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Unlabelled data appear in many domains and are particularly relevant to streaming applications, where even
though data is abundant, labelled data is rare. To address the learning problems associated with such data, one
can ignore the unlabelled data and focus only on the labelled data (supervised learning); use the labelled data
and attempt to leverage the unlabelled data (semi-supervised learning); or assume some labels will be available
on request (active learning). The first approach is the simplest, yet the amount of labelled data available will
limit the predictive performance. The second relies on finding and exploiting the underlying characteristics
of the data distribution. The third depends on an external agent to provide the required labels in a timely
fashion. This survey pays special attention to methods that leverage unlabelled data in a semi-supervised
setting. We also discuss the delayed labelling issue, which impacts both fully supervised and semi-supervised
methods. We propose a unified problem setting, discuss the learning guarantees and existing methods, explain
the differences between related problem settings. Finally, we review the current benchmarking practices and
propose adaptations to enhance them.
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1 INTRODUCTION

Situations where all the data are appropriately labelled, which allow us to perform supervised
learning, are ideal, but many important problems are either unlabelled or only partially labelled.
When dealing with streaming data, it is reasonable to expect some non-negligible verification
latency, i.e. the label of an instance will be available sometime in the future, but not immediately.
We identify data streams that exhibit both unlabelled data and verification latency as Delayed
Partially Labelled Data Streams. These characteristics refer to how (and if) labels are made available
to the learning algorithm, as illustrated in Figure 1.

A simple approach to cope with such data streams is to ignore both the unlabelled data and the
labelling delay. Several methods were proposed, and evaluated, assuming a streaming scenario
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Data Stream Learning
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Fig. 1. Learning from data streams according to labels arrival time, based on [41]. Highlighted in bold the
dimensions associated with delayed partially labelled data streams.

where all labels are immediately available [33, 72, 81]. More recently, some authors investigated how
to leverage unlabelled data using semi-supervised learning (SSL) [50, 59], or active learning [106].
On top of that, significant advances were made in modelling and analysing the impact of delayed
labelling in supervised learning and concept drift detection for data streams [45, 73, 105].

We focus the discussion on SSL methods for leveraging unlabelled data to enhance a supervised
learning algorithm’s predictive performance. The basic assumption is that the algorithm has no
influence over the labelling process, making active learning impractical. This work aims to organise
the existing literature on SSL for data streams to facilitate new researchers and practitioners to
navigate it. Concomitantly, we seek to elucidate the connections between the SSL and the delayed
labelling literature to shed light on novel avenues for research. One challenging aspect of coping
with delayed partially labelled data streams concerns the fair evaluation of algorithms. To assist
in this perspective, we thoroughly discuss evaluation procedures for delayed partially labelled
streams. This paper also aims to highlight the associations between related machine learning tasks,
such as transductive learning, and to formalise the delayed partially labelled data streams.

This survey extends the existing literature by focusing on SSL and delayed labelling for data
streams. It is complementary to the vast literature on semi-supervised learning for stationary
data [21, 86, 103]; the evaluation of data streams [37], delayed labelling data streams [45] and
SSL algorithms in general [71]; concept drift detection assuming immediate labelling [38, 91] or
delayed labelling [105]; active learning for streaming data [104, 106]; and data stream mining in
general [5, 11, 36, 43].

The rest of this work is organised as follows. We first introduce the problem statement, clearly
identifying similarities and differences with related problems in Section 2. Next, in Section 3, we
point out theoretical learning guarantees for SSL in both offline and online scenarios. Section
4 introduces existing SSL methods for streaming data. Section 5 includes a thorough discussion
regarding the realistic assessment of SSL methods for data streams. The final Section 6 concludes
the paper and discusses avenues for future research as envisioned by the authors.

2 PROBLEM DEFINITION

In this section, we introduce the definitions and explicitly state assumptions concerning the problem
setting. Precisely, we begin with a general definition of supervised learning and then describe
verification latency, and partially labelled data in the context of evolving data streams. We
devote the end of this section to discuss the related problems to the setting we introduce.
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Definition 2.1. Instance data: Let X = {xy, ..., x1, Xoo } represent an open-ended sequence of
observations collected over time, containing input examples in which x; € R* and n > 1.

Definition 2.2. Labels: Let y be an open-ended sequence of target values collected over time,
such that for every entry in y there is a corresponding entry in X, but the contrary may not be true,
i.e., entries in X without a corresponding entry in y may exist. Furthermore, when y; depicts a
finite set of possible values, i.e., yx € {l;,...,Ip } for L > 2, it is said to be a classification task, while
when yi € R it denotes a regression task.

Definition 2.3. Data Stream: Let Y be a data stream i.e. a sequence of tuples S;, Ss, ... which
includes two types of tuples i.e.

S - {(x, )} if no true label is available yet
“r {Goy)} when a true label for x; becomes available

Hence, {(xx, ?)} is a tuple containing the observation, whereas {(-, yx)} is a tuple containing the
label corresponding to this observation.

Definition 2.4. Temporal-Mapping function: Let T(-) denote a function that extracts the
precise discrete time unit ¢ that x; and y became available. It is relevant to mention that T (xx) <
T (yy) must always hold, indicating that the input data x; becomes available at same the moment
or before yy.

Definition 2.5. Stream section: Let V[T, Tmax] denote a stream section i.e. a sequence of
instances and true labels that became available during a time window [Tpin, Tnax]. This means,
ka, Yk € ‘}I[Tmim Tmax] : (Tmin < T(.X'k) < Tmax) A (Tmin < T(yk) < Tmax)-

Definition 2.6. Verification latency: Let V (xy, yx) = T (yx) — T (xy) represent the time difference
ak.a. “verification latency” of the labelled instance represented by the tuple (x, yx).

Definition 2.7. Infinitely delayed labels: Let V (xx, yx) = oo denote the verification latency of
an infinitely delayed labelled instance a.k.a. unlabelled instance.

T(xx) = T(yx), as seen in Definition 2.4, denotes a situation where both the input example and
its label are provided at the same time instant, what is the same as receiving training instances
from some batch learning task. Asymptotically, V (xx, yx) — oo so that an observation x; has no
corresponding label y; (see Definition 2.6).

Based on the aforementioned definitions:

¢ (i) Immediate and fully labelled. Vx € X AVy € Y T(y) — T(x) = 1, i.e., the verification
latency between x and y corresponds exactly one time unit.

o (ii) Delayed and fully labelled. Vx € X AVy € Y T(y) — T(x) = D, where D is a random
variable representing the discrete delay between x and y limited by the finite range D € Z,,
where max (D) denotes the maximum delay.

e (iii) Immediate and partially labelled. If we relax the constraint that every X has a
corresponding entry on Y, we obtain a setting where X is only partially labelled. It is useful
to emphasize the difference between entries in X which will be labelled as X} and those
that will not be labelled as X7, and also to ascertain that often | Xy | < |Xy| as the labelling
process can be costly.

¢ (iv) Delayed and partially labelled. Similarly to (iii), we extend (ii) such that labels are
delayed and some of them never arrived, i.e. they are infinitely delayed.

The majority of the literature with respect to semi-supervised learning for data streams has
been devoted to (iii), while the intersection between delayed and partially labelled data, as in (iv),
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is yet to be thoroughly explored. Besides the matters of label availability, another concept that is
worth discussing in our definitions is whether the data distribution is stationary or evolving. In
general, we assume evolving data distributions, thus concept drifts are deemed to occur, which
may inadvertently influence the decision boundaries, and affect learned models. Note that if a
concept drift is accurately detected (without false negatives) and dealt with by fully or partially
resetting models as appropriate an independent and identically distributed (iid) assumption can be
made (on a per-concept basis), since each concept can be treated as a separate iid stream, thus a
series of iid streams to be dealt with!. Nevertheless, the typical nature of a data-stream as being
fast, dynamic and partially labelled encourages the in-depth study of methods for properly evaluate
algorithms under these settings and semi-supervised algorithms to exploit unlabelled data.

2.1 Related Problems

In this section, we provide a short description of learning problems that are related to SSL for data
streams, but that are not further scrutinized in this paper to avoid diverging from the delayed
partially labelled problem setting.

