
A Survey on Semi-Supervised Learning for Delayed Partially
Labelled Data Streams

HEITOR MURILO GOMES, AI Institute, University of Waikato
MACIEJ GRZENDA, Faculty of Mathematics and Information Science, Warsaw University of Technology
RODRIGO MELLO, ICMC, University of São Paulo
JESSE READ, LIX, École Polytechnique, Institut Polytechnique de Paris
MINH HUONG LE NGUYEN, Télécom Paris, Institut Polytechnique de Paris
ALBERT BIFET, AI Institute, University of Waikato

Unlabelled data appear in many domains and are particularly relevant to streaming applications, where even
though data is abundant, labelled data is rare. To address the learning problems associated with such data, one
can ignore the unlabelled data and focus only on the labelled data (supervised learning); use the labelled data
and attempt to leverage the unlabelled data (semi-supervised learning); or assume some labels will be available
on request (active learning). The first approach is the simplest, yet the amount of labelled data available will
limit the predictive performance. The second relies on finding and exploiting the underlying characteristics
of the data distribution. The third depends on an external agent to provide the required labels in a timely
fashion. This survey pays special attention to methods that leverage unlabelled data in a semi-supervised
setting. We also discuss the delayed labelling issue, which impacts both fully supervised and semi-supervised
methods. We propose a unified problem setting, discuss the learning guarantees and existing methods, explain
the differences between related problem settings. Finally, we review the current benchmarking practices and
propose adaptations to enhance them.

Additional Key Words and Phrases: semi-supervised learning, data streams, concept drift, verification latency,
delayed labeling

ACM Reference Format:
Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet.
2021. A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams. 1, 1 (June 2021),
35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Situations where all the data are appropriately labelled, which allow us to perform supervised
learning, are ideal, but many important problems are either unlabelled or only partially labelled.
When dealing with streaming data, it is reasonable to expect some non-negligible verification
latency, i.e. the label of an instance will be available sometime in the future, but not immediately.
We identify data streams that exhibit both unlabelled data and verification latency as Delayed
Partially Labelled Data Streams. These characteristics refer to how (and if) labels are made available
to the learning algorithm, as illustrated in Figure 1.

A simple approach to cope with such data streams is to ignore both the unlabelled data and the
labelling delay. Several methods were proposed, and evaluated, assuming a streaming scenario

Authors’ addresses: Heitor Murilo Gomes, hgomes@waikato.ac.nz, AI Institute, University of Waikato; Maciej Grzenda,
m.grzenda@mini.pw.edu.pl, Faculty of Mathematics and Information Science, Warsaw University of Technology; Rodrigo
Mello, mello@icmc.usp.br, ICMC, University of São Paulo; Jesse Read, jesse.read@polytechnique.edu, LIX, École Polytech-
nique, Institut Polytechnique de Paris; Minh Huong Le Nguyen, minh.lenguyen@telecom-paris.fr, Télécom Paris, Institut
Polytechnique de Paris; Albert Bifet, abifet@waikato.ac.nz, AI Institute, University of Waikato.

© 2021
XXXX-XXXX/2021/6-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: June 2021.

ar
X

iv
:2

10
6.

09
17

0v
1

 [
cs

.L
G

]
 1

6
Ju

n
20

21

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

Data Stream Learning

Immediate Delayed Never
(Unsupervised)

Fixed Varying

All are labelled
(Supervised)

Some are labelled
(Semi-Supervised)

Fig. 1. Learning from data streams according to labels arrival time, based on [41]. Highlighted in bold the
dimensions associated with delayed partially labelled data streams.

where all labels are immediately available [33, 72, 81]. More recently, some authors investigated how
to leverage unlabelled data using semi-supervised learning (SSL) [50, 59], or active learning [106].
On top of that, significant advances were made in modelling and analysing the impact of delayed
labelling in supervised learning and concept drift detection for data streams [45, 73, 105].

We focus the discussion on SSL methods for leveraging unlabelled data to enhance a supervised
learning algorithm’s predictive performance. The basic assumption is that the algorithm has no
influence over the labelling process, making active learning impractical. This work aims to organise
the existing literature on SSL for data streams to facilitate new researchers and practitioners to
navigate it. Concomitantly, we seek to elucidate the connections between the SSL and the delayed
labelling literature to shed light on novel avenues for research. One challenging aspect of coping
with delayed partially labelled data streams concerns the fair evaluation of algorithms. To assist
in this perspective, we thoroughly discuss evaluation procedures for delayed partially labelled
streams. This paper also aims to highlight the associations between related machine learning tasks,
such as transductive learning, and to formalise the delayed partially labelled data streams.
This survey extends the existing literature by focusing on SSL and delayed labelling for data

streams. It is complementary to the vast literature on semi-supervised learning for stationary
data [21, 86, 103]; the evaluation of data streams [37], delayed labelling data streams [45] and
SSL algorithms in general [71]; concept drift detection assuming immediate labelling [38, 91] or
delayed labelling [105]; active learning for streaming data [104, 106]; and data stream mining in
general [5, 11, 36, 43].
The rest of this work is organised as follows. We first introduce the problem statement, clearly

identifying similarities and differences with related problems in Section 2. Next, in Section 3, we
point out theoretical learning guarantees for SSL in both offline and online scenarios. Section
4 introduces existing SSL methods for streaming data. Section 5 includes a thorough discussion
regarding the realistic assessment of SSL methods for data streams. The final Section 6 concludes
the paper and discusses avenues for future research as envisioned by the authors.

2 PROBLEM DEFINITION
In this section, we introduce the definitions and explicitly state assumptions concerning the problem
setting. Precisely, we begin with a general definition of supervised learning and then describe
verification latency, and partially labelled data in the context of evolving data streams. We
devote the end of this section to discuss the related problems to the setting we introduce.

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 3

Definition 2.1. Instance data: Let 𝑋 = {𝑥0, . . . , 𝑥1, 𝑥∞} represent an open-ended sequence of
observations collected over time, containing input examples in which 𝑥𝑘 ∈ R𝑛 and 𝑛 ≥ 1.

Definition 2.2. Labels: Let 𝑦 be an open-ended sequence of target values collected over time,
such that for every entry in 𝑦 there is a corresponding entry in 𝑋 , but the contrary may not be true,
i.e., entries in 𝑋 without a corresponding entry in 𝑦 may exist. Furthermore, when 𝑦𝑘 depicts a
finite set of possible values, i.e., 𝑦𝑘 ∈ {𝑙1, . . . , 𝑙𝐿} for 𝐿 ≥ 2, it is said to be a classification task, while
when 𝑦𝑘 ∈ R it denotes a regression task.

Definition 2.3. Data Stream: Let Υ be a data stream i.e. a sequence of tuples S1,S2, . . . which
includes two types of tuples i.e.

