after a system crash [4].
When a system failure occurs, as checkpoints provide an almost
up-to-date copy of the database, most data in the log are not
needed at the time of recovery. The recovery process needs te
process only the log inforruafion which is generated after the last
complete checkpoint. It is obvious that an efficient checkpoinfing
scheme enables the system to restart quickly from a failure.

We have studied two partition checkpoint techniques
[8]. The basic idea of our approaches is that they no longer treat
the entire datahaso as a single object, instead, a database is seg-
mented into smaller 0ata partitions based on either pages' upd,te
frequencies or temporal valid intervals. Each partition contains
only one type of data pages: temporal or persistent, and is check-
pointed independently. With these checkpoint schemes, it is
possible to checkpoint frequently updated data with short tempo-
ral valid intervals more often so that fewer log records need to be
examined for these data at recovery time. Note that in order to
facifitate the recovery process, each partition has its own log
buffer. These techniques also enable transaction execution and
database recovery to be processed in parallel after a crash so that
the overall performance is enhanced. The features of the two
checkpoint techniques are highlighted as follows.

In the first scheme, both persistent data and temporal
data are partfioned based on their update frequencies. Partitions
which contain most frequently updated pages (called hot parti-
tions) will be checkpoimed more often than those of few updated
pages. Since the backup of hot partitions can be kept as recent as
possible, at the time of 0atebase recovery, as there is less log
information that needs to be examined, the recovea~ process is
hastened.

In the second scheme, persistent data are partitioned
based on update frequencies while temporal data are partitioned
based on their valid intervals. Temporal data partitions with
short valid intervals are give~ more opportunities to be flushed
out by increasing their update frequencies than other partitions.
this enables many temporal data to be recovered and used before
losing their validity and in turn reduces the number of transac-
tions aborted or delayed due to invalid data access. No logging
and checkpointlng will be invoked on temporal data whose valid
intervals are shorter than a specified interval threshold; this not
only reduces the interference of logging and checkpointing ac-
tivities on normal operations but also hastens the recovery proo
asS.

The performance of the two schemes was evaluated via
simulation. The results obtained showed that the key factors
which affect the performance of real-time MMDB checkpointing
are the number of partitions which the database has, whether or
not the temporsd data of short valid intervals is checkpointed and
how the checkpoints among partitions are scheduled. Specifi-
cally, we have derived two important conclusions. First. the

mcfe partitions the database has, the more performance im-
provement the system tends to obtain. However. partition check-
point does impose an overhead on normal system operations, and
the more partitions the database has. the more overhead it incurs.
When the number of partitions reaches a certain limit, the benefit
obtained from further partitioning is not very significant. Second,
not logging and checkpointing temporal data of short valid inter-
vals does help to improve the overall performance. This is espo-
dally true when most of temporal data valid intervals are short
and the system has a great amount of temporal data. As a tempo-
red data item's log record size is larger than that of a persistent
data item, it is desired that temporal data can be checkpointed
more frequently than persistent data so that less log information
needs to be processed for temporal data at recovery time.

The system environment also has impacts on the behav-
ior of real-time checkpoint techniques. Our results indicated that
the performance improvement offered by the proposed schemes
is lessened when transaction arrival rate or system failure rate
increases. This is because as transaction arrival rate or system
failure rate gets higher, the number of transactions that are
backlogged during a system crash increases tremendously. The
savings obtained from reducing post-crash log processing time,
therefore, becomes less significant to the overall performance
compared to those obtained in a system of low system load and
low faihue rate.

3.2. Fur ther Improvememt
In the above checkpoint schemes, an MMDB is parti-

tioned and checkpointed based on only the properties of real-time
data such as, temporal valid interval and data update frequency;
Iransaction characteristics, such as criticalness and de~dlinas, are
not considered. Criticalness indicates the level of importance
attached to a real-time transaction relative to the other transac-
tions. Depending on the functionality of a transaction, meeting
the deadline of one transaction may be considered more critical
than another [20]. For example, a transaction that reacts to an
emergency situation, such as fire on the factory floor, probably
will be more critical than the transaedon that controls the move-
ment of a robot under normal operating conditions. The goal of a
real-time database system is to enable as many highly critical
transactions as possible to meet their timing constraints. To
achieve this goal. it is desired that data needed by highly critical
transactions can be checkpointed as often as possible. This will
reduce the amount of log informa6on that needs to be processed
at recovery time and allow the transactions to have more oppor-
tunities to meet their deadlines.