Active learning. When dealing with an abundant amount of missing labels or a costly labelling
procedure, active learning can be a viable alternative to SSL. Active learning approaches attempt
to overcome the labelling bottleneck by querying the label of selected unlabelled instances to an
oracle, such that the instances to be labelled are the most uncertain (e.g. a point lying close to
the discriminative hyperplane) and that the answered labels can bring the highest value to the
learning process. In this way, the active learner aims to achieve high accuracy using as few labelled
instances as possible, thereby minimizing the cost of collecting labelled data [79]. Zliobaité et al.
[106] introduced a theoretical framework for active learning from drifting data streams. The authors
stated three conditions for a successful active learning strategy in a drifting scenario: balancing
the labelling budget over an infinite amount of time, perceiving changes anywhere in the instance
space, and preserving the distribution of incoming data for detecting changes. Furthermore, in
[106] three strategies were presented and empirically evaluated, assuming that an external adaptive
learning algorithm is present.

Despite the advances in active learning for streaming data, it is sometimes hard to employ
such strategies. The first reason is that the oracle’s response time may be too slow, as it often
relies on a human expert. Second, still related to the labelling response time, if a concept drift
occurs, the instances selected to be labelled may be outdated. The latter issue can be amended
by using active learning strategies that take drift into account, as shown in [106]. Besides the
issues involving the instability of the concepts, and delay to obtain the labels, Zhu et al. [104] also
discusses the challenges related to the pool of candidates (instances to be labelled) being dynamic
and issues related to the volume of data. To address these challenges, Zhu et al. [104] proposed an
ensemble-based active learning classifier, where the minimization of the ensemble variance guides
the labelling process.

Transductive learning. Transductive learning concerns a situation where the unlabelled test
data set contains the whole of instances to be predicted, thus instead of producing a general model
for predicting any future instance, the output is the predictions. This is a “closed world” assumption,
where a successful solution is one where the algorithm can approximate the true labels of the
instances solely for the finite test data set. This differs from inductive learning, where the goal is to
yield a learning model capable of generalizing to previously unseen instances. Transduction is a
powerful technique to leverage unlabelled data, but it is limited to situations where the goal is to

INot in every case a concept drifting stream can be decomposed into a sequence of iid streams. Theoretically, gradual (or
incremental) drifts may occur where the distribution changes after every instance.
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produce accurate predictions to a given set of instances and not devise a general rule. The majority
of the algorithms for stream learning tend to focus on inductive learning. One possible reason is that
traditional transductive methods require many computations. Thus frequently performing these
may be prohibitive in a stream setting where predictions are often required to be fast. To circumvent
this problem, Ho and Wechsler [49] proposed an incremental version of the transductive confidence
machine (TCM) [39]. However, even though it is feasible to alleviate the computational aspects,
another essential issue is that since data streams are unbounded, it is challenging to generate a
closed set of instances.

Weakly multi-labelled data. Semi-supervised learning often stems from the case of having
limited human labelling power to label all examples. Such a scenario is particularly inherent to data
streams, where there are many instances, and they are arriving continuously. It is also aggravated
when there are multiple label variables associated with each input — the so-called multi-label
learning problem [84]. In this case, multiple labels yx C {l;,...,I.} (i.e., a subset) are associated
with each instance. In this context, weakly labelled data (see, e.g., [82]) refers to instances where
some, but not all of the relevant/true labels, have been applied to an instance. Specifically, the
absence of a label in this subset does not necessarily imply that it is not relevant; and this is the
challenge: to identify which of the non-relevant labels are missing in the labelled examples (it
is not clear which ones are missing). A related concept of partial multi-label learning [95] is the
generalization that additionally accounts for the possibility of false-positives (labels signalled as
relevant, which are actually not). If we view a subset as binary indicator variables (as is typical in the
literature), these problems become equivalently to L parallel (and possibly interdependent) noisily-
labelled streams. Similar issues exist in the general multi-output case (extending to regression)
(75, 89].

Missing values. Weakly multi-labelled data is also related to having missing values in the
output/label space, except in this latter case it is clear which values are missing. This can be
illustrated with an example in vector notation: yx = {l;,ls} < [1,0,1,0] (supposing L = 4) where
in the missing-valued case we may have [?,0, 1, ?] (compared to the weakly-labelled case where,
e.g., [0,0,1,0] where /; is a false negative in our label set). Of course, it is also common to have
missing values in the input space (as this affects all kinds of machine learning). This context is not a
main focus of this survey. However, we note that a common method to deal with missing values is
imputation. And, by building classifier or regression models to carry out this imputation (according
to the variable domain being imputed), it is possible to frame a missing value imputation as a
weakly-labelled multi-label problem [69]; which in turn can be seen as L parallel partially-labelled
streams.

Initially Labelled Streaming Environment Labelled data may only be available at the be-
ginning of the learning process. Therefore, a supervised learning algorithm can be trained with
the initial data, and another unsupervised mechanism used to update the model during execution.
This is a challenging problem setting as new labelled data is not available throughout execution,
therefore it is not possible to confidently verify the accuracy of the model during execution. This
setting was explored by Krempl [58], where the APT algorithm was proposed to track concept drifts
even in the absence of labelled data. Later, Dyer et al. [35] proposed the COMPOSE framework to
tackle the same problem setting, which also featured a detection mechanism that was independent
of labelled data.

Few-shot learning. Few-shot learning [90] refers to feeding the learning algorithm with very
few amount of labelled data. This approach is very popular in fields such as computer vision, where
a model for object categorization is able to discern between different objects even without having
multiple instances of each object for training. The term few-shot is accompanied by low-shot,
1-shot and 0-shot, which refer to training with a low amount of instances per class, only one per
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class and not even one labelled instance for each class, respectively. As expected, as the number of
labelled instances shrinks, the harder to produce accurate models. Approaching few-shot learning
(and its variants) using semi-supervised learning is a common technique, also, when possible it is
usual to leverage pre-trained models from similar domains (transfer learning).

Concept evolution. In some problems, the number of labels may vary over time. This problem
is known as concept evolution [67]. Concept evolution characterizes a challenging problem where
some instances are not only unlabelled but belong to a class that has not yet been identified. This is
true for scenarios where one want to characterize malware per family instead of the comparatively
more manageable task of classifying applications into malware or “goodware” (binary classification).
In this survey, we do not approach such a problem as it requires a different definition of the problem
as not all class labels are known a priori. A practical approach to address concept evolution in
data streams is to leverage the clustering assumption [86] or apply novelty (i.e. anomaly) detection
techniques to identify novel classes. Masud et al. [64] introduced DXMiner, an algorithm capable
of detecting novel classes by identifying novel clusters, while Masud et al. [65] used an outlier
detector and a probabilistic approach to detect novel classes. Abdallah et al. [1] proposes a method
to continuously monitor the flow of the streaming data to detect concept evolutions, whether they
are normal or abnormal.

3 LEARNING GUARANTEES

Supervised learning relies on different theoretical frameworks to ensure the conditions under
which learning is guaranteed, being the Statistical Learning Theory (SLT) the most prominent
contribution [87]. According to SLT, supervised learning is defined as the process involved in
converging to the best as possible classification or regression function f : X — Y contained in
the algorithm bias ¥, a.k.a. its space of admissible functions, in which X corresponds to the input
space and Y to the output space containing labels.

This convergence process is essentially focused on approaching some loss measurement Remp (f)
(or empirical risk) computed on training examples (x;, y;) € X X Y to its expected value R(f) (or
risk) which is only computable by having the joint probability distribution (JPD) P(X, Y). The basic
and most important concept behind this convergence is to make possible the use of the empirical
risk Remp (f) as a good estimation for the risk R(f), provided f € #. Observe that by making sure
Remp(f) — R(f) and the training sample size n — oo, one can use the empirical risk to select the
best classification function f* by using:

f* =argmin Remp (f),
feF

assuming the impossibility of computing the risk R(f) for real-world problems, because we would
never have access to the JPD.

Based on the Law of Large Numbers [29], Vapnik [87] formulated the Empirical Risk Minimization
Principle (ERMP) to represent Remp (f) — R(f) as n — oo in form:

P(sup [Remp(f) = R(f)| > €) < 2N (F,2n) exp (—27162), (1)
feF

given f is selected from the algorithm bias ¥, the supremum reinforces the worst possible classifier
that most influences in the divergence between both risks, N (F, 2n) is the shattering coefficient or
growth function defining the number of distinct classifications built from #, Remp (f), R(f) € [0,1]
and € € R,.