S𝑎 =

{
{(x𝑘 , ?)} if no true label is available yet
{(·, y𝑘)} when a true label for x𝑘 becomes available

Hence, {(x𝑘 , ?)} is a tuple containing the observation, whereas {(·, y𝑘)} is a tuple containing the
label corresponding to this observation.

Definition 2.4. Temporal-Mapping function: Let 𝑇 (·) denote a function that extracts the
precise discrete time unit 𝑡 that 𝑥𝑘 and 𝑦𝑘 became available. It is relevant to mention that 𝑇 (𝑥𝑘) ≤
𝑇 (𝑦𝑘) must always hold, indicating that the input data 𝑥𝑘 becomes available at same the moment
or before 𝑦𝑘 .

Definition 2.5. Stream section: Let Ψ[𝑇min,𝑇max] denote a stream section i.e. a sequence of
instances and true labels that became available during a time window [𝑇min,𝑇max]. This means,
∀𝑥𝑘 , 𝑦𝑘 ∈ Ψ[𝑇min,𝑇max] : (𝑇min ≤ 𝑇 (𝑥𝑘) ≤ 𝑇max) ∧ (𝑇min ≤ 𝑇 (𝑦𝑘) ≤ 𝑇max).

Definition 2.6. Verification latency: Let𝑉 (𝑥𝑘 , 𝑦𝑘) = 𝑇 (𝑦𝑘)−𝑇 (𝑥𝑘) represent the time difference
a.k.a. “verification latency” of the labelled instance represented by the tuple (𝑥𝑘 , 𝑦𝑘).

Definition 2.7. Infinitely delayed labels: Let 𝑉 (𝑥𝑘 , 𝑦𝑘) = ∞ denote the verification latency of
an infinitely delayed labelled instance a.k.a. unlabelled instance.

𝑇 (𝑥𝑘) = 𝑇 (𝑦𝑘), as seen in Definition 2.4, denotes a situation where both the input example and
its label are provided at the same time instant, what is the same as receiving training instances
from some batch learning task. Asymptotically, 𝑉 (𝑥𝑘 , 𝑦𝑘) → ∞ so that an observation 𝑥𝑘 has no
corresponding label 𝑦𝑘 (see Definition 2.6).

Based on the aforementioned definitions:
• (i) Immediate and fully labelled. ∀𝑥 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝑇 (𝑦) −𝑇 (𝑥) = 1, i.e., the verification
latency between 𝑥 and 𝑦 corresponds exactly one time unit.

• (ii) Delayed and fully labelled. ∀𝑥 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝑇 (𝑦) −𝑇 (𝑥) = 𝐷 , where 𝐷 is a random
variable representing the discrete delay between 𝑥 and 𝑦 limited by the finite range 𝐷 ∈ Z+,
where max(𝐷) denotes the maximum delay.

• (iii) Immediate and partially labelled. If we relax the constraint that every 𝑋 has a
corresponding entry on 𝑌 , we obtain a setting where 𝑋 is only partially labelled. It is useful
to emphasize the difference between entries in 𝑋 which will be labelled as 𝑋𝐿 and those
that will not be labelled as 𝑋𝑈 , and also to ascertain that often |𝑋𝐿 | ≪ |𝑋𝑈 | as the labelling
process can be costly.

• (iv) Delayed and partially labelled. Similarly to (iii), we extend (ii) such that labels are
delayed and some of them never arrived, i.e. they are infinitely delayed.

The majority of the literature with respect to semi-supervised learning for data streams has
been devoted to (iii), while the intersection between delayed and partially labelled data, as in (iv),

, Vol. 1, No. 1, Article . Publication date: June 2021.

4 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

is yet to be thoroughly explored. Besides the matters of label availability, another concept that is
worth discussing in our definitions is whether the data distribution is stationary or evolving. In
general, we assume evolving data distributions, thus concept drifts are deemed to occur, which
may inadvertently influence the decision boundaries, and affect learned models. Note that if a
concept drift is accurately detected (without false negatives) and dealt with by fully or partially
resetting models as appropriate an independent and identically distributed (iid) assumption can be
made (on a per-concept basis), since each concept can be treated as a separate iid stream, thus a
series of iid streams to be dealt with1. Nevertheless, the typical nature of a data-stream as being
fast, dynamic and partially labelled encourages the in-depth study of methods for properly evaluate
algorithms under these settings and semi-supervised algorithms to exploit unlabelled data.

2.1 Related Problems
In this section, we provide a short description of learning problems that are related to SSL for data
streams, but that are not further scrutinized in this paper to avoid diverging from the delayed
partially labelled problem setting.

Active learning.When dealing with an abundant amount of missing labels or a costly labelling
procedure, active learning can be a viable alternative to SSL. Active learning approaches attempt
to overcome the labelling bottleneck by querying the label of selected unlabelled instances to an
oracle, such that the instances to be labelled are the most uncertain (e.g. a point lying close to
the discriminative hyperplane) and that the answered labels can bring the highest value to the
learning process. In this way, the active learner aims to achieve high accuracy using as few labelled
instances as possible, thereby minimizing the cost of collecting labelled data [79]. Žliobaitė et al.
[106] introduced a theoretical framework for active learning from drifting data streams. The authors
stated three conditions for a successful active learning strategy in a drifting scenario: balancing
the labelling budget over an infinite amount of time, perceiving changes anywhere in the instance
space, and preserving the distribution of incoming data for detecting changes. Furthermore, in
[106] three strategies were presented and empirically evaluated, assuming that an external adaptive
learning algorithm is present.
Despite the advances in active learning for streaming data, it is sometimes hard to employ

such strategies. The first reason is that the oracle’s response time may be too slow, as it often
relies on a human expert. Second, still related to the labelling response time, if a concept drift
occurs, the instances selected to be labelled may be outdated. The latter issue can be amended
by using active learning strategies that take drift into account, as shown in [106]. Besides the
issues involving the instability of the concepts, and delay to obtain the labels, Zhu et al. [104] also
discusses the challenges related to the pool of candidates (instances to be labelled) being dynamic
and issues related to the volume of data. To address these challenges, Zhu et al. [104] proposed an
ensemble-based active learning classifier, where the minimization of the ensemble variance guides
the labelling process.

Transductive learning. Transductive learning concerns a situation where the unlabelled test
data set contains the whole of instances to be predicted, thus instead of producing a general model
for predicting any future instance, the output is the predictions. This is a “closed world” assumption,
where a successful solution is one where the algorithm can approximate the true labels of the
instances solely for the finite test data set. This differs from inductive learning, where the goal is to
yield a learning model capable of generalizing to previously unseen instances. Transduction is a
powerful technique to leverage unlabelled data, but it is limited to situations where the goal is to

1Not in every case a concept drifting stream can be decomposed into a sequence of iid streams. Theoretically, gradual (or
incremental) drifts may occur where the distribution changes after every instance.

