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ABSTRACT In this paper, we discuss how timing constznints 
affect three major database recovery activities: logging, check- 
pointing and dAtAbase reloading. We then present several 
schemes to handle these activities in a real-time main memory 
database system and their performance results obtained via 
simulation. Further improvement of these schemes is also pro- 
vided. 

1. INTRODUCTION 

Time is an important aspect of real-time database sys- 
tems (RTDBS). In such an environment, not only transactions are 
associated with timing constraints but also some tempora/data 
may lose their validity after a certain time interval. In order to 
specify absolute temporal consistency requirements, two attrib- 
utes, timestamp and absolute validity interval, are usually asso- 
ciated with a temporal data item. Tbnestamp indicates when the 
current value of the data item was obtained and absolute validity 
interval is the length of the time interval during which the cur- 
rent of the data item is considered to be valid. The value of a 
temporal data item x is said to be valid or meet the absolute tem- 
poral consistency requirement at the current time ~ ff 
/'now -- tx _< a x  holds, where tz is the timestamp of x, and a~ is 
the absolute validity interval o fx  [18]. 

There is a number of appfications such as air traffic 
control, stock-trading, and telecommunicatious where RTDBS 
might be applicable. One aspect of these examples is that they all 
involve gathering data from the environment, processing of gath- 
ered information in the context of information acquired in the 
past, and providing timely response. Another aspect of these 
examples is that they may process both temporal data as well as 
persistent data which remain valid regardless of time [15]. The 
main goal of an RTDBS is to meet the timing conslraints cf 
transactions and data as much as possible [19]. In order to 
achieve a higher system performance, the use of a main memory 
d~tabase (MMDB) is a good choice. This is because in an 
MMDB environment, all or a major portion of the database can 
be memory-resident, thus transaction processing can be satisfied 
with few I/Os [1]. An MMDB system therefore has a potential 
for obtaining a substantial performance improvement over a disk- 
resident database system for real-time applica- 
lions. 
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However, due to the volatility of semiconductor mem- 
ory, the contents of main memory may be lost at the time of a 
system failure which may occur due to an error in the d ataha,~ 
management system code, an operating system fault, a hardware 
failure or a power outage. As the database is not available when 
a system failure occurs, for a high performance system, such as 
those processing 1000 transactions or more per second [3], many 
transactions might be backlogged during system recovery. On 
average, a system failure occurs once every few weeks [4]. This 
may cause many transactions to miss their deadlines and a large 
amount of temporal data to lose their validity before they can be 
used. The degr~ntlon of the system performance may result in a 
catastrophe for safety.critical activities, such as those that re- 
spond to fife or environment-threatening emergency situations 
[19]. Besides system failure, a transaction may fail to reach its 
successful end because of a deadlock, violations of consistency, 
time-ont, user abort., and so on [4]. In order to guarantee the re- 
coverability of a real-time MMDB system, logging and check- 
pointing activities must be performed during normal operations 
and reloading activities must be invoked at the time of a system 
crash. 

A great number of recovery techniques have been 
studied for conventional database systems ([5], [6], [9], [11], 
[13]); however, not much work has been done for real-time data- 
base systems [2]. Sivasankaran et ai [17] has recently studied 
some issues of real-time database recovery, but no detailed 
schemes were given in their work. In this paper, we discuss sev- 
eral techniques to handle real-time MMDB recovery activities 
which include logging, checkpointing and reloading. Key factors 
which affect the performance of these techniques are also studied 
via simulation. Finally, suggestions for further improvement ¢ff 
the proposed schemes are discussed. 

2. LOGGING 

2.L Preposed Sehmes 
Logging notes on a stable storage called a log all up- 

dates made to the database [4]. When a system or transaction 
failure occurs, in order to construct the consistency of the datw 
base, all the effects w,de by successful transactions must be 
reflected in the database which is accomplished through REDO 
operations, and all the modifications done by incomplete trans- 
actions must be removed from the database by using UNDO op- 
erations. A REDO operation is performed by applying After Im- 
ages (AFI s), which are the values of rl~m items after they are 
modified, of all committed transactions m the database, while an 
UNDO operation is accomplished by copying to the database 
BeFore Images (BFIMs), which are the values of data items be- 
fore they are modified, of all unfinished and aborted transac- 
tions. 