Given the use of the Law of Large Numbers, a set of assumptions must be ensured to prove
learning, otherwise the ERMP becomes inconsistent. The first assumption is that the JPD P(X,Y)
is fixed, so it does not change along with the data sampling, otherwise the convergence could not
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be ensured given samples would follow a different probability distribution. Second, all samplings
obtained from P(X, Y) must be independent of one another and identically distributed so that every
possible event from JPD will have its probability of being chosen as defined by its corresponding
density.

It is relevant to mention that SLT can be mapped into other theoretical frameworks such as
PAC-Learning and regularization methods [88]. Thus, from a such theoretical point of view, the
following sections assess learning guarantees for both semi-supervised offline and online scenarios.

3.1 Semi-supervised learning in offline scenarios

From the perspective of the semi-supervised learning on offline scenarios, the assumptions after
the Law of Large Numbers can be still met depending on the target application, to mention: (i)
the joint probability distribution (JPD) P(X,Y) must be fixed, and (ii) samplings from such JPD
must be independent from each other. From such theory, if the JPD changes over time, we could
somehow manage to obtain as much guarantee as possible so that the Empirical Risk Minimization
Principle (ERMP) becomes partially consistent, and thus we can come up with some learning bounds.
Complementary, if instances are not independent from one another, one option is to restructure
data spaces as discussed in [24].

In this section, we consider that our semi-supervised offline scenario is represented by a single,
and thus fixed, JPD whose data instances are independent of each other, while the next section
considers the opposite scenario common in online learning. Therefore, let us have some dataset
(xi,y;) € X XY, fori = 1,...,n, containing n input examples x; and their corresponding class
labels y; = {, —1,+1} with three possibilities: a negative, a positive and an empty label information.
Consider as the absence of a class label so that one has no information about such instance,
consequently its relative misclassification cannot be computed using a loss function £(x;, y;, f(x;))
provided a classifier f. The absence of class labels is what makes this scenario be defined as a
semi-supervised learning task, otherwise it would be a typical supervised task.

If we had all class labels, so that y; = {—1,+1}, the ERMP after the SLT would be sufficient to
represent learning bounds which formulates the conditions for which the empirical risk approaches
the expected risk, i.e., Remp(f) — R(f), as the sample size n — oo:

P(sup |Remp(f) = R(f)| > €) < 2N (F,2n) exp (—2ne?), (2)
feF

given the empirical risk is computed on a sample:

Remp((f) = = " €031 31 f (x0),

i=1
and the expected risk on the JPD:
R(f) = E((X.Y, f(X))).

In the same supervised scenario, Vapnik [87] proved the Generalization bound from Inequation 2
as follows:

R < Renp(F) + || (1oB(2N (7, 20) -~ log), ©

for § = 2N (F, 2n) exp (—2ne?), so that one can estimate how far the expected risk is from the risk
computed on some sample plus a divergence defined by the squared-root term.

Once we do not have access to a fully labeled dataset so that y; = {, —1, +1}, we relax the learning
bounds provided by the ERMP by redefining the sample size n = }; I(y;) as the number of labeled
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instances according to the indicator function:

1 ify; € {-1,+1},
I<y,-):={ i € -1+,

0 otherwise.

considering all available examples in some dataset (x;,y;) € X X Y, fori = 1,.. ., ngy, from which
the same SLT bounds (see Inequations 2 and 3) can be ensured provided the JPD P(X,Y) is fixed
and data instances are iid.

In attempt to show how this first and straight-forward conclusion is useful to define learning
bounds for semi-supervised learning in offline scenarios, consider some dataset (x;,y;) € X X Y,
for i = 1,...,ny instances sampled from P(X,Y). Consider that a fraction v of instances was
pre-labeled in {—1,+1} so that n = v X ny, therefore considering some pre-defined ¢ as the upper
probability bound for (see Inequation 2):

P(sup |Remp (f) = R(f)| > €) <6, (4)
feF

we can study the minimal training sample size [25] to ensure such bound which relies on § =
2N (F, 2n) exp (—2ne?) as proved by Vapnik [87]. In that sense, let us assume the Shattering
coefficient function N (¥, 2n) = n? for a specific semi-supervised algorithm working on some
d-dimensional Hilbert input space, thus defining the maximal number of distinct classifications
as the sample size n grows. Given the shattering coefficient represents the complexity of the
algorithm bias, term & reflects such complexity in terms of the pre-labeled sample size n available
for computing the loss function ¢(x;, y;, f(x;)) provided every classifier f € F.
Thus, after assuming N (F, 2n) = n?, we compute & as follows:

6 =2N(F,2n) exp (—2ne?) = 2n? exp (—2ne?) =2 exp (2logn — 2ne?), (5)

from which we can analyze the minimal labeled sample size n, characterizing the acceptable
divergence between the empirical risk Remp(f) and its expected value R(f). As this scenario
considers a polynomial shattering coefficient, this curve produced by § as n varies will approach
zero. For instance, if we decide to accept a divergence of 5% (¢ = 0.05) and set § = 0.1 to have
a probability of getting both risks acceptably close with probability of 0.9 (90% of the cases), we
would need n = 3,908 training labeled examples. Consequently, one can find the minimal training
sample size to ensure a given divergence € and some probabilistic upper bound &. For the sake of
comparisons, we suggest to consider at least € < 0.05 and § < 0.05.

It is still worth to discuss how an algorithm bias changes the minimal training sample size
necessary to address some semi-supervised task. The more complex an algorithm is, the steeper
will be its shattering coefficient curve thus directly requiring more data instances to ensure the
same learning guarantees, provided € and §. As discussed in [25], such complexity is related to the
number of hyperplanes used to devise a proper decision boundary, the number of dimensions the
input space has, as well as other factors such as how the dataset is organized (e.g. graph or table
of variables). The need for estimating the shattering coefficient function to proceed with further
algorithmic analysis has been motivating several studies in the last years [25, 26] 2.

Alternatively, we may consider the Generalization bound (see Inequation 3) to study a model we
wish to induce from data. In that circumstance, assume we have estimated the shattering coefficient

2We suggest the following R Package to estimate the Shattering coefficient function - https://cran.r-project.org/package=
shattering.
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N (F, 2n) = n? after setting § = 0.05, then we have:

R(f) < Remp(f) + \/% (log(2N (7, 2n)) — log 8) = Remp(f) + \/% (log(2n?) —1log 0.05),

7555
P

8log(n) 14.
RUP) < Rong() + 250
from which we conclude the empirical risk Remp (f) diverges from its expected value R(f) according

to term w/@ + @, which naturally converges to:

81 .
i \/ og(n) | 147555

n n

>
n—oo

as the training sample size n tends to infinity, thus proving learning in such a semi-supervised
scenario. However, we may consider what such square-root term brings in terms of information
and comparison among different learning settings. Consequently, the greater such term is, the more
complex the algorithm bias and the necessary training sample size to ensure learning bounds.

The square-root term represents the variance provided the space of admissible functions 7. It
consequently relates to the cardinality of the classification functions enclosed in the algorithm bias
and the acceptable upper bound for the ERMP (see Inequation 2) given § = N'(F, 2n) exp (—2ne?),
being therefore a way of regularizing the learning process. Regularization strategies are used to
reduce the error by fitting an appropriate set of functions given some training set, consequently
avoiding overfitting [88].

3.2 Semi-supervised learning in online scenarios

From the perspective of the semi-supervised learning on online scenarios, the assumptions after
the Law of Large Numbers (LLN) must be somehow dealt with, to mention once more: (i) the joint
probability distribution (JPD) P(X, Y) must be fixed, and (ii) samplings from such JPD must be
independent from one another. We easily conclude that both assumptions limit online learning
in which we certainly expect the JPD to change over time, a classical aspect known as concept
drift in the data streams scenario, as well as data observations will most certainly present some
degree of dependence. Therefore, some strategy must be employed to still make the Empirical Risk
Minimization Principle (ERMP) consistent so learning can be theoretically ensured.

As proposed by Pagliosa and Mello [24], Dynamical system tools can be used to reconstruct
the input space X so that all dependences are represented in terms of a new set of dimensions.
They employ Takens’ embedding theorem [83] to reconstruct some unidimensional time series
S = {s1,...,s:} into some high dimensional space referred to as phase space ® whose points or
states ¢; € @ are in form:

Gt = (S, Stars St20 - - -» St+(m—1)><r),

given 7 refers to the necessary time delay to unfold the temporal relationships, a.k.a. time delay, and
m corresponds to the embedding dimension or simply the number of axes necessary to represent
all dependencies.