On the other hand, some critical transactions may not
have short deadlines. Therefore, ff high checkpoint priority is
only given to data accessed by critical transactions during the
checkpoint process, the overall performance may be degraded
because teo many upchtr-s are accumulated for data needed by
transactions of short deadlines. To improve the overall perform-
ance, a data item should be assigned with a priority, called ~ m
pr/or/ty, based ¢m both criticalness and do~dline of transactions
that access the data object [20]. The objective of a checkpoint
technique should be to keep the backup copy of data objects with
high data priorities as recent as possible so that less log informa-
tion needs to be examined for these data at recovery time and the
overall system performance can be enhanced.

To fulfill the above objective, the idea of our proposed
partition checkpoint schemes could be used. However, as the
more partitions the database has, the more overhead these

56

schemes will incur, the number of partitions in which the tiara.
base is divided should not be too high. One possible way to solve
this problem is to combine partition checkpoint and segment
checkpoint; the latter is studied in [12]. The main concept of the
segment checkpoint scheme is that the dsm~hase is divided into
segments. Checkpoints among segments are performed in a
round-robin fashion. Only one log buffer is used in the system.
The advantage of this approach is that less overhead is incurred
in normal operation than that in partition checkpoint. One possi-
ble drawback of the segment checkpoint is that as all the log
records are kept in one log buffer, it is difficult to recover some
urgent data first before other data at recovery time. In partition
checkpoint, extra overhead will be incurred in order to schedule
checkpoints among partitions and to ensure that log records dis-
Iributed among multiple log buffers be used correctly.

To take advantage of both segment checkpoint and
partition checkpoint, we may improve our proposed checkpoint
schemes as follows. An MMDB is divided into five partitions.
The first partition contains temporsd data which have higher data

priorities and need to be brought into MM before the system is
brought up. Note that data referenced by transactions which have
very short deadlines, for example, shorter than the time needed
to reload two or three cylinders from AM to MM, can be consid-
ered to have higher data priorities. This is because of the fact
that data priority is defined based on a transaction's deadline and
criticalness, and during the reload process, user data cannot he
brought into MM until system data is memory-resident. The
second partition contains persistent data of higher data priorities
which will also be reloaded into MM before the system is up.
The third partition consists of temporal data which are not in
partition 1 and whose valid intervals are longer than the interval
threshold. The fourth partition consists of the rest of persistent
data. As the third and fourth partitions are usua]ly much larger
than the first two partitions, in order to reduce the amount of log
information that needs to be processed for these two partitions,
they are further divided into segments. The last or the fifth parti-
tion contains temporal ,-Imra whose valid intervals are shorter than
the interval threshold, and no logging and checkpointing activi-
ties will be invoked on this partition. The goal of this checkpoint
scheme should be to keep the backup copy of higher priority dam
as recent as possible so that these data can he recovered quickly
from a system failure, and at the same time, reduce the amount of
log informalion that needs to he processed for other data. How to
schedule checkpoints among five partitions will have a crucial
impact on the overall recovery performance, and thus needs to be
investigated.

4. RELOADING

4.1. Proposed Schemes
Reloading activities are performed in case of a system

crash. For a large database, simply transferring it from archive
disks to main memory can be very time-consuming. As estimated
in [11], 28.43 minutes are needed to recover one gigabyte data-
base. In order to resume transaction processing quickly without
degrading system performance, an efficient reload scheme is
needed. The objective of real-time reloading should be not only
to reduce system restart time, but also to minimize the number of
timing consuains which are violated

We have proposed two reload algorithms for real-time
database reloading [8]. The common features of our approaches
include (1) the system is brought on-line before the entire data-

base is reloaded into MM in order to reduce down time; (2)
transaction execution priorities are taken into account during the
reload process to give immediate attention to high priority trans-
actions so that they have more opportunities to meet their dead-
lines and (3) data accessed fTeqnently are reloaded before other
data+

In the first algorithm, a partition is selected as the re-
covery unit. The system resumes its execution when a specified
number of partitions is memory-resident and their c~,vsponding
log informatiou is processed. This algorithm gives p~dtions that
are most frequently accessed a higher reload priority than those
which are seldom accessed so that the number of page faults can
be reduced and transaction execution can he processed with
fewer interruptions. This algorithm also allows pages needed by
high execution priority transactions to be brought into MM as
quickly as possible so that these transactions have more oppor-
tunities to meet their deadlines. Besides, this algorithm takes
transaction deadlines, reload prioritization, reload preemption
and transaction priority inheritance concept [16] into account
during the reload prvcess. One drawback of this approach is that
as a partition is the recovery unit, transaction processing will be
suspended for a long time when a page fault occurs, which may
result in many missing d_o_adline transactions.