Unlike conventional lot,~t, ing, renl-time logging must 
not only ensure that data values are recovered correctly but also 
guarantee that timing conslraints of dAtA items are reflected 
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properly. As we mentioned before, to reflect the temporal consis- 
tency requirements, each temporal da~ item is associated with 
two attributes: time stamp and absolute valid interval. This 
means that for each temporal data item not only its data value 
needs to be maintained in a log record as in conventional logging 
for persistent data, but also its time stamp and absolute valid 
interval need to be kept in the log record. One simple way to 
achieve this goal is to adopt the conventional logging approach. 
For each persistent data item, the corresponding log record 
maintains its APIM and/or BFIM depending on the update policy 
selected; for each temporal data item, besides AFIM/BFIM, 
ATIME/BTIME and INTERVAL are also kept in the log record. 
BTIME and ATIME are time stamps before and after a temporal 
data item is modified, respectively, and INTERVAL represents 
the absolute valid interval. Only one log buffer is used in the 
system, which means that both persistent data log records and 
temporal data log records are kept in the same log buffer. It is 
obvious that this approach is simple and easy to implement; 

Alternative 1 ! 
Using  M u l t i p l e  L o g  Buffers  No 

Logg ing  Inva l i d  T e m p o r a l  Da t a  Yes 

however, as persistent data and temporal data have the different 
log record formats, extra overhead will be incurred during recov- 
ery time in order to check the log record format. To eliminate 
this overhes_ad~ multiple log buffers could be used which store 
persistent data and temporal data log records separately. 

Another point needs to be noted is that some temporal 
data may have very short temporal valid intervals and thus may 
become invalid at the time when they are updated. It is not nec- 
essary to keep their old values in log records, which consequently 
leads to a smaller log record size and less amount of log infor- 
marion that needs to be processed at recovery time. Based on 
whether multiple log buffers are used and whether the values of 
invalid temporal data will be maintained in log records, we have 
four alternatives, as summarized in Table 1, to do real-time 
MMDB logging. The detailed description of the four logging 
alternatives can be found in ([7], [8]). 

Alternative 2 Alternative 3 Alternative 4 
No Yes Yes 

No Yes No 

Table 1. Four  Real-Trine MMDB Logging Alternatives 

In order to evaluate the performance of the above alter- 
natives, we have built a simulation model using the simulation 
language SLAM H [14]. Based on the results obtained, we found 
that the key factors that affect the performance of real-time 
MMDB logging are multiple log buffers and validity of temporal 
data Specifically, we observed two important points. First, the 
use of multiple buffers eliminates the need for a log format indi- 
cator and thus successfully reduces the amount of information 
that needs to be maintained in a log record. This in tam lessens 
the logging overhead imposed on normal transaction processing 
and reduces the amount of work needed at recovery time. Sec- 
ond, even though ignoring logging invalid temporal data can 
reduce the amount of log information that needs to be processed 
for recovery, as the overhead involved in checking the validity of 
temporal data during nLamal processing and database recovery 
outweighs the time saved from reducing memory access, the 
overall performance is not improved. 

We also observed that the amount of temporal data 
does affect the performance of logging techniques. The more 
temporal data the system has, the higher overhead will be in- 
curred during the logging process, and the worse the system per- 
formance becomes. Under this situation, in order to reduce the 
interference of logging activities with normal operations, an ef- 
fieient logging scheme is desired. 