According to their approach, a single-dimensional data stream could be reconstructed into
some phase space so that their temporal dependencies would be represented; therefore, all states
¢+ € ® would be independent of one another, thus solving Assumption (ii) of the LLN if one
needs to perform some regression on unidimensional data. However, it leaves some important
open questions: (a) how to deal with multidimensional data streams?; and (b) how to deal with the
classification task of semi-supervised data streams?
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Question (a) associated with Assumption (ii) was previously answered by Serra et al. [78] who
used the same concepts from dynamical systems to reconstruct multivariate time series S for
s; € R?, given d > 1, as follows (the upper index corresponds to each variable composing the
multivariate time series S):

_ 1 .1 1 2 2 2 d d d
¢t = (St: St4ps - oo St+(m—1)><f’ StsStrpr - oo st+(m—1)><r’ < SesSprp s St+(m—1)><f)’

so that, in addition to represent the temporal relationships of a single variable with itself, it also
unfolds the dependencies that each variable of the time series (upper index) has with the others.
Therefore, assuming that a multidimensional data stream has some time index as data observations
arrive, one can extend Serra’s framework to solve Assumption (ii) of the LLN, thus answering
the first question. Observe it is not an unreasonable assumption to require data observations are
indexed over time.

Observe that someone may doubt the presence of data dependence among stream observations.
However, it is not difficult to mention several real-world phenomena illustrating such scenarios,
such as in the context of air temperatures of a given world region, climatic variables, interaction
of chemicals in reactions and the growth of populations along time [54]. Several researchers
associated with the area of dynamical systems have been applying the same tools to obtain iid
spaces [55, 77, 85].

Now, we get back to the Assumption (i) of the LLN, which requires the joint probability distri-
bution (JPD) P(X, Y) to be fixed in order to ensure learning. In that specific scenario, we suggest
modelling the current JPD using past data observations and, as soon as some relevant data distri-
bution change or drift is identified, past data must be discarded and the learning algorithm must
start buffering new observations to induce a new model. Such approach is used in [27] to build up
new models as data arrives, using McDiarmid’s inequality to detect data drifts and indicate the best
moment to retrain learning models using recent collected observations.

At last, all theoretical concepts addressed in this section intend to support other researchers to
analyze their learning algorithms in an attempt of obtaining as much as possible guarantees while
tackling partially labelled real-world streaming problems.

4 METHODS

Supervised machine learning is defined by using labelled data to train algorithms to predict unseen
and unlabelled instances. These unlabelled examples do not influence algorithm anyhow. In most
applications, obtaining labelled data is time-consuming and expensive, as labelling often depends
upon human annotators. On the other hand, acquiring unlabelled data is an easier task, but these
data cannot update supervised models directly. Semi-supervised learning is a paradigm of learning
that exploit unlabelled data to leverage models trained with labelled data.

The caveat is that semi-supervised learning methods make strong assumptions about the data
or the model [86, 103]. For example, one can assume a common underlying density across points
belonging to a single class, or a common manifold underlying the points of each class. Figure 2
illustrates two such examples. Deciding which class to assign the test data point is relatively
intuitive looking at all data points, but is not clear when considering labelled data points. This
highlights precisely the advantages of using the unlabelled points.

Zhou and Li [102] organize techniques that leverage unlabelled data in roughly three categories:
semi-supervised learning, active learning and transductive learning. This high-level organization
does not take into account the constraints and objectives of the learning problem, for example,
active learning is not applicable if an oracle is not feasible. More recently, Engelen and Hoos
[86] organized techniques first in two classes, transductive and inductive. The majority of the
techniques fall under the inductive category, since similarly to active learning, transductive learning
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Fig. 2. Two illustrations of the utility of unlabelled data points in semi-supervised learning: A model is asked
to produce a decision for a particular test point (shown in ), having observed many points, only a small
number of which are labelled (shown in class 1 and 0 shown in red and blue, respectively). A semi-supervised
method makes use of the unlabelled points to deduce a dense area per class (as would be appropriate in the
example on the left), or a manifold (as appropriate on the right; a linear manifold in this particular example).

assumes specific characteristics of the learning problem as discussed in Section 2.1. Engelen and
Hoos further divided inductive techniques into wrapper methods, unsupervised preprocessing,
and intrinsically SSL. Wrapper methods includes those that leverage existing supervised learning
algorithms, such as co-training, self-training and boosting algorithms. Unsupervised preprocessing
denotes techniques that seek to improve the performance by extracting useful features from the
input data without relying on labelled data. Finally, intrinsically SSL techniques include methods
that are direct extensions of supervised learning methods, i.e., they extend the objective function
of the supervised method to account for unlabelled data.

Even though it makes sense to leverage unlabelled data for the application of machine learning
to streaming sources, this practice is relatively recent compared to similar approaches applied
to static data. Therefore, some methodologies explored in the previously mentioned taxonomies
are under-represented. For example, only a few works explore transductive learning for data
streams, noticeable [30]. This section focuses on inductive methods, further categorizing such
methods as: Intrinsically SSL, Self-Training, Learning by Disagreement, Representation Learning,
and Unsupervised and SSL Drift Detection. All these methods categories can be found in the batch
literature, except for drift detection. Drift detection methods are of extreme importance when
dealing with streaming data as unsupervised or semi-supervised drift detection can serve several
purposes, such as indicating when to acquire new labels, signal relevant changes to the domain
that might have not yet influenced the decision boundary, and others.

4.1 Intrinsically SSL

We start our characterization by discussing streaming learners that exploit the unlabelled instances
directly as part of objective function or optimization procedure.

Maximum-margin. Support Vector Machines (SVMs) are a popular method for supervised
machine learning, based on the hypothetical maximum-margin classifier. The maximum-margin
classifier’s goal is to separate a binary classification problem, such that the hyperplane that splits
the input space maximizes the margin. The margin is the perpendicular distance from the line
to the closest points, namely the support vectors. In the construction of the classifier, only the
support vectors are relevant. When learning a fully supervised SVM, the hyperplane is learned
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from fully labelled training data through an optimization procedure that maximizes the margin.
In complex data scenarios, it is unlikely that there is any hyperplane that entirely separates the
data. Thus the constrain of obtaining the maximum-margin is relaxed, and the goal is to find a soft-
margin classifier, i.e. one that allows some of the training examples to violate the maximum-margin
assumption.

In the streaming setting, SVMs were explored for both supervised and semi-supervised problems.
SVMs require considerable computational resources when trained on large volumes of data as
the training problem involves the solution of a quadratic programming problem. Domeniconi and
Gunopulos [32] compared several incremental techniques for constructing SVMs and shown that
they achieve predictive performance closer to the batch version while requiring less training time.
Differently, from prior incremental strategies for constructing SVMs, the techniques presented
in [32] inspect data only once, which is more suitable for data stream processing than other
techniques. Zhang et al. [99] introduces a relational k-means based transfer semi-supervised SVM
learning framework (RK-TS3VM), where instances are organized into four types: labelled (type I)
and unlabelled (type III) from the same distribution as the data arriving shortly; and labelled (type
I) and unlabelled (type IV) from a similar distribution to the data arriving shortly. Learning from
type I instances follows the traditional approach to maximize the margin given labelled instances,
thus solving a constrained convex optimization problem. To learn from type II, IIl and IV, the
authors had to modify the objective function (type II and III) and rely on a relational k-means (RK)
model to build new features for the labelled examples using information extracted from type IV
instances. Empirical results presented in [99] shows that RK-TS3VM outperform fully supervised
SVM models trained only on the labelled data as well as S3VMs (semi-supervised support vector
machines) [7].

Generative models. Generative models hypothesizes a model p(x,y) = p(y) X p(x|y) where
p(xly) is an identifiable mixture distribution. Using the Expectation-Maximization (EM) algo-
rithm [28], the mixture components can be identified given a large amount of unlabelled data.
However, generative models require approximately correct modelling of the joint probability p(x, y).
If the modelling is incorrect, the unlabelled data may hurt performance. In contrast to discriminative
models that only aim to estimate the conditional probability p(y|x), p(x,y) is more complicated
to capture and too much/too little effort may lead to an incorrect model. Moreover, even if the
modelling is correct, unlabelled data may hurt learning if a local maximum is far from the global
maximum while using the EM algorithm.