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 5

produce accurate predictions to a given set of instances and not devise a general rule. The majority
of the algorithms for stream learning tend to focus on inductive learning. One possible reason is that
traditional transductive methods require many computations. Thus frequently performing these
may be prohibitive in a stream setting where predictions are often required to be fast. To circumvent
this problem, Ho and Wechsler [49] proposed an incremental version of the transductive confidence
machine (TCM) [39]. However, even though it is feasible to alleviate the computational aspects,
another essential issue is that since data streams are unbounded, it is challenging to generate a
closed set of instances.

Weakly multi-labelled data. Semi-supervised learning often stems from the case of having
limited human labelling power to label all examples. Such a scenario is particularly inherent to data
streams, where there are many instances, and they are arriving continuously. It is also aggravated
when there are multiple label variables associated with each input – the so-called multi-label
learning problem [84]. In this case, multiple labels 𝑦𝑘 ⊆ {𝑙1, . . . , 𝑙𝐿} (i.e., a subset) are associated
with each instance. In this context, weakly labelled data (see, e.g., [82]) refers to instances where
some, but not all of the relevant/true labels, have been applied to an instance. Specifically, the
absence of a label in this subset does not necessarily imply that it is not relevant; and this is the
challenge: to identify which of the non-relevant labels are missing in the labelled examples (it
is not clear which ones are missing). A related concept of partial multi-label learning [95] is the
generalization that additionally accounts for the possibility of false-positives (labels signalled as
relevant, which are actually not). If we view a subset as binary indicator variables (as is typical in the
literature), these problems become equivalently to 𝐿 parallel (and possibly interdependent) noisily-
labelled streams. Similar issues exist in the general multi-output case (extending to regression)
[75, 89].

Missing values. Weakly multi-labelled data is also related to having missing values in the
output/label space, except in this latter case it is clear which values are missing. This can be
illustrated with an example in vector notation: 𝑦𝑘 = {𝑙1, 𝑙3} ⇔ [1, 0, 1, 0] (supposing 𝐿 = 4) where
in the missing-valued case we may have [?, 0, 1, ?] (compared to the weakly-labelled case where,
e.g., [0, 0, 1, 0] where 𝑙1 is a false negative in our label set). Of course, it is also common to have
missing values in the input space (as this affects all kinds of machine learning). This context is not a
main focus of this survey. However, we note that a common method to deal with missing values is
imputation. And, by building classifier or regression models to carry out this imputation (according
to the variable domain being imputed), it is possible to frame a missing value imputation as a
weakly-labelled multi-label problem [69]; which in turn can be seen as 𝐿 parallel partially-labelled
streams.

Initially Labelled Streaming Environment Labelled data may only be available at the be-
ginning of the learning process. Therefore, a supervised learning algorithm can be trained with
the initial data, and another unsupervised mechanism used to update the model during execution.
This is a challenging problem setting as new labelled data is not available throughout execution,
therefore it is not possible to confidently verify the accuracy of the model during execution. This
setting was explored by Krempl [58], where the APT algorithm was proposed to track concept drifts
even in the absence of labelled data. Later, Dyer et al. [35] proposed the COMPOSE framework to
tackle the same problem setting, which also featured a detection mechanism that was independent
of labelled data.

Few-shot learning. Few-shot learning [90] refers to feeding the learning algorithm with very
few amount of labelled data. This approach is very popular in fields such as computer vision, where
a model for object categorization is able to discern between different objects even without having
multiple instances of each object for training. The term few-shot is accompanied by low-shot,
1-shot and 0-shot, which refer to training with a low amount of instances per class, only one per

, Vol. 1, No. 1, Article . Publication date: June 2021.

6 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

class and not even one labelled instance for each class, respectively. As expected, as the number of
labelled instances shrinks, the harder to produce accurate models. Approaching few-shot learning
(and its variants) using semi-supervised learning is a common technique, also, when possible it is
usual to leverage pre-trained models from similar domains (transfer learning).

Concept evolution. In some problems, the number of labels may vary over time. This problem
is known as concept evolution [67]. Concept evolution characterizes a challenging problem where
some instances are not only unlabelled but belong to a class that has not yet been identified. This is
true for scenarios where one want to characterize malware per family instead of the comparatively
more manageable task of classifying applications into malware or “goodware” (binary classification).
In this survey, we do not approach such a problem as it requires a different definition of the problem
as not all class labels are known a priori. A practical approach to address concept evolution in
data streams is to leverage the clustering assumption [86] or apply novelty (i.e. anomaly) detection
techniques to identify novel classes. Masud et al. [64] introduced DXMiner, an algorithm capable
of detecting novel classes by identifying novel clusters, while Masud et al. [65] used an outlier
detector and a probabilistic approach to detect novel classes. Abdallah et al. [1] proposes a method
to continuously monitor the flow of the streaming data to detect concept evolutions, whether they
are normal or abnormal.

3 LEARNING GUARANTEES
Supervised learning relies on different theoretical frameworks to ensure the conditions under
which learning is guaranteed, being the Statistical Learning Theory (SLT) the most prominent
contribution [87]. According to SLT, supervised learning is defined as the process involved in
converging to the best as possible classification or regression function 𝑓 : X → Y contained in
the algorithm bias F , a.k.a. its space of admissible functions, in which 𝑋 corresponds to the input
space and 𝑌 to the output space containing labels.

This convergence process is essentially focused on approaching some loss measurement 𝑅emp (𝑓)
(or empirical risk) computed on training examples (𝑥𝑖 , 𝑦𝑖) ∈ 𝑋 × 𝑌 to its expected value 𝑅(𝑓) (or
risk) which is only computable by having the joint probability distribution (JPD) 𝑃 (𝑋,𝑌). The basic
and most important concept behind this convergence is to make possible the use of the empirical
risk 𝑅emp (𝑓) as a good estimation for the risk 𝑅(𝑓), provided 𝑓 ∈ F . Observe that by making sure
𝑅emp (𝑓) → 𝑅(𝑓) and the training sample size 𝑛 → ∞, one can use the empirical risk to select the
best classification function 𝑓 ∗ by using:

𝑓 ∗ = argmin
𝑓 ∈F

𝑅emp (𝑓),

assuming the impossibility of computing the risk 𝑅(𝑓) for real-world problems, because we would
never have access to the JPD.