Fur ther  Improvement 
One drawback of the above logging approaches is that 

all temporal data is treated the same regardless of the length of 
their valid intervals. Usually a real-time database system con- 
rains some temporal data whose valid intervals may be very 
short. For these kind of temporal data, as discussed in [17], their 
values are likely to become invalid after they are recovered fi'om 
a system crash. It is thus not necessary to perform UNDO or 
REDO operations for these data items at database recovery time. 
When immediate update is used, which allows modified data to 
be propagated to the primary database at any time, to ensure that 
the effects of an aborted transaction can be removed completely 

during normal operation, the system needs to maintain only 
BFIMs for short temporal dart ' s  update~s. No AFIMs need to be 
recorded. When deferred update is appfied, in which modified 
data by a transaction cannot be appfied to the d~tabase until a 
successful completion of the transaction is assured, neither 
BFIMs nor AFIMs are required to be kept for short temporal 
data. In this way, both the overhead incurred in the logging pmo- 
ess as well as the time required to perform post-crash log proo- 
essing are reduced. 

Another possible drawback of the existing logging 
techniques is that only one update policy (immediate or deferred) 
is employed at a time. Based on our studies, when transaction 
abort rate is low, the immediate update policy offers a better 
performance in terms of transactions and data meeting timing 
constraints than the deferred update policy does. This is because 
immediate upd~t~ enables tl'ansactions to be processed faster 
than deferred update does. However, if transaction abort rate is 
high, due to a high abort overhead incurred in immediate update 
which may result in a poor system performance, the deferred 
update scheme is a good choice. 

An RTDBS usually consists of two types of transac- 
tions [18]: periodic transaction and aperiodic transaction (or 
normal transaction). Periodic transactions are usually responsible 
for updating a sensor data item or reading several temporal d~ta 
and deriving a temporal data item; they are likely to be short and 
have fewer chances to be aborted. Besides, as values of temporal 
data change frequently with time, it is desired that updates of 
temporal data can be reflected in the database as quickly as pos- 
sible. Based on these considerations, the immediate update ap- 
proach seems to be a good choice for periodic transactions. 

Normal transactions is the transactions found in con- 
ventional database system which can read and write persistent 
data but can read only temporal d a t a  For- this type of lransac- 
tions, they are usually longer than periodic transactions and thus 
have more chances to miss their deadlines. Depending on a 
transaction's characteristics, some transactions (for instance, firm 
deadline transactions), may be aborted ff they cannot complete 
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within their deadlines. For this type of transactions, perhaps 
deferred upd_~_te is a suitable selection. Therefore, a logging 
technique which appfies both immediate update and deferred 
update at the same time may provide a better performance for a 
real-time MMDB sysi~m. This is an interesting topic for further 
research. 

3. CHECKPOINTING 

3.1. Proposed Schemes 
Checkpoinfing is a process used to maintain on disks 

an up-to-date copy of the database. It is needed as it limits the 
time required to recover the database after a system crash [4]. 
When a system failure occurs, as checkpoints provide an almost 
up-to-date copy of the database, most data in the log are not 
needed at the time of recovery. The recovery process needs te 
process only the log inforruafion which is generated after the last 
complete checkpoint. It is obvious that an efficient checkpoinfing 
scheme enables the system to restart quickly from a failure. 

We have studied two partition checkpoint techniques 
[8]. The basic idea of our approaches is that they no longer treat 
the entire datahaso as a single object, instead, a database is seg- 
mented into smaller 0ata partitions based on either pages' upd,te 
frequencies or temporal valid intervals. Each partition contains 
only one type of data pages: temporal or persistent, and is check- 
pointed independently. With these checkpoint schemes, it is 
possible to checkpoint frequently updated data with short tempo- 
ral valid intervals more often so that fewer log records need to be 
examined for these data at recovery time. Note that in order to 
facifitate the recovery process, each partition has its own log 
buffer. These techniques also enable transaction execution and 
database recovery to be processed in parallel after a crash so that 
the overall performance is enhanced. The features of the two 
checkpoint techniques are highlighted as follows. 

In the first scheme, both persistent data and temporal 
data are partfioned based on their update frequencies. Partitions 
which contain most frequently updated pages (called hot parti- 
tions) will be checkpoimed more often than those of few updated 
pages. Since the backup of hot partitions can be kept as recent as 
possible, at the time of 0atebase recovery, as there is less log 
information that needs to be examined, the recovea~ process is 
hastened. 