Besides these limitations, the EM can be very slow to compute, especially when the data’s
dimensionality is high. Therefore, it is unlikely to apply the original EM algorithm to streaming
data. Cappé and Moulines [17] introduced an online version of the EM algorithm with provably
optimal convergence behaviour. The online EM algorithm [17] is analogous to the standard batch
EM algorithm, which facilitates its implementation.

Nigam et al. [70] investigated the application of EM to text classification, such that the text
documents are represented using a bag-of-words (BoW) model. Even though a BoW representation
may conceal much of the complexities of written text, the authors show that there is a positive
correlation between the generative model probability and the classification accuracy for some
domains. In these cases, the application of EM alongside Naive Bayes suffices to leverage predictive
performance. Such an approach could be adapted to data streams, given the combination of the
online EM method [17] and the natural adaptation of Naive Bayes to perform incremental updates.

To compensate for the drawbacks of generative models, Grandvalet and Bengio [44] proposed a
method called Entropy Regularization, aiming to only learn from unlabelled data that are informative,
that is, when classes are well apart to favour the low-density separation assumption. Grandvalet and
Bengio [44] argue that unlabelled data are not always beneficial, mostly when class overlap occurs,

, Vol. 1, No. 1, Article . Publication date: June 2021.



A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 13

and its informativeness should be encoded as a prior to modify the estimation process. The strength
of the prior is controlled by a tuning parameter A. A deterministic annealing process helps driving
the decision boundary away from unlabelled data, thus avoiding poor local minima. Ultimately,
the method they propose estimates the posterior distribution by maximising the likelihood of the
parameters based on labelled data and at the same time being regularised by unlabelled data via A.

4.2 Self-training

Self-training figures as another commonly used technique for semi-supervised learning. The idea
is to let a classifier learn from its previous mistakes and try to reinforce itself. Self-training acts
as a wrapper algorithm that takes any arbitrary classifier. Therefore, if we have an existing, fully-
supervised learner that is complicated and hard to modify, self-training is an approach worth
considering. Self-training has seen its application in natural language processing tasks such as
word sense disambiguation [98] and sentiment analysis [62].

In an offline scenario, self-training works as follows. Given a dataset S that consists of a set
of labelled data X and unlabelled data Xy such that S = X; U Xy, a classifier C is trained on X,
and after that used to predict the labels in Xi;. The predictions with a high confidence score are
assumed true and added to X} as new labelled data. The process repeats until convergence. When
implementing a self-training algorithm, we must ponder the following issues: (i) how to evaluate
the confidence of a prediction, and (ii) what the threshold for a "high" confidence score is? These
issues remain relevant in an online scenario. Additionally, the learner must be adapted to learn
incrementally from labelled and unlabelled instances coming from the stream.

Wei and Keogh [92] introduced experiments using a self-training (i.e. self-labelling) approach for
time series classification. Special considerations were taken into account to leverage a one-nearest-
neighbour classifier by using unlabelled data. The main challenge in adopting such a strategy to
a streaming scenario is that it requires multiple passes over the input data. More recently, Jawed
et al. [53] proposed a semi-supervised time series classification algorithm that leverages features
learned from the self-supervised task on unlabelled data. It exploits the unlabelled training data
with a forecasting task which provides a strong surrogate supervision signal for feature learning.

Le Nguyen et al. [59] proposed a self-training learner designed to receive as input either a single
instance or a batch of instances at a time. A distance-based score was proposed to overcome the
fact that some classifiers are unable to produce confidence scores. The confidence threshold that
determines whether instances are used for self-training could be fixed or adaptive concerning
the average confidence scores observed in a window. Le Nguyen et al. [59] observed that the
variant using a windowed input, distance-based scoring, and fixed confidence threshold achieves
the best performance. Similarly to [59], Khezri et al. [56] uses a the self-training approach which
uses streaming classifiers predictions along with distance-based methods to select a set of high-
confidence predictions for the unlabeled data.

4.3 Learning by disagreement

Learning by disagreement incorporates several strategies, which takes the form of learners “teaching”
other learners. The canonical example is co-training [14], in which two models are trained on two
different views of the same data. Multi-view learning [97] generalizes co-training to more situations
where more than two views are available. Also, if multiple views are not available, one approach
is to enforce the disagreement among the learners’ predictions [102]. This artificially simulates
multiple views from single-view data. The disagreement among learners can be achieved through
many diversity-inducing techniques, such as bootstrapping aggregation [15].

Co-training. Blum and Mitchell [14] introduced co-training, relying on the intuition of using
two separate learners to “guide" each other with the predicted labels they are most confident of
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during the learning process. To achieve good predictive performance, co-training relies on two
assumptions [14, 61]: the consistency assumption and the independence assumption. Consistency
implies that the instance distribution is compatible with the target function, i.e. for most instances,
the target functions over each view yield the same class label. Furthermore, the two views must
be conditionally independent, given the class label. Given two views X“ and X? and class label y,
X* and X® are conditionally independent given class y iff, given any value of y, the probability
distribution of X# is the same for all values of X5, and the probability distribution of X5 is the
same for all values of X*. The batch co-training procedure is relatively simple. First, learners A
and B are trained on labelled views X4 and X5, respectively. Second, alternately A and B yield
predictions for the unlabelled data. Third, the most confident predictions produced by A are added
to the training set of B and vice-versa. This process repeats until reaching a stopping criterion.
The first apparent challenge in applying co-training to streaming data is that it is impractical to
repeat the process iteratively. Another issue that arises in an evolving streaming setting is that
each view’s underlying data may change over time. During periods of change, learners will likely
yield incorrect predictions with high confidence contributing to their counterparts’ predictive
performance degradation.

Learning by disagreement. The key ideas behind learning by disagreement is to generate mul-
tiple learners; let them collaborate to exploit the unlabelled data; and maintain a large disagreement
between them. Learning by disagreement comprehends methods such as Tri-training [101] and
Co-Forest [60], and it can be considered a generalization of co-training [14]. In these strategies, an
set of learners (or ensemble) is trained on single view data, and the different views are simulated
by enforcing diversity with respect to predictions through known techniques, such as bootstrap-
ping [15] or random subsets of features, as in Random Forest [16]. One attractive idea behind using
ensembles is that the majority of the methods do not restrict which base learner should be used,
thus it becomes a fairly general technique for leveraging unlabelled data. The downside, as with
similar techniques, is that if not properly regularized the base learners may converge to the same
decisions, as members of the ensemble train each other.

Ensemble methods are popular approaches for supervised tasks involving data streams [40],
for several reasons: (1) ensembles can leverage predictive performance, often surpassing what
is achievable with a single (complex) learner; (2) ensemble-based methods can be coupled with
concept drift detection [12, 41, 42]. However, ensemble methods are costly in terms of computational
resources, which can be a major concern when dealing with data streams. Even though, several
ensemble methods are embarrassingly parallel, streaming and parallel implementations of such
algorithms requires extra efforts to better exploit the distributed setting [18, 41, 63].

The extension of co-training and learning by disagreement for data streams is not trivial as
the algorithms that implement such techniques relies on multiple passes over the training data.
Soemers et al. [80] leverages SSL in an unusual way while training an incremental regression tree,
i.e. FIMT-DD [51]). In [80] the goal is to use FIMT-DD to cluster credit card transactions, and then
apply a contextual multi-armed bandit (CMAB) algorithm that makes use of the structure of the
FIMT-DD model. SSL is used to assist in the training of the FIMT-DD model. Since the FIMT-DD
does not split a leaf node until a sufficiently large number of instances have been observed, the
number of instances at each leaf can be large, which adversely affects the CMAB algorithm. To
circumvent such problem, in regular intervals, logistic regression models are used to predict the
labels of the transactions at the leaves, such predictions are then presented to the tree as true labels,
which then can lead to further tree splits. This approach can be viewed, even though not explicitly
mentioned by the authors, as a particular case of learning by disagreement.
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4.4 Representation Learning

A general strategy for semi-supervised learning is to use unlabelled examples to build a repre-
sentation of the input data, and then use this representation as input to a model for obtaining
predictions. This technique is sometimes referred to as feature learning [6]. The idea is that an
improved representation will lead to improved predictions; and since representation learning can
naturally be an unsupervised task, training labels are not required. Figure 4 shows an illustration
of this strategy.