Based on the Law of Large Numbers [29], Vapnik [87] formulated the Empirical RiskMinimization
Principle (ERMP) to represent 𝑅emp (𝑓) → 𝑅(𝑓) as 𝑛 → ∞ in form:

𝑃 (sup
𝑓 ∈F

|𝑅emp (𝑓) − 𝑅(𝑓) | > 𝜖) ≤ 2N(F , 2𝑛) exp (−2𝑛𝜖2), (1)

given 𝑓 is selected from the algorithm bias F , the supremum reinforces the worst possible classifier
that most influences in the divergence between both risks,N(F , 2𝑛) is the shattering coefficient or
growth function defining the number of distinct classifications built from F , 𝑅emp (𝑓), 𝑅(𝑓) ∈ [0, 1]
and 𝜖 ∈ R+.
Given the use of the Law of Large Numbers, a set of assumptions must be ensured to prove

learning, otherwise the ERMP becomes inconsistent. The first assumption is that the JPD 𝑃 (𝑋,𝑌)
is fixed, so it does not change along with the data sampling, otherwise the convergence could not

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 7

be ensured given samples would follow a different probability distribution. Second, all samplings
obtained from 𝑃 (𝑋,𝑌) must be independent of one another and identically distributed so that every
possible event from JPD will have its probability of being chosen as defined by its corresponding
density.
It is relevant to mention that SLT can be mapped into other theoretical frameworks such as

PAC-Learning and regularization methods [88]. Thus, from a such theoretical point of view, the
following sections assess learning guarantees for both semi-supervised offline and online scenarios.

3.1 Semi-supervised learning in offline scenarios
From the perspective of the semi-supervised learning on offline scenarios, the assumptions after
the Law of Large Numbers can be still met depending on the target application, to mention: (i)
the joint probability distribution (JPD) 𝑃 (𝑋,𝑌) must be fixed, and (ii) samplings from such JPD
must be independent from each other. From such theory, if the JPD changes over time, we could
somehow manage to obtain as much guarantee as possible so that the Empirical Risk Minimization
Principle (ERMP) becomes partially consistent, and thus we can come up with some learning bounds.
Complementary, if instances are not independent from one another, one option is to restructure
data spaces as discussed in [24].

In this section, we consider that our semi-supervised offline scenario is represented by a single,
and thus fixed, JPD whose data instances are independent of each other, while the next section
considers the opposite scenario common in online learning. Therefore, let us have some dataset
(𝑥𝑖 , 𝑦𝑖) ∈ 𝑋 × 𝑌 , for 𝑖 = 1, . . . , 𝑛, containing 𝑛 input examples 𝑥𝑖 and their corresponding class
labels 𝑦𝑖 = {,−1, +1} with three possibilities: a negative, a positive and an empty label information.
Consider as the absence of a class label so that one has no information about such instance,
consequently its relative misclassification cannot be computed using a loss function ℓ (𝑥𝑖 , 𝑦𝑖 , 𝑓 (𝑥𝑖))
provided a classifier 𝑓 . The absence of class labels is what makes this scenario be defined as a
semi-supervised learning task, otherwise it would be a typical supervised task.
If we had all class labels, so that 𝑦𝑖 = {−1, +1}, the ERMP after the SLT would be sufficient to

represent learning bounds which formulates the conditions for which the empirical risk approaches
the expected risk, i.e., 𝑅emp (𝑓) → 𝑅(𝑓), as the sample size 𝑛 → ∞:

𝑃 (sup
𝑓 ∈F

|𝑅emp (𝑓) − 𝑅(𝑓) | > 𝜖) ≤ 2N(F , 2𝑛) exp (−2𝑛𝜖2), (2)

given the empirical risk is computed on a sample:

𝑅emp (𝑓) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ (𝑥𝑖 , 𝑦𝑖 , 𝑓 (𝑥𝑖)),

and the expected risk on the JPD:

𝑅(𝑓) = E(ℓ (𝑋,𝑌, 𝑓 (𝑋))).

In the same supervised scenario, Vapnik [87] proved the Generalization bound from Inequation 2
as follows:

𝑅(𝑓) ≤ 𝑅emp (𝑓) +
√︂

4
𝑛
(log(2N(F , 2𝑛)) − log𝛿), (3)

for 𝛿 = 2N(F , 2𝑛) exp (−2𝑛𝜖2), so that one can estimate how far the expected risk is from the risk
computed on some sample plus a divergence defined by the squared-root term.

Once we do not have access to a fully labeled dataset so that 𝑦𝑖 = {,−1, +1}, we relax the learning
bounds provided by the ERMP by redefining the sample size 𝑛 =

∑
𝑖 I(𝑦𝑖) as the number of labeled

, Vol. 1, No. 1, Article . Publication date: June 2021.

8 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

instances according to the indicator function:

I(𝑦𝑖) :=
{
1 if 𝑦𝑖 ∈ {−1, +1},
0 otherwise.

,

considering all available examples in some dataset (𝑥𝑖 , 𝑦𝑖) ∈ 𝑋 × 𝑌 , for 𝑖 = 1, . . . , 𝑛all, from which
the same SLT bounds (see Inequations 2 and 3) can be ensured provided the JPD 𝑃 (𝑋,𝑌) is fixed
and data instances are iid.
In attempt to show how this first and straight-forward conclusion is useful to define learning

bounds for semi-supervised learning in offline scenarios, consider some dataset (𝑥𝑖 , 𝑦𝑖) ∈ 𝑋 × 𝑌 ,
for 𝑖 = 1, . . . , 𝑛all instances sampled from 𝑃 (𝑋,𝑌). Consider that a fraction 𝜈 of instances was
pre-labeled in {−1, +1} so that 𝑛 = 𝜈 × 𝑛all, therefore considering some pre-defined 𝛿 as the upper
probability bound for (see Inequation 2):

𝑃 (sup
𝑓 ∈F

|𝑅emp (𝑓) − 𝑅(𝑓) | > 𝜖) ≤ 𝛿, (4)

we can study the minimal training sample size [25] to ensure such bound which relies on 𝛿 =

2N(F , 2𝑛) exp (−2𝑛𝜖2) as proved by Vapnik [87]. In that sense, let us assume the Shattering
coefficient function N(F , 2𝑛) = 𝑛2 for a specific semi-supervised algorithm working on some
𝑑-dimensional Hilbert input space, thus defining the maximal number of distinct classifications
as the sample size 𝑛 grows. Given the shattering coefficient represents the complexity of the
algorithm bias, term 𝛿 reflects such complexity in terms of the pre-labeled sample size 𝑛 available
for computing the loss function ℓ (𝑥𝑖 , 𝑦𝑖 , 𝑓 (𝑥𝑖)) provided every classifier 𝑓 ∈ F .