In the second scheme, persistent data are partitioned 
based on update frequencies while temporal data are partitioned 
based on their valid intervals. Temporal data partitions with 
short valid intervals are give~ more opportunities to be flushed 
out by increasing their update frequencies than other partitions. 
this enables many temporal data to be recovered and used before 
losing their validity and in turn reduces the number of transac- 
tions aborted or delayed due to invalid data access. No logging 
and checkpointlng will be invoked on temporal data whose valid 
intervals are shorter than a specified interval threshold; this not 
only reduces the interference of logging and checkpointing ac- 
tivities on normal operations but also hastens the recovery proo 
asS.  

The performance of the two schemes was evaluated via 
simulation. The results obtained showed that the key factors 
which affect the performance of real-time MMDB checkpointing 
are the number of partitions which the database has, whether or 
not the temporsd data of short valid intervals is checkpointed and 
how the checkpoints among partitions are scheduled. Specifi- 
cally, we have derived two important conclusions. First. the 

mcfe partitions the database has, the more performance im- 
provement the system tends to obtain. However. partition check- 
point does impose an overhead on normal system operations, and 
the more partitions the database has. the more overhead it incurs. 
When the number of partitions reaches a certain limit, the benefit 
obtained from further partitioning is not very significant. Second, 
not logging and checkpointing temporal data of short valid inter- 
vals does help to improve the overall performance. This is espo- 
dally true when most of temporal data valid intervals are short 
and the system has a great amount of temporal data. As a tempo- 
red data item's log record size is larger than that of a persistent 
data item, it is desired that temporal data can be checkpointed 
more frequently than persistent data so that less log information 
needs to be processed for temporal data at recovery time. 

The system environment also has impacts on the behav- 
ior of real-time checkpoint techniques. Our results indicated that 
the performance improvement offered by the proposed schemes 
is lessened when transaction arrival rate or system failure rate 
increases. This is because as transaction arrival rate or system 
failure rate gets higher, the number of transactions that are 
backlogged during a system crash increases tremendously. The 
savings obtained from reducing post-crash log processing time, 
therefore, becomes less significant to the overall performance 
compared to those obtained in a system of low system load and 
low faihue rate. 

3.2. Fur ther  Improvememt 
In the above checkpoint schemes, an MMDB is parti- 

tioned and checkpointed based on only the properties of real-time 
data such as, temporal valid interval and data update frequency; 
Iransaction characteristics, such as criticalness and de~dlinas, are 
not considered. Criticalness indicates the level of importance 
attached to a real-time transaction relative to the other transac- 
tions. Depending on the functionality of a transaction, meeting 
the deadline of one transaction may be considered more critical 
than another [20]. For example, a transaction that reacts to an 
emergency situation, such as fire on the factory floor, probably 
will be more critical than the transaedon that controls the move- 
ment of a robot under normal operating conditions. The goal of a 
real-time database system is to enable as many highly critical 
transactions as possible to meet their timing constraints. To 
achieve this goal. it is desired that data needed by highly critical 
transactions can be checkpointed as often as possible. This will 
reduce the amount of log informa6on that needs to be processed 
at recovery time and allow the transactions to have more oppor- 
tunities to meet their deadlines. 

On the other hand, some critical transactions may not 
have short deadlines. Therefore, ff high checkpoint priority is 
only given to data accessed by critical transactions during the 
checkpoint process, the overall performance may be degraded 
because teo many upchtr-s are accumulated for data needed by 
transactions of short deadlines. To improve the overall perform- 
ance, a data item should be assigned with a priority, called ~ m  
pr/or/ty, based ¢m both criticalness and do~dline of transactions 
that access the data object [20]. The objective of a checkpoint 
technique should be to keep the backup copy of data objects with 
high data priorities as recent as possible so that less log informa- 
tion needs to be examined for these data at recovery time and the 
overall system performance can be enhanced. 