Restricted Boltzmann machines (RBMs) are an example of kind of model that has been
used in semi-supervised data stream contexts [76]. Trained using contrastive divergence, a single
iteration can be carried out per instance, thus making them suitable for streams. As in the general
strategy of representation learning, it is assumed that this representation improves the learning
and prediction process whenever training labels are available, or predictions required, respectively.

One can use the incrementally-learned representation z as input to any off-the-shelf data-streams
classifier (naive Bayes, Hoeffding tree, etc.). A second option is to use the RBM’s weights as the first
layer of a neural network, to then be fine-tuned with back propagation [48] whenever a training
label is available, with some form of stochastic gradient descent; a natural incremental algorithm.
Predictions are carried out via a forward pass as in any multi-layer neural network.

In RBMs the variables are binary, z; € {0, 1} but one may also use the probabilistic interpretations
[P(z1]x),...,P(zr|x)] as the representation for an instance x.

In a multi-label context, one may also obtain a representation of the label vector y in a related
manner [23] although to our knowledge streaming variations have not yet been developed.

Auto-encoders are another suitable (and related) approach. An auto-encoder is a neural network
that learns to predict its own input. However, usually only the inner layer representation (z) is of
interest (hence, one can view Figure 4 (left) as an auto-encoder with the top part of the network
removed). Again, as a neural network, gradient-descent based method, learning can be an inherently
incremental process. This, as well as their non-linearities, make them more suitable and powerful
for streams than linear methods such as principal components analysis [6].

It can easily be argued that RBMs are a particular kind of auto encoder. In both cases, it can
be emphasised that many-layer (i.e., deep) models can be used (deep representation learning). In
the case of RBMs, this is typically (but not always) done greedily. In a standard auto-encoder, it is
simply a deep neural network where a single layer z is taken. Again: the layer can be taken and
given to any off-the-shelf data-stream learner (i.e., as a meta method), or turned into an instance-
or batch-incremental neural network allowing back-propagation whenever labelled examples are
provided by the stream.

Cluster representations are useful to identify cohesive sets of input instances, which in turn
can be exploited by an SSL algorithm. The cluster-then-label technique assumes that instances
belonging to the same cluster may share the same label. Applying classic clustering algorithms, such
as k-means, to streaming data is challenging as such algorithms repeatedly iterate over the data.
The majority of the stream clustering methods incrementally update micro-clusters (summarised
representations of the input data). The actual clustering algorithm is only occasionally executed in
an offline step using the micro-clusters as input. Fig. 3 illustrates a situation with three clusters
summarising several micro-clusters and their respective instances. The instances in Fig. 3 are just
for illustration purposes; the whole meaning of using micro-clusters is not to store the actual
instances after the micro-cluster is updated.

One such clustering algorithm to follow this approach is CluStream [2]. CluStream takes a fixed
number of micro-clusters m, which are updated whenever a new instance arrives. The offline phase
of CluStream employs k-means to the micro-clusters. Recently, Le Nguyen et al. [59] proposed
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Fig. 3. Anexample of clusters, micro-clusters and instances. C; and C; clusters contain a majority of instances
belonging to the and red class labels, respectively. C3 has no labelled instances; thus no inference about
the label of new instances assigned to it can be made.

a cluster-then-label approach utilizing CluStream, such that each cluster had an associated class
label frequency counter. Pseudo-labels were assigned to arriving unlabelled data according to the
most frequent label associated with its closest cluster. A similar strategy was earlier explored by
Masud et al. [66], where an individual model created K micro-clusters from a chunk of data. The
prediction was given after determining the closest k nearest clusters from it. The predicted class
label was the one with the highest frequency of labelled data across all of the closest k clusters.

Realistically, any unsupervised method that can produce a useful representation of the (unlabelled)
data can be considered potentially useful in the semi-supervised settings. And any algorithm for
such a representation that may be suitable for a data stream is thus suitable for semi-supervised
learning in a data-stream setting. Mixture models are typically trained using the EM algorithm,
which is an iterative algorithm requiring several sweeps over the data, however it can be adapted
to streams [17]. In fact, the EM algorithm and k-means are special cases of self-training (see
Section 4.2).

4.5 Unsupervised and SSL Drift Detection

Real-world problems tend to be very dynamic. For example, consumer behaviour may change
as time goes by, a group of people can change their opinion about a product or a political party,
the attacks a network receives change as new barriers are created, and so on. Learning from data
that distribution may change over time is challenging for conventional batch machine learning
algorithms. These algorithms assume that the data distribution is static. Conventionally, data
streams that contain drifts are identified as evolving streams.

There are many aspects to consider when discussing concept drift, including its cause, rate,
and data distribution. Generally, a drift can be characterized either as “real” or “virtual” [38]. A
real concept drift happens when changes affect the class labels’ posterior probabilities, p(y|X),
i.e., the output variable distribution changes affecting the upcoming predictions. Virtual concept
drift is said to occur if the distribution of the incoming data p(X) changes without affecting
p(y|X). Usually, there is not much interest in virtual drifts because they do not change the output’s
conditional distribution. A sizeable amount of research has been dedicated to discuss different
aspects concerning concept drift [38, 91]. This section focuses on discussing concept drift in
scenarios where labels are delayed and often partially available.
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Fig. 4. An unsupervised model (left), able to form a representation of data points as z1, .. ., zx. In this figure
an undirected graphical representation is depicted, but representations of generative models (where arrows
point from z to x) are also possible, depending on the learning algorithm chosen for this step. In a second
step, the representation can then be used directly as input to the supervised learning model (along with
training label y, whenever it is available; i.e., learns to map z — y). A second specific option is to consider
the representation part of a neural network (shown here, right — where arrows show the direction of the
forward pass) and use a backward pass through all layers whenever a training label y is available — thereby
fine-tuning the representation for discriminative power. Shaded nodes are those observed in the data stream
and white nodes are the latent/hidden representation that is learned.

Most concept drift detection algorithms are applied to the univariate stream of correct/incorrect
classifier predictions. Such strategies require that labelled data is available as soon as possible to
respond to concept drifts in a timely fashion. From a practical standpoint, despite their intrinsic
differences, most drift detectors trigger when the observed model’s predictive performance starts
to degrade. Algorithms such as ADWIN [10] and EDDM [4], were tested under the assumption
that labelled data is available almost immediately. However, if the ground-truth is not immediately
available, then these algorithms’ ability to timely detect drifts is severely decreased.

To illustrate the impact of delayed labelling on a drifting stream, we present a small experiment
with data generated using the AGRAWAL generator with 3 abrupt concept drifts (at instances
25,000, 50,000, and 75, 000). In these experiments, we used an ensemble algorithm [42] capable
of detecting and adapting to changes by resetting base models whenever changes are detected
(by ADWIN [10]) on their univariate stream of correct/incorrect predictions. Figure 5 depicts the
amount of concept drifts detected (y-axis) over the processing of 100, 000 instances with and without
delayed labelling. In Figure 5, the detections for the “No delay” experiment shows a high rate of
detection immediately after the concept drifts, except for a few arbitrary drift signals in-between
the concept drifts. A labelling delay of 10, 000 instances severely impacts the ability to detect the
changes, as shown in the Delayed labelling variant, where the detections still occur but with a shift
of approximately 10, 000 instances. The impact on the predictive performance in the delayed and
not delayed scenarios is clearly observable in Figure 6. The experiment depicts the prequential
accuracy 2 as the 100, 000 instances are processed. The delayed labelling causes longer periods of
poor accuracy (below 50% on a balanced binary problem).

The occurrence of a concept drift indicates that something is off concerning the learning model.
Several actions can be taken after drift is detected, such as raise the alarm to the user, trigger
automatic changes to the underlying model, or selectively request new labelled data (active learning).
Research is often devoted to automatic detection and recovery [41]; however, these can be frowned
upon because they give less control over the model. Raising the alarm and signalling the need
for new labelled data is a less drastic approach that gives the data scientists behind the model
more control. This control is especially useful in scenarios where prediction stability and fairness

3 A window of 1,000 instances was used in this prequential accuracy evaluation.
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Fig. 5. Drifts detected by a 10 learner SRP model using ADWIN on AGRAWAL with and without labelling
delay. Red dotted vertical lines indicate the location of concept drifts.