In the second approach, a page is used as the recovery
unit. Transaction execution can proceed when its requested page
is brought into MM and the corresponding log information is
processed. This algorithm also takes transaction execution prior-
ity, priority inheritance concept, reload priority and preemption
into consideration during the reload process. However, unlike the
first approach, this algorithm reloads most frequently accessed
pages, instead of partitions, into MM before less frequently ac-
cessed pages. Besides, temporal data are given higher reload
priority than persistent data so that many temporal data can he
used before losing their validity. This may in turn reduce the
number of transactions which are aborted or delayed due to inva-
lid data access. Another advantage of this approach is that as
transaction processing is not suspended as long as that in the first
approach when page faults occur, this approach has a potential to
further improve the system performance in terms of mmsactions
and data meeting timing constraints.

Our performance analysis indicated the following re-
sults. (1) In order to achieve a good recovery performance, reduc-
ing system unavailability is more important than reducing dat,-
base reload time. The conventional reload approach, which
brings the system up after the entire database is memory-
resident, can finish database reloading in the shortest amount of
time. However, as it delays transaction processing longer than
the proposed schemes, it finally results in the worst performance.
(2) To reduce the amount of invalid data and the number of
transactions aborted due to invalid data access, temporal data of
short valid intervals should he reloaded into MM as quickly as
possible. (3) Pages needed by high execution priority transac-
tions should he given higher reload priority so that execution of
these transactions will not be suspended mo long. (4) Taking
transaction's execution priority into account during database
reloading can help to reduce the number of transactions missing
deadlines. (5) The reload threshold which specifies when the
system should be brought up must be selected carefully and
should not be a small number. The loss in system performance
when choosing a too large reload threshold is much less than the
loss when choosing a moo small reload threshold. (6) Recovery

57

unit also plays an important role in improving the overall system
performance. In most cases, the smaller the recovery unit is, the
less time a transaction's execution is suspended when a page
fault occurs, and the better performance the system obtains.

4.2. I~llrther Improvemellt
One drawback of the above schemes is that the overall

performance is degraded seriously when the system has a great
amount of temporal dam The reason for this is that when the
amount of temporal data continues increasing, most data that can
be brought into MM before the system is brought up is temporal
data. As few persistent data, which are usually accessed fre-
quently by normal tnmsaetions, can be memory-resident before
transaction processing is resumed, many page faults will occur
during normal system operation. As the overhead incurred in
handling page faults outweighs the gain obtained fi'om reducing
system unavailability, the overall performance will decrease.
This indicates that reloading some mmpond data, especially
those of short valid intervals, into MM before bringing the sys-
tem up helps to reduce the amount of invalid data and the num-
ber of transactions aborted due to invalid data access. However,
enabling some persistent data, especially those of high access
frequencies, to be memory-resident before resuming transaction
execution is also desired. Therefore, to further improve the eft]-
ciency of database reloading, a reload scheme, which decides
reload priority based on not only data access fiequency and data
type (temporal or persistent) but also the amount of data of each
type that can be memory-resident before bringing the system up,
should be developed.

5. CONCLUSIONS

In this paper, we discussed issues related to real-time
MMDB recovery. Several alternatives of logging, checkpointing
and reloading were proposed and evaluated. Based on our simu-
lation results, the key factors that affect the performance of real-
time logging techniques are multiple log buffers and the validity
of temporal data. Besides, transaction abort rate and percent of
temporal data are also the control factors in the selection of log-
ging schemes. The main factors that affect the behavior of check-
pointing schemes are number of partitions the dRt~base has,
whether temporal data of short valid intervals is checkpointed
and how checkpoints among partitions are scheduled. In order to
obtain a higher performance during the database reloading proc-
ess, system unavailability, transaction priority, validity of tempo-
ral data, recovery unit as well as reload threshold must be taken
into account.. Hnally, we discussed how to further improve the
performance of the proposed recovery schemes.