Thus, after assuming N(F , 2𝑛) = 𝑛2, we compute 𝛿 as follows:

𝛿 = 2N(F , 2𝑛) exp (−2𝑛𝜖2) = 2𝑛2 exp (−2𝑛𝜖2) = 2 exp (2 log𝑛 − 2𝑛𝜖2), (5)

from which we can analyze the minimal labeled sample size 𝑛, characterizing the acceptable
divergence between the empirical risk 𝑅emp (𝑓) and its expected value 𝑅(𝑓). As this scenario
considers a polynomial shattering coefficient, this curve produced by 𝛿 as 𝑛 varies will approach
zero. For instance, if we decide to accept a divergence of 5% (𝜖 = 0.05) and set 𝛿 = 0.1 to have
a probability of getting both risks acceptably close with probability of 0.9 (90% of the cases), we
would need 𝑛 = 3, 908 training labeled examples. Consequently, one can find the minimal training
sample size to ensure a given divergence 𝜖 and some probabilistic upper bound 𝛿 . For the sake of
comparisons, we suggest to consider at least 𝜖 ≤ 0.05 and 𝛿 ≤ 0.05.
It is still worth to discuss how an algorithm bias changes the minimal training sample size

necessary to address some semi-supervised task. The more complex an algorithm is, the steeper
will be its shattering coefficient curve thus directly requiring more data instances to ensure the
same learning guarantees, provided 𝜖 and 𝛿 . As discussed in [25], such complexity is related to the
number of hyperplanes used to devise a proper decision boundary, the number of dimensions the
input space has, as well as other factors such as how the dataset is organized (e.g. graph or table
of variables). The need for estimating the shattering coefficient function to proceed with further
algorithmic analysis has been motivating several studies in the last years [25, 26] 2.

Alternatively, we may consider the Generalization bound (see Inequation 3) to study a model we
wish to induce from data. In that circumstance, assume we have estimated the shattering coefficient

2We suggest the following R Package to estimate the Shattering coefficient function – https://cran.r-project.org/package=
shattering.

, Vol. 1, No. 1, Article . Publication date: June 2021.

https://cran.r-project.org/package=shattering
https://cran.r-project.org/package=shattering

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 9

N(F , 2𝑛) = 𝑛2 after setting 𝛿 = 0.05, then we have:

𝑅(𝑓) ≤ 𝑅emp (𝑓) +
√︂

4
𝑛
(log(2N(F , 2𝑛)) − log𝛿) = 𝑅emp (𝑓) +

√︂
4
𝑛
(log(2𝑛2) − log 0.05),

𝑅(𝑓) ≤ 𝑅emp (𝑓) +
√︂

8 log(𝑛)
𝑛

+ 14.7555
𝑛

,

from which we conclude the empirical risk 𝑅emp (𝑓) diverges from its expected value 𝑅(𝑓) according

to term
√︃

8 log(𝑛)
𝑛

+ 14.7555
𝑛

, which naturally converges to:

lim
𝑛→∞

√︂
8 log(𝑛)

𝑛
+ 14.7555

𝑛
= 0,

as the training sample size 𝑛 tends to infinity, thus proving learning in such a semi-supervised
scenario. However, we may consider what such square-root term brings in terms of information
and comparison among different learning settings. Consequently, the greater such term is, the more
complex the algorithm bias and the necessary training sample size to ensure learning bounds.
The square-root term represents the variance provided the space of admissible functions F . It

consequently relates to the cardinality of the classification functions enclosed in the algorithm bias
and the acceptable upper bound for the ERMP (see Inequation 2) given 𝛿 = N(F , 2𝑛) exp (−2𝑛𝜖2),
being therefore a way of regularizing the learning process. Regularization strategies are used to
reduce the error by fitting an appropriate set of functions given some training set, consequently
avoiding overfitting [88].

3.2 Semi-supervised learning in online scenarios
From the perspective of the semi-supervised learning on online scenarios, the assumptions after
the Law of Large Numbers (LLN) must be somehow dealt with, to mention once more: (i) the joint
probability distribution (JPD) 𝑃 (𝑋,𝑌) must be fixed, and (ii) samplings from such JPD must be
independent from one another. We easily conclude that both assumptions limit online learning
in which we certainly expect the JPD to change over time, a classical aspect known as concept
drift in the data streams scenario, as well as data observations will most certainly present some
degree of dependence. Therefore, some strategy must be employed to still make the Empirical Risk
Minimization Principle (ERMP) consistent so learning can be theoretically ensured.
As proposed by Pagliosa and Mello [24], Dynamical system tools can be used to reconstruct

the input space 𝑋 so that all dependences are represented in terms of a new set of dimensions.
They employ Takens’ embedding theorem [83] to reconstruct some unidimensional time series
𝑆 = {𝑠1, . . . , 𝑠𝑡 } into some high dimensional space referred to as phase space Φ whose points or
states 𝜙𝑡 ∈ Φ are in form:

𝜙𝑡 = (𝑠𝑡 , 𝑠𝑡+𝜏 , 𝑠𝑡+2𝜏 , . . . , 𝑠𝑡+(𝑚−1)×𝜏),
given 𝜏 refers to the necessary time delay to unfold the temporal relationships, a.k.a. time delay, and
𝑚 corresponds to the embedding dimension or simply the number of axes necessary to represent
all dependencies.
According to their approach, a single-dimensional data stream could be reconstructed into

some phase space so that their temporal dependencies would be represented; therefore, all states
𝜙𝑡 ∈ Φ would be independent of one another, thus solving Assumption (ii) of the LLN if one
needs to perform some regression on unidimensional data. However, it leaves some important
open questions: (a) how to deal with multidimensional data streams?; and (b) how to deal with the
classification task of semi-supervised data streams?

, Vol. 1, No. 1, Article . Publication date: June 2021.

10 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

Question (a) associated with Assumption (ii) was previously answered by Serra et al. [78] who
used the same concepts from dynamical systems to reconstruct multivariate time series 𝑆 for
𝑠𝑡 ∈ R𝑑 , given 𝑑 > 1, as follows (the upper index corresponds to each variable composing the
multivariate time series 𝑆):

𝜙𝑡 = (𝑠1𝑡 , 𝑠1𝑡+𝜏 , . . . , 𝑠1𝑡+(𝑚−1)×𝜏 , 𝑠
2
𝑡 , 𝑠

2
𝑡+𝜏 , . . . , 𝑠

2
𝑡+(𝑚−1)×𝜏 , . . . , 𝑠

𝑑
𝑡 , 𝑠

𝑑
𝑡+𝜏 , . . . , 𝑠

𝑑
𝑡+(𝑚−1)×𝜏),

so that, in addition to represent the temporal relationships of a single variable with itself, it also
unfolds the dependencies that each variable of the time series (upper index) has with the others.
Therefore, assuming that a multidimensional data stream has some time index as data observations
arrive, one can extend Serra’s framework to solve Assumption (ii) of the LLN, thus answering
the first question. Observe it is not an unreasonable assumption to require data observations are
indexed over time.