No delay Delayed labelling (10,000)

preq. accuracy
®
&
preq. accuracy
~ [} ©o
o o o

o
o

o
a

5]

=3

“““““““““““ 40 -
0 5 101520253035404550556065 7075808590 95100 0 5 101520253035404550556065 7075808590 95100
# instances (thousands) # instances (thousands)

Fig. 6. Accuracy by a 10 learner SRP model using ADWIN on AGRAWAL with and without labelling delay.
Red dotted vertical lines indicate the location of concept drifts.

are equally (or more) important than accuracy. A brand new model might be accurate for the
immediately new data, yet it may be unstable to produce predictions given that it was only trained
on a small amount of data. On top of that, automatically re-training the model leaves room for
unfair treatment of underrepresented groups in the data, e.g., it is harder to prevent gender and
race discrimination if the model is being updated on the fly without being reviewed. Therefore,
one interesting application is to detect concept drift and only notify the user. Depending on the
machine learning pipeline, a new model might be created on the fly to replace the old model, but it
will not be deployed immediately without user interference. Another option is to notify the user to
suggest instances for labelling using active learning strategies for data streams [106].

Zliobaite [105] presented an analytical view of the conditions that must be met to allow concept
drift detection in a delayed labelled setting. These conditions depends on characteristics of the
concept drift, i.e. how the change affected the input probability P(X) and the posterior probabilities
P(w;|X) of the class labels w;. Zliobaite [105] thoroughly discussed when it can be expected that
changes are observable or not as shown in Table 1. One interesting connection between semi-
supervised learning and unsupervised concept drift detection is that if the underlying marginal data
distribution P(X) over the input does not contain information about P(y|X) or indicates changes
on P(y|X), then it is impossible to exploit unlabelled data to improve a supervised learner (SSL) or
detect a change ((3) in Table 1).
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P(w;|X)
change no change
change (1) important & observable (2) observable
no change | (3) important & unobservable | (4) no drift

P(X)

Table 1. When concept drift detection is observable and important (affects the decision rules), adapted
from [105]

A handful of algorithms focus on drift detection on delayed, partially labelled or unlabelled
data streams. Examples include SUN [94] and the method from Klinkenberg [57] based on support
vector machines. The former uses a clustering algorithm to produce ‘concept clusters’ at the leaves
of an incremental decision tree, and drifts are identified according to the deviation between history
concept clusters and the current clusters. Haque et al. [47] proposed an approach that dynamically
determines the boundaries of windows by detecting significant changes in classifier confidence
scores using a limited number of labelled instances. This approach is integrated with a classifier
to form a complete SSL framework that utilises dynamic chunk boundaries to address concept
drift and concept evolution. Cerqueira et al. [19] presents an unsupervised drift detector based on
a teacher-student approach, where a predictive model (teacher) is built using an initial batch of
labelled training data. The teacher’s predictions are used as class labels to train a surrogate model
(student), which will learn to mimic the teacher. A drift detection algorithm is used to identify
variations in the mimicking error of the student. The hypothesis is that if the mimicking error
increases, then it means that a concept drift has occurred.

5 FAIR COMPARATIVE ANALYSIS

Like other machine learning methods, SSL methods should be evaluated in a realistic process
to verify their capabilities while considering other applicable methods. Van Engelen and Hoos
[86] observed that additional factors have to be considered during evaluation compared to fully
supervised learning scenarios.

First and foremost, the question arises of whether the use of a semi-supervised approach yields
performance gains compared to supervised methods [71]. Furthermore, a comparison of an SSL
method of interest with other SSL methods is required. Similarly to other machine learning methods,
the selection of the data for which predictions are evaluated has to be followed by calculating
performance measures. Interestingly, due to the latency of ground truth labels, multiple predictions
made for a single instance at different times before the arrival of its true label may be considered in
the evaluation [45]. The objective of this section is to address the unique aspects of the evaluation
of semi-supervised stream mining methods while taking into account non-negligible delays in the
availability of ground truth labels.

5.1 Evaluation of machine learning methods

Evaluation of machine learning methods necessitates applying an appropriate combination of error
estimation methods, which include but are not limited to the selection of data used for model
development and testing. In addition, performance measures matching domain needs have to be
selected. An extensive study on evaluating learning algorithms by Japkowicz and Shah [52] has
already provided in-depth coverage of performance measures for classification, how they should
be calculated and how different candidate methods should be compared. However, the latter work
is focused on the fully supervised batch learning paradigm, i.e. the use of fully labelled data sets
rather than partially labelled data streams for both learning and evaluation purposes.
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In recent years, there has been an increasing number of studies on evaluating learning algorithms
under other settings than fully supervised batch learning. In particular, Oliver et al. [71] examined
the impact of various factors such as hyperparameter tuning, class imbalance, and volume of
unlabelled data on the evaluation of semi-supervised deep learning methods and revealed how
important careful consideration and documenting of these and other factors could be. However, in
this major study on evaluating SSL methods, the focus was limited to batch learning. As far as the
evaluation of machine learning methods applied to data streams is concerned, new procedures aimed
at how data streams should be used for online learning and evaluation purposes were developed. A
summary of the most popular of these methods was made in [11]. Importantly, these methods do
not consider label latency. Besides new performance measures such as measures reflecting temporal
dependencies in the data [13], intermediate performance measures capturing the performance of
multiple predictions made over time for a single instance [46] were proposed. A particular limitation
of these works from the perspective of our study is that these measures assume a fully supervised
setting.

While each of these studies refers to at least one of the aspects of the evaluation of SSL methods
for delayed partially labelled data streams, to the best of our knowledge, only selected aspects of
the evaluation of SSL methods were covered in them. There are relatively few studies on SSL under
delayed labelling settings (as defined in Section 2), which we refer to below.

Taking into account the complexity of the evaluation of machine learning methods [52], in this
section we aim to focus on the unique aspects of the evaluation of SSL methods for partly labelled
delayed data streams, rather than provide a holistic view of all aspects of the evaluation of stream
mining methods. Our intention is not to repeat these aspects which are common to the evaluation
of other stream mining techniques, but to pay particular attention to how the evaluation relevant
for this study differs from the evaluation suggested for related tasks. Furthermore, we conclude
this section with a unified view of the recommendations we make.

All data streams considered in this section are assumed to be delayed data streams. Furthermore,
let us observe that while data streams are infinite by definition, the evaluation of learning methods
inevitably relies on stream sections ¥ [ Tiin, Timax |- In particular, the period [Tinin, Tnax] may be the
period of a single concept or may span multiple concepts.

The remainder of this section is organised as follows. First, an overview of the evaluation
processes and measures applicable to stream mining methods is presented. This is followed by a
discussion of the way standard evaluation practices can be tailored to enable a comparison of SSL
methods with fully supervised methods. Next, the role of data streams used in the evaluation and
other key factors influencing the evaluation outcomes are discussed. This provides the basis for the
unified evaluation process proposed in this study, which concludes this section.

5.2 Evaluation of stream mining models

5.2.1 Evaluation process. The evaluation of machine learning methods for data streams is often
focused on “how” past predictions influence the current model’s predictive performance measure.
The most straightforward approach is to evaluate predictions in a test-then-train fashion; as
the name implies, each instance is first used for testing and then for training. The predictive
performance of the learning algorithm in test-then-train represents the average value of all the
instances assessed up to that point in time [11, 45]. In test-then-train evaluation, the latest predictive
performance estimation is influenced by all previous predictions. This characteristic is desirable
when the goal is to understand how well the model performs up to a given point in time. However,
it may not give a clear view of how well the model is performing at a given period of the stream. For
example, several recent incorrect predictions (perhaps caused by a concept drift) may be shadowed
by thousands of old correct predictions.
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Fig. 7. The types of predicted labels under delayed labelling setting. Based on Grzenda et al. [45]

One approach to avoid undesired influence from previous predictions is to perform a periodic
holdout evaluation, where training and testing are interleaved using predefined windows, such
that one window is used for training and the following used only for testing. This approach can be
considered wasteful as labelled data that could be used for training (after testing) is discarded. Thus,
an alternative approach is to use a prequential evaluation [11], where test-then-train is applied
to a sliding window, or a fading factor is used, to forget old predictions. A more in-depth discussion
of both approaches to prequential evaluation can be found in Gama et al. [37]. Importantly, when
data are only partly labelled, the prequential evaluation is still applicable, as the loss function can
be calculated only for those observations for which labels y; are known [37]. A well-accepted
approach for increasing confidence in the evaluation results of batch evaluations is cross-validation.
The challenge associated with cross-validation on a streaming setting is that it is infeasible to
reprocess the whole stream. To cope with this constraint Bifet et al. [9] introduced an approach for
cross-validation in an online setting, where the models are trained and tested in parallel on different
folds of data. Furthermore, in delayed data streams, predictions are typically made at T (xx) and can
be evaluated only after the corresponding true labels arrive. This means verification latency [31]
occurs.