To fulfill the above objective, the idea of our proposed 
partition checkpoint schemes could be used. However, as the 
more partitions the database has, the more overhead these 
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schemes will incur, the number of partitions in which the tiara. 
base is divided should not be too high. One possible way to solve 
this problem is to combine partition checkpoint and segment 
checkpoint; the latter is studied in [12]. The main concept of the 
segment checkpoint scheme is that the dsm~hase is divided into 
segments. Checkpoints among segments are performed in a 
round-robin fashion. Only one log buffer is used in the system. 
The advantage of this approach is that less overhead is incurred 
in normal operation than that in partition checkpoint. One possi- 
ble drawback of the segment checkpoint is that as all the log 
records are kept in one log buffer, it is difficult to recover some 
urgent data first before other data at recovery time. In partition 
checkpoint, extra overhead will be incurred in order to schedule 
checkpoints among partitions and to ensure that log records dis- 
Iributed among multiple log buffers be used correctly. 

To take advantage of both segment checkpoint and 
partition checkpoint, we may improve our proposed checkpoint 
schemes as follows. An MMDB is divided into five partitions. 
The first partition contains temporsd data which have higher data 

priorities and need to be brought into MM before the system is 
brought up. Note that data referenced by transactions which have 
very short deadlines, for example, shorter than the time needed 
to reload two or three cylinders from AM to MM, can be consid- 
ered to have higher data priorities. This is because of the fact 
that data priority is defined based on a transaction's deadline and 
criticalness, and during the reload process, user data cannot he 
brought into MM until system data is memory-resident. The 
second partition contains persistent data of higher data priorities 
which will also be reloaded into MM before the system is up. 
The third partition consists of temporal data which are not in 
partition 1 and whose valid intervals are longer than the interval 
threshold. The fourth partition consists of the rest of persistent 
data. As the third and fourth partitions are usua]ly much larger 
than the first two partitions, in order to reduce the amount of log 
information that needs to be processed for these two partitions, 
they are further divided into segments. The last or the fifth parti- 
tion contains temporal ,-Imra whose valid intervals are shorter than 
the interval threshold, and no logging and checkpointing activi- 
ties will be invoked on this partition. The goal of this checkpoint 
scheme should be to keep the backup copy of higher priority dam 
as recent as possible so that these data can he recovered quickly 
from a system failure, and at the same time, reduce the amount of 
log informalion that needs to he processed for other data. How to 
schedule checkpoints among five partitions will have a crucial 
impact on the overall recovery performance, and thus needs to be 
investigated. 

4. RELOADING 

4.1. Proposed Schemes 
Reloading activities are performed in case of a system 

crash. For a large database, simply transferring it from archive 
disks to main memory can be very time-consuming. As estimated 
in [11], 28.43 minutes are needed to recover one gigabyte data- 
base. In order to resume transaction processing quickly without 
degrading system performance, an efficient reload scheme is 
needed. The objective of real-time reloading should be not only 
to reduce system restart time, but also to minimize the number of 
timing consuains which are violated 

We have proposed two reload algorithms for real-time 
database reloading [8]. The common features of our approaches 
include (1) the system is brought on-line before the entire data- 

base is reloaded into MM in order to reduce down time; (2) 
transaction execution priorities are taken into account during the 
reload process to give immediate attention to high priority trans- 
actions so that they have more opportunities to meet their dead- 
lines and (3) data accessed fTeqnently are reloaded before other 
data+ 

In the first algorithm, a partition is selected as the re- 
covery unit. The system resumes its execution when a specified 
number of partitions is memory-resident and their c~,vsponding 
log informatiou is processed. This algorithm gives p~dtions that 
are most frequently accessed a higher reload priority than those 
which are seldom accessed so that the number of page faults can 
be reduced and transaction execution can he processed with 
fewer interruptions. This algorithm also allows pages needed by 
high execution priority transactions to be brought into MM as 
quickly as possible so that these transactions have more oppor- 
tunities to meet their deadlines. Besides, this algorithm takes 
transaction deadlines, reload prioritization, reload preemption 
and transaction priority inheritance concept [16] into account 
during the reload prvcess. One drawback of this approach is that 
as a partition is the recovery unit, transaction processing will be 
suspended for a long time when a page fault occurs, which may 
result in many missing d_o_adline transactions. 