Observe that someone may doubt the presence of data dependence among stream observations.
However, it is not difficult to mention several real-world phenomena illustrating such scenarios,
such as in the context of air temperatures of a given world region, climatic variables, interaction
of chemicals in reactions and the growth of populations along time [54]. Several researchers
associated with the area of dynamical systems have been applying the same tools to obtain iid
spaces [55, 77, 85].
Now, we get back to the Assumption (i) of the LLN, which requires the joint probability distri-

bution (JPD) 𝑃 (𝑋,𝑌) to be fixed in order to ensure learning. In that specific scenario, we suggest
modelling the current JPD using past data observations and, as soon as some relevant data distri-
bution change or drift is identified, past data must be discarded and the learning algorithm must
start buffering new observations to induce a new model. Such approach is used in [27] to build up
new models as data arrives, using McDiarmid’s inequality to detect data drifts and indicate the best
moment to retrain learning models using recent collected observations.

At last, all theoretical concepts addressed in this section intend to support other researchers to
analyze their learning algorithms in an attempt of obtaining as much as possible guarantees while
tackling partially labelled real-world streaming problems.

4 METHODS
Supervised machine learning is defined by using labelled data to train algorithms to predict unseen
and unlabelled instances. These unlabelled examples do not influence algorithm anyhow. In most
applications, obtaining labelled data is time-consuming and expensive, as labelling often depends
upon human annotators. On the other hand, acquiring unlabelled data is an easier task, but these
data cannot update supervised models directly. Semi-supervised learning is a paradigm of learning
that exploit unlabelled data to leverage models trained with labelled data.
The caveat is that semi-supervised learning methods make strong assumptions about the data

or the model [86, 103]. For example, one can assume a common underlying density across points
belonging to a single class, or a common manifold underlying the points of each class. Figure 2
illustrates two such examples. Deciding which class to assign the test data point is relatively
intuitive looking at all data points, but is not clear when considering labelled data points. This
highlights precisely the advantages of using the unlabelled points.

Zhou and Li [102] organize techniques that leverage unlabelled data in roughly three categories:
semi-supervised learning, active learning and transductive learning. This high-level organization
does not take into account the constraints and objectives of the learning problem, for example,
active learning is not applicable if an oracle is not feasible. More recently, Engelen and Hoos
[86] organized techniques first in two classes, transductive and inductive. The majority of the
techniques fall under the inductive category, since similarly to active learning, transductive learning

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 11

y = 1
y = ?
y = 0

y = 0
y = 1
y = ?

Fig. 2. Two illustrations of the utility of unlabelled data points in semi-supervised learning: A model is asked
to produce a decision for a particular test point (shown in yellow), having observed many points, only a small
number of which are labelled (shown in class 1 and 0 shown in red and blue, respectively). A semi-supervised
method makes use of the unlabelled points to deduce a dense area per class (as would be appropriate in the
example on the left), or a manifold (as appropriate on the right; a linear manifold in this particular example).

assumes specific characteristics of the learning problem as discussed in Section 2.1. Engelen and
Hoos further divided inductive techniques into wrapper methods, unsupervised preprocessing,
and intrinsically SSL. Wrapper methods includes those that leverage existing supervised learning
algorithms, such as co-training, self-training and boosting algorithms. Unsupervised preprocessing
denotes techniques that seek to improve the performance by extracting useful features from the
input data without relying on labelled data. Finally, intrinsically SSL techniques include methods
that are direct extensions of supervised learning methods, i.e., they extend the objective function
of the supervised method to account for unlabelled data.

Even though it makes sense to leverage unlabelled data for the application of machine learning
to streaming sources, this practice is relatively recent compared to similar approaches applied
to static data. Therefore, some methodologies explored in the previously mentioned taxonomies
are under-represented. For example, only a few works explore transductive learning for data
streams, noticeable [30]. This section focuses on inductive methods, further categorizing such
methods as: Intrinsically SSL, Self-Training, Learning by Disagreement, Representation Learning,
and Unsupervised and SSL Drift Detection. All these methods categories can be found in the batch
literature, except for drift detection. Drift detection methods are of extreme importance when
dealing with streaming data as unsupervised or semi-supervised drift detection can serve several
purposes, such as indicating when to acquire new labels, signal relevant changes to the domain
that might have not yet influenced the decision boundary, and others.

4.1 Intrinsically SSL
We start our characterization by discussing streaming learners that exploit the unlabelled instances
directly as part of objective function or optimization procedure.

Maximum-margin. Support Vector Machines (SVMs) are a popular method for supervised
machine learning, based on the hypothetical maximum-margin classifier. The maximum-margin
classifier’s goal is to separate a binary classification problem, such that the hyperplane that splits
the input space maximizes the margin. The margin is the perpendicular distance from the line
to the closest points, namely the support vectors. In the construction of the classifier, only the
support vectors are relevant. When learning a fully supervised SVM, the hyperplane is learned

, Vol. 1, No. 1, Article . Publication date: June 2021.

12 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

from fully labelled training data through an optimization procedure that maximizes the margin.
In complex data scenarios, it is unlikely that there is any hyperplane that entirely separates the
data. Thus the constrain of obtaining the maximum-margin is relaxed, and the goal is to find a soft-
margin classifier, i.e. one that allows some of the training examples to violate the maximum-margin
assumption.

In the streaming setting, SVMs were explored for both supervised and semi-supervised problems.
SVMs require considerable computational resources when trained on large volumes of data as
the training problem involves the solution of a quadratic programming problem. Domeniconi and
Gunopulos [32] compared several incremental techniques for constructing SVMs and shown that
they achieve predictive performance closer to the batch version while requiring less training time.
Differently, from prior incremental strategies for constructing SVMs, the techniques presented
in [32] inspect data only once, which is more suitable for data stream processing than other
techniques. Zhang et al. [99] introduces a relational k-means based transfer semi-supervised SVM
learning framework (RK-TS3VM), where instances are organized into four types: labelled (type I)
and unlabelled (type III) from the same distribution as the data arriving shortly; and labelled (type
II) and unlabelled (type IV) from a similar distribution to the data arriving shortly. Learning from
type I instances follows the traditional approach to maximize the margin given labelled instances,
thus solving a constrained convex optimization problem. To learn from type II, III and IV, the
authors had to modify the objective function (type II and III) and rely on a relational k-means (RK)
model to build new features for the labelled examples using information extracted from type IV
instances. Empirical results presented in [99] shows that RK-TS3VM outperform fully supervised
SVM models trained only on the labelled data as well as S3VMs (semi-supervised support vector
machines) [7].