REFERRNCE

[1] H. Gareia-Molina, K. Salem, "Main Memory Database
Systems: An Overview", ~ Transactions on Knowl-
edge and Data Engineering, Vol. 4, No. 6 Dec. 1992.

[2] M.H. Graham, "Issues in Real-Time Data Management",
In The Journal of Reai-Time Systems, 4, 185-202 (1992),
1992 Kluwer Academic Publishers, pp. 185-202.

[3] J. Gray, etc., "The 5 Minute Rule for Trading Memory for
Disk Accesses And the 10 Byte Rule for Trading Memory
for CPU Time", Proceedings of 1987 ACM SIGMOD
Conference, Sun Francisco, CA, May 1987, pp. 395-398.

[4] J. Gray, A. Reuter, "Transaction Processing: Concepts
and Techniques", Morgan Kanfmann Publishers, Inc.
1993.

[5] L. Gruenwaid, M. H. Eich, "MMDB Reload Algorithm",
Proceedings of ACM SIGMOD International Conference
on Management of Data, May 1991, pp. 397-405.

[6] R.B. Hag~nnn: "A Crash Recovery Scheme for a Mem-
ory-Resident Database System", ,~t~ Transactions on
Computers, VoL C-35, No. 9, Sept. 1986.

[7] J. Huang, L. Gruenwald, "Logging Reai-Time Main
Memory DRtnl'~ises", Proceedings of International Com-
puter Symposium, December 1994, pp. 1291-1296.

[8] J. Huang, "Recovery Techniques in Real-Time Main
Memory Databases", Ph.D. Dissertation, School of Com-
puter Science, University of Oklahoma, December 1995.

[9] H. V. Jagadish, A. Silberschatz, S. Sudarshan,
"Recovering From Main Memory Lapse", In The Proceed-
ings of the 19th Very Large Database Conference, 1993,
pp. 391-404.

[10] E. Levy, A. Silberschatz, "Incremental Recovery in Main
Memory Database Systems", In ~ Transactions on
Knowledge and Data Engineering, Vol. 4, No. 6 Dec.
1992, pp. 529-540.

[11] X. Li, M. H. Eich, "Partition Cbeckpoinfing in Main
Memory Database", Technical Report 93-CSE-23, De-
parUnent of Computer Science and Engineering, Sooth
Methodist University, 1993.

[12] J.L. Lin, M. H. Eich, "Speedup Recovery From Fuzzy
Checkpoints", Deparmmnt of Computer Science and En-
gineering, Southern Methodist University, Dallas, Texas,
Technical Report, July 1995.

[13] C. Mohan, "ARW~: A Transaction Recovery Method
Supporling Pine-Granularity Locking and Partial Roll
Backs Using Write-Ahead Logging", In ACM Transac-
tions on Database System, Vol. 17, No. I, March 1992,
pp. 94-162.

[14] A. Alen B. Pritsker, "Introduction of Simulation and
SLAM I1", John Wiley & Sons, Inc., New York, 1986.

[15] IC Ramamritham, "Real-Time Database", Invited Paper
in International Journal of Distributed and Parallel Data-
base, Vol. 1, No. 2, 1993, pp. 199-226.

[16] L. She., etc. "Priority Inheritance Protocols: An Approach
to Real-Time Synchronization", IEEE Transactions on
Computers, Vol. 39, No. 9, September 1990, pp. 37-47.

[17] R.M. Sivasankaran, K. Ramamfitham, J. A. Smnkavic,
D. Towsley, "Data Placement, Lof~ns and Recovery in
Real-Time Active Databases", International Workshop on
Active and Real-Time Active DRtRhases, June 1995.

[18] S.H. Son, "Predictability and Consistency in Reai-Tfme
Database Systems", The Proceeding of Information Sci-
ence, 1993.

[19] J. Stankovic, K. Shin, H. Kopetz, IC Ramamritham, L.
Sha, D. Locke, J. Liu, A. Mok, S. Davidson, L Lee, J.
Strosnider, "A Reul-Time Computing: A Critical Ena-
bling Technology", Technical Report, University of Mas-
sachusetts, July 1994.

[20] O. Ulusoy, G. Beiford, "Real-Time Transaction Schedul-
ing in Database Systems", Information Systems, Vol. 18,
No. 8, 1993, pp. 559-580.

58