In the second approach, a page is used as the recovery 
unit. Transaction execution can proceed when its requested page 
is brought into MM and the corresponding log information is 
processed. This algorithm also takes transaction execution prior- 
ity, priority inheritance concept, reload priority and preemption 
into consideration during the reload process. However, unlike the 
first approach, this algorithm reloads most frequently accessed 
pages, instead of partitions, into MM before less frequently ac- 
cessed pages. Besides, temporal data are given higher reload 
priority than persistent data so that many temporal data can he 
used before losing their validity. This may in turn reduce the 
number of transactions which are aborted or delayed due to inva- 
lid data access. Another advantage of this approach is that as 
transaction processing is not suspended as long as that in the first 
approach when page faults occur, this approach has a potential to 
further improve the system performance in terms of mmsactions 
and data meeting timing constraints. 

Our performance analysis indicated the following re- 
sults. (1) In order to achieve a good recovery performance, reduc- 
ing system unavailability is more important than reducing dat,- 
base reload time. The conventional reload approach, which 
brings the system up after the entire database is memory- 
resident, can finish database reloading in the shortest amount of 
time. However, as it delays transaction processing longer than 
the proposed schemes, it finally results in the worst performance. 
(2) To reduce the amount of invalid data and the number of 
transactions aborted due to invalid data access, temporal data of 
short valid intervals should he reloaded into MM as quickly as 
possible. (3) Pages needed by high execution priority transac- 
tions should he given higher reload priority so that execution of 
these transactions will not be suspended mo long. (4) Taking 
transaction's execution priority into account during database 
reloading can help to reduce the number of transactions missing 
deadlines. (5) The reload threshold which specifies when the 
system should be brought up must be selected carefully and 
should not be a small number. The loss in system performance 
when choosing a too large reload threshold is much less than the 
loss when choosing a moo small reload threshold. (6) Recovery 
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unit also plays an important role in improving the overall system 
performance. In most cases, the smaller the recovery unit is, the 
less time a transaction's execution is suspended when a page 
fault occurs, and the better performance the system obtains. 

4.2. I~llrther Improvemellt 
One drawback of the above schemes is that the overall 

performance is degraded seriously when the system has a great 
amount of temporal dam The reason for this is that when the 
amount of temporal data continues increasing, most data that can 
be brought into MM before the system is brought up is temporal 
data. As few persistent data, which are usually accessed fre- 
quently by normal tnmsaetions, can be memory-resident before 
transaction processing is resumed, many page faults will occur 
during normal system operation. As the overhead incurred in 
handling page faults outweighs the gain obtained fi'om reducing 
system unavailability, the overall performance will decrease. 
This indicates that reloading some mmpond data, especially 
those of short valid intervals, into MM before bringing the sys- 
tem up helps to reduce the amount of invalid data and the num- 
ber of transactions aborted due to invalid data access. However, 
enabling some persistent data, especially those of high access 
frequencies, to be memory-resident before resuming transaction 
execution is also desired. Therefore, to further improve the eft]- 
ciency of database reloading, a reload scheme, which decides 
reload priority based on not only data access fiequency and data 
type (temporal or persistent) but also the amount of data of each 
type that can be memory-resident before bringing the system up, 
should be developed. 

5. CONCLUSIONS 

In this paper, we discussed issues related to real-time 
MMDB recovery. Several alternatives of logging, checkpointing 
and reloading were proposed and evaluated. Based on our simu- 
lation results, the key factors that affect the performance of real- 
time logging techniques are multiple log buffers and the validity 
of temporal data. Besides, transaction abort rate and percent of 
temporal data are also the control factors in the selection of log- 
ging schemes. The main factors that affect the behavior of check- 
pointing schemes are number of partitions the dRt~base has, 
whether temporal data of short valid intervals is checkpointed 
and how checkpoints among partitions are scheduled. In order to 
obtain a higher performance during the database reloading proc- 
ess, system unavailability, transaction priority, validity of tempo- 
ral data, recovery unit as well as reload threshold must be taken 
into account.. Hnally, we discussed how to further improve the 
performance of the proposed recovery schemes. 
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