Generative models. Generative models hypothesizes a model 𝑝 (𝑥,𝑦) = 𝑝 (𝑦) × 𝑝 (𝑥 |𝑦) where
𝑝 (𝑥 |𝑦) is an identifiable mixture distribution. Using the Expectation-Maximization (EM) algo-
rithm [28], the mixture components can be identified given a large amount of unlabelled data.
However, generative models require approximately correct modelling of the joint probability 𝑝 (𝑥,𝑦).
If the modelling is incorrect, the unlabelled data may hurt performance. In contrast to discriminative
models that only aim to estimate the conditional probability 𝑝 (𝑦 |𝑥), 𝑝 (𝑥,𝑦) is more complicated
to capture and too much/too little effort may lead to an incorrect model. Moreover, even if the
modelling is correct, unlabelled data may hurt learning if a local maximum is far from the global
maximum while using the EM algorithm.
Besides these limitations, the EM can be very slow to compute, especially when the data’s

dimensionality is high. Therefore, it is unlikely to apply the original EM algorithm to streaming
data. Cappé and Moulines [17] introduced an online version of the EM algorithm with provably
optimal convergence behaviour. The online EM algorithm [17] is analogous to the standard batch
EM algorithm, which facilitates its implementation.
Nigam et al. [70] investigated the application of EM to text classification, such that the text

documents are represented using a bag-of-words (BoW) model. Even though a BoW representation
may conceal much of the complexities of written text, the authors show that there is a positive
correlation between the generative model probability and the classification accuracy for some
domains. In these cases, the application of EM alongside Naive Bayes suffices to leverage predictive
performance. Such an approach could be adapted to data streams, given the combination of the
online EM method [17] and the natural adaptation of Naive Bayes to perform incremental updates.

To compensate for the drawbacks of generative models, Grandvalet and Bengio [44] proposed a
method called Entropy Regularization, aiming to only learn from unlabelled data that are informative,
that is, when classes are well apart to favour the low-density separation assumption. Grandvalet and
Bengio [44] argue that unlabelled data are not always beneficial, mostly when class overlap occurs,

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 13

and its informativeness should be encoded as a prior to modify the estimation process. The strength
of the prior is controlled by a tuning parameter 𝜆. A deterministic annealing process helps driving
the decision boundary away from unlabelled data, thus avoiding poor local minima. Ultimately,
the method they propose estimates the posterior distribution by maximising the likelihood of the
parameters based on labelled data and at the same time being regularised by unlabelled data via 𝜆.

4.2 Self-training
Self-training figures as another commonly used technique for semi-supervised learning. The idea
is to let a classifier learn from its previous mistakes and try to reinforce itself. Self-training acts
as a wrapper algorithm that takes any arbitrary classifier. Therefore, if we have an existing, fully-
supervised learner that is complicated and hard to modify, self-training is an approach worth
considering. Self-training has seen its application in natural language processing tasks such as
word sense disambiguation [98] and sentiment analysis [62].

In an offline scenario, self-training works as follows. Given a dataset S that consists of a set
of labelled data 𝑋𝐿 and unlabelled data 𝑋𝑈 such that 𝑆 = 𝑋𝐿 ∪ 𝑋𝑈 , a classifier 𝐶 is trained on 𝑋𝐿

and after that used to predict the labels in 𝑋𝑈 . The predictions with a high confidence score are
assumed true and added to 𝑋𝐿 as new labelled data. The process repeats until convergence. When
implementing a self-training algorithm, we must ponder the following issues: (i) how to evaluate
the confidence of a prediction, and (ii) what the threshold for a "high" confidence score is? These
issues remain relevant in an online scenario. Additionally, the learner must be adapted to learn
incrementally from labelled and unlabelled instances coming from the stream.

Wei and Keogh [92] introduced experiments using a self-training (i.e. self-labelling) approach for
time series classification. Special considerations were taken into account to leverage a one-nearest-
neighbour classifier by using unlabelled data. The main challenge in adopting such a strategy to
a streaming scenario is that it requires multiple passes over the input data. More recently, Jawed
et al. [53] proposed a semi-supervised time series classification algorithm that leverages features
learned from the self-supervised task on unlabelled data. It exploits the unlabelled training data
with a forecasting task which provides a strong surrogate supervision signal for feature learning.

Le Nguyen et al. [59] proposed a self-training learner designed to receive as input either a single
instance or a batch of instances at a time. A distance-based score was proposed to overcome the
fact that some classifiers are unable to produce confidence scores. The confidence threshold that
determines whether instances are used for self-training could be fixed or adaptive concerning
the average confidence scores observed in a window. Le Nguyen et al. [59] observed that the
variant using a windowed input, distance-based scoring, and fixed confidence threshold achieves
the best performance. Similarly to [59], Khezri et al. [56] uses a the self-training approach which
uses streaming classifiers predictions along with distance-based methods to select a set of high-
confidence predictions for the unlabeled data.

4.3 Learning by disagreement
Learning by disagreement incorporates several strategies, which takes the form of learners “teaching”
other learners. The canonical example is co-training [14], in which two models are trained on two
different views of the same data. Multi-view learning [97] generalizes co-training to more situations
where more than two views are available. Also, if multiple views are not available, one approach
is to enforce the disagreement among the learners’ predictions [102]. This artificially simulates
multiple views from single-view data. The disagreement among learners can be achieved through
many diversity-inducing techniques, such as bootstrapping aggregation [15].

Co-training. Blum and Mitchell [14] introduced co-training, relying on the intuition of using
two separate learners to “guide" each other with the predicted labels they are most confident of

, Vol. 1, No. 1, Article . Publication date: June 2021.

14 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

during the learning process. To achieve good predictive performance, co-training relies on two
assumptions [14, 61]: the consistency assumption and the independence assumption. Consistency
implies that the instance distribution is compatible with the target function, i.e. for most instances,
the target functions over each view yield the same class label. Furthermore, the two views must
be conditionally independent, given the class label. Given two views 𝑋𝐴 and 𝑋𝐵 and class label 𝑦,
𝑋𝐴 and 𝑋𝐵 are conditionally independent given class 𝑦 iff, given any value of 𝑦, the probability
distribution of 𝑋𝐴 is the same for all values of 𝑋𝐵 , and the probability distribution of 𝑋𝐵 is the
same for all values of 𝑋𝐴. The batch co-training procedure is relatively simple. First, learners 𝐴
and 𝐵 are trained on labelled views 𝑋𝐴 and 𝑋𝐵 , respectively. Second, alternately 𝐴 and 𝐵 yield
predictions for the unlabelled data. Third, the most confident predictions produced by 𝐴 are added
to the training set of 𝐵 and vice-versa. This process repeats until reaching a stopping criterion.
The first apparent challenge in applying co-training to streaming data is that it is impractical to
repeat the process iteratively. Another issue that arises in an evolving streaming setting is that
each view’s underlying data may change over time. During periods of change, learners will likely
yield incorrect predictions with high confidence contributing to their counterparts’ predictive
performance degradation.