Grzenda et al. [45] claim that besides “how” predictions affect the predictive performance, it is
also key to consider “when” labels are made available as part of the evaluation. This leads to the
concept of continuous re-evaluation introduced in [45] and further explored in [46]. The goal
of continuous re-evaluation is to observe if, and how fast models can transform an initial, possibly
incorrect prediction made at T(xy) into a correct prediction before the true label arrives at T (yx).
While waiting for a label yi to determine whether a prediction was correct or not, the model is
incrementally trained with labels from other instances that arrived before T (yx). These updates to
the model may change the initial prediction yield for x.

This evaluation is essential to scenarios where evolving predictions are relevant, such as contin-
uously re-assessing whether a recently released application is “malware” or “goodware” until the
ground-truth is available [20]. Continuous re-evaluation is the generalisation of the test-then-train
approach, as it provides a way of calculating and assessing initial predictions made for x; at
T(xy), possible periodic predictions made for the instance before T(yx), and final predictions
made at T (yg) i.e. immediately before using the true label to possibly update a model [45]. Fig. 7
illustrates the way all these types of predictions are produced for the x; instance. Continuous
re-evaluation assumes that for every instance, its true label is available with non-infinite delay [45].
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Even in scenarios where evolving predictions are not essential, it might still be useful to also
consider intermediary predictive performance as it indicates how fast the model can adapt to
predictions given that other labelled data were made available. Finally, one could potentially adapt
continuous re-evaluations to partially delayed labelled streamas, the main difference being that
only instances where y arrives will be used for assessment.

5.2.2  Performance measures. A fundamental aspect of every evaluation of stream mining methods
is the selection of performance measures to be calculated. Similarly to other stream mining settings,
apart from measures such as accuracy, measures developed to address the unique aspects of
streaming data, including possible temporal dependencies, should be considered. Kappa temporal
(x*) [13] is of particular importance for many data streams as it compares the performance of a
model against the performance of a simple “No Change” model. The “No Change” model always
predicts the next y using the previous true label, which causes it to be consistently correct when
temporal dependencies are expected. A summary of all the aforementioned measures can be found
in Bifet et al. [11]. In addition, when multiple predictions are made for a single instance, the
values of measures such as accuracy and kappa can be aggregated into intermediate performance
measures [46]. In this way, the performance of both initial and periodic predictions made for an
instance xj before its true label arrival T (y;) can be assessed [45].

Furthermore, it is essential to note that for the evaluation to be complete, the memory and
computational overhead should be reported. In [68], running time and memory allocation were
reported for both supervised and semi-supervised technique. Importantly, the evaluation of stream
classification methods in [41] revealed that some of the tested methods failed to process data
streams even when 200GB of operating memory were made available for these methods. Hence,
ideally, CPU and memory consumption should be reported for all evaluated methods, including
SSL methods, along with the measures focused on assessing the ability of individual methods to
minimise the loss of prediction.

Streaming algorithms are expected to be efficient, so it is reasonable to also assess them in terms
of computational resources [11]. On top of that, other key features of the data stream should be
reported, such as the proportion of labelled and unlabelled instances, the number of true labels in
the latest window, the proportion of individual classes, and others. All these factors may have a
substantial impact on the performance of a stream mining method.

5.3 Comparison of semi-supervised vs. supervised methods

5.3.1 Evaluation based on removing some labels. When an SSL method is considered, its merits
should be verified through comparison against supervised methods, including methods of possibly
lower computational complexity. This should be done by using an appropriate combination of
evaluation process and performance measures. Whether other periodic predictions are justified by
the domain problem or not, continuous re-evaluation adapted to a partially labelled setting can
be used to analyse the performance of just initial predictions, or possibly also final and periodic
predictions. As previously mentioned, computational resources are paramount to stream mining
algorithms. Hence, when a supervised method yields the same performance as an SSL method,
which is achieved at a lower computational overhead, it is natural that the supervised method will
be preferred. SSL methods may require more computational resources as they potentially use all
incoming instances for training.

Comparison of an SSL method against a fully supervised method can be made in two ways. First
of all, some labels can be removed from an initial data stream to provide a delayed and partially
labelled data stream processed by an SSL method [47, 59, 68]. We will refer to such a data stream
as a reduced partially labelled data stream, which we denote by Fy (¥ [ Tiin, Tmax]» Pu)- We propose
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to generate such a data stream, by removing with probability p, individual true labels {(-, yx)}
from ¥[Tiin, Tmax]- In this way, in every run of an evaluation process fed with W[ Tpnin, Tmax] data,
a possibly different reduced partially labelled data stream Fy (¥ [ Tinin, Tmax ], pu) Will be generated
and used to evaluate the impact of the reduced number of true labels on the evaluation process.
Importantly, this means that each of the originally labelled instances {(xx, ?)} is converted with
probability p, into an unlabelled one.

Furthermore, let us observe that any fully supervised method will ignore the existence of
unlabelled instances. Hence, it will operate on what we call a reduced fully labelled data stream
Fi. (Y[ Tinin, Tmax])- This stream refers to the one created from the initial stream after removing
instances for which no labels have arrived until Tin,y. In other words, Fi, (W[ Tinin, Tmax]) neglects the
existence of unlabelled instances. Hence, it provides input for fully supervised learning methods.

The practice of removing labels to create partly labelled data sets is frequently present in studies
on SSL methods. Van Engelen and Hoos [86] observed that data sets used in research are usually
obtained by removing several labels from existing supervised learning data sets. In line with these
practices, a comparison of the performance measures attained by a fully supervised method operated

on a F (¥[Tiin, Tmax]) data stream and an SSL method operated on a Fy (FL (‘P[Tmin, Tmax]),pu)

data stream can be made. Such a comparison of SSL methods operating on partly labelled data with
supervised methods using fully labelled data streams has been made inter alia in [35, 47, 59, 68].

Moreover, the impact of the p, value on the performance measures of an SSL method should
be analysed to provide insight into the way the method responds to varying volumes of labelled
and unlabelled data. In particular, a supervised method’s performance can be compared with an
SSL method’s performance operating on a reduced number of labelled instances. It is now well
established that some batch SSL algorithms may work well or not depending on the volume of
labelled and unlabelled data [71, 86]. Analysing individual methods’ performance under varied
ratios of labelled and unlabelled instances produced from the same set [71, 94] and diverse data sets
with different quantities of labelled and unlabelled data [86] was already recommended to address
this phenomenon. Analysing the impact of p, on individual methods’ performance is a way to
adapt these findings to the needs of SSL evaluation under streaming scenarios. Le Nguyen et al.
[59] presented a summarised analysis considering different ratios (from 90% to 99%) of unlabelled
instances for streaming evaluation.

Comparison of an SSL method against a fully supervised method based on removing some true
labels is particularly challenging for the SSL method, as it makes the latter method rely on a lower
number of labelled instances than the fully supervised method. Still, as shown in Haque et al. [47]
and Masud et al. [68], an SSL stream mining method may provide accuracy comparable to or even
competitive with a fully supervised technique under such circumstances. Further examples of
works reporting that SSL approaches, even in such cases, can yield accuracy comparable to purely
supervised learning are provided in the study Oliver et al. [71], which is focused on the evaluation
of deep SSL methods in a batch setting.

It is important to observe that Fy (¥, py) can be created from an initially available data stream,
which could be either fully or partially labelled data stream. While we propose that an SSL method ex-
ecuted on Fy(F.(¥[Tiin, Tmax]), pu) is compared with a fully supervised method F, (¥ | Tiin, Tmax])s
this does not exclude the use of a partially labelled original stream V. In particular, the SSL method
can use both originally unlabelled instances and unlabelled instances caused by the use of Fy;. Let us
note that constraining SSL methods to make them use only those unlabelled instances which were
originally labelled, would not reflect the real needs and opportunities provided by SSL techniques.

5.3.2  Evaluation based on removing unlabelled instances. Another way of comparing the perfor-
mance of a fully supervised method with the performance of an SSL method is based on removing
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unlabelled instances. Unlike the former approach, under this scenario, the initial data stream has to
be a partially labelled data stream ¥, rather than fu