Learning by disagreement. The key ideas behind learning by disagreement is to generate mul-
tiple learners; let them collaborate to exploit the unlabelled data; and maintain a large disagreement
between them. Learning by disagreement comprehends methods such as Tri-training [101] and
Co-Forest [60], and it can be considered a generalization of co-training [14]. In these strategies, an
set of learners (or ensemble) is trained on single view data, and the different views are simulated
by enforcing diversity with respect to predictions through known techniques, such as bootstrap-
ping [15] or random subsets of features, as in Random Forest [16]. One attractive idea behind using
ensembles is that the majority of the methods do not restrict which base learner should be used,
thus it becomes a fairly general technique for leveraging unlabelled data. The downside, as with
similar techniques, is that if not properly regularized the base learners may converge to the same
decisions, as members of the ensemble train each other.
Ensemble methods are popular approaches for supervised tasks involving data streams [40],

for several reasons: (1) ensembles can leverage predictive performance, often surpassing what
is achievable with a single (complex) learner; (2) ensemble-based methods can be coupled with
concept drift detection [12, 41, 42]. However, ensemble methods are costly in terms of computational
resources, which can be a major concern when dealing with data streams. Even though, several
ensemble methods are embarrassingly parallel, streaming and parallel implementations of such
algorithms requires extra efforts to better exploit the distributed setting [18, 41, 63].
The extension of co-training and learning by disagreement for data streams is not trivial as

the algorithms that implement such techniques relies on multiple passes over the training data.
Soemers et al. [80] leverages SSL in an unusual way while training an incremental regression tree,
i.e. FIMT-DD [51]). In [80] the goal is to use FIMT-DD to cluster credit card transactions, and then
apply a contextual multi-armed bandit (CMAB) algorithm that makes use of the structure of the
FIMT-DD model. SSL is used to assist in the training of the FIMT-DD model. Since the FIMT-DD
does not split a leaf node until a sufficiently large number of instances have been observed, the
number of instances at each leaf can be large, which adversely affects the CMAB algorithm. To
circumvent such problem, in regular intervals, logistic regression models are used to predict the
labels of the transactions at the leaves, such predictions are then presented to the tree as true labels,
which then can lead to further tree splits. This approach can be viewed, even though not explicitly
mentioned by the authors, as a particular case of learning by disagreement.

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 15

4.4 Representation Learning
A general strategy for semi-supervised learning is to use unlabelled examples to build a repre-
sentation of the input data, and then use this representation as input to a model for obtaining
predictions. This technique is sometimes referred to as feature learning [6]. The idea is that an
improved representation will lead to improved predictions; and since representation learning can
naturally be an unsupervised task, training labels are not required. Figure 4 shows an illustration
of this strategy.

Restricted Boltzmann machines (RBMs) are an example of kind of model that has been
used in semi-supervised data stream contexts [76]. Trained using contrastive divergence, a single
iteration can be carried out per instance, thus making them suitable for streams. As in the general
strategy of representation learning, it is assumed that this representation improves the learning
and prediction process whenever training labels are available, or predictions required, respectively.

One can use the incrementally-learned representation z as input to any off-the-shelf data-streams
classifier (naive Bayes, Hoeffding tree, etc.). A second option is to use the RBM’s weights as the first
layer of a neural network, to then be fine-tuned with back propagation [48] whenever a training
label is available, with some form of stochastic gradient descent; a natural incremental algorithm.
Predictions are carried out via a forward pass as in any multi-layer neural network.

In RBMs the variables are binary, 𝑧 𝑗 ∈ {0, 1} but one may also use the probabilistic interpretations
[𝑃 (𝑧1 |x), . . . , 𝑃 (𝑧𝑘 |x)] as the representation for an instance x.
In a multi-label context, one may also obtain a representation of the label vector 𝑦 in a related

manner [23] although to our knowledge streaming variations have not yet been developed.
Auto-encoders are another suitable (and related) approach. An auto-encoder is a neural network

that learns to predict its own input. However, usually only the inner layer representation (z) is of
interest (hence, one can view Figure 4 (left) as an auto-encoder with the top part of the network
removed). Again, as a neural network, gradient-descent based method, learning can be an inherently
incremental process. This, as well as their non-linearities, make them more suitable and powerful
for streams than linear methods such as principal components analysis [6].
It can easily be argued that RBMs are a particular kind of auto encoder. In both cases, it can

be emphasised that many-layer (i.e., deep) models can be used (deep representation learning). In
the case of RBMs, this is typically (but not always) done greedily. In a standard auto-encoder, it is
simply a deep neural network where a single layer z is taken. Again: the layer can be taken and
given to any off-the-shelf data-stream learner (i.e., as a meta method), or turned into an instance-
or batch-incremental neural network allowing back-propagation whenever labelled examples are
provided by the stream.

Cluster representations are useful to identify cohesive sets of input instances, which in turn
can be exploited by an SSL algorithm. The cluster-then-label technique assumes that instances
belonging to the same cluster may share the same label. Applying classic clustering algorithms, such
as k-means, to streaming data is challenging as such algorithms repeatedly iterate over the data.
The majority of the stream clustering methods incrementally update micro-clusters (summarised
representations of the input data). The actual clustering algorithm is only occasionally executed in
an offline step using the micro-clusters as input. Fig. 3 illustrates a situation with three clusters
summarising several micro-clusters and their respective instances. The instances in Fig. 3 are just
for illustration purposes; the whole meaning of using micro-clusters is not to store the actual
instances after the micro-cluster is updated.

One such clustering algorithm to follow this approach is CluStream [2]. CluStream takes a fixed
number of micro-clusters𝑚, which are updated whenever a new instance arrives. The offline phase
of CluStream employs k-means to the micro-clusters. Recently, Le Nguyen et al. [59] proposed

, Vol. 1, No. 1, Article . Publication date: June 2021.

16 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

Unlabelled instances

Labelled instances

Micro-clusters

Clusters

C1

C2

C3

Fig. 3. An example of clusters, micro-clusters and instances.𝐶1 and𝐶2 clusters contain a majority of instances
belonging to the green and red class labels, respectively.𝐶3 has no labelled instances; thus no inference about
the label of new instances assigned to it can be made.

a cluster-then-label approach utilizing CluStream, such that each cluster had an associated class
label frequency counter. Pseudo-labels were assigned to arriving unlabelled data according to the
most frequent label associated with its closest cluster. A similar strategy was earlier explored by
Masud et al. [66], where an individual model created 𝐾 micro-clusters from a chunk of data. The
prediction was given after determining the closest 𝑘 nearest clusters from it. The predicted class
label was the one with the highest frequency of labelled data across all of the closest 𝑘 clusters.

Realistically, any unsupervisedmethod that can produce a useful representation of the (unlabelled)
data can be considered potentially useful in the semi-supervised settings. And any algorithm for
such a representation that may be suitable for a data stream is thus suitable for semi-supervised
learning in a data-stream setting. Mixture models are typically trained using the EM algorithm,
which is an iterative algorithm requiring several sweeps over the data, however it can be adapted
to streams [17]. In fact, the EM algorithm and k-means are special cases of self-training (see
Section 4.2).

4.5 Unsupervised and SSL Drift Detection
Real-world problems tend to be very dynamic. For example, consumer behaviour may change
as time goes by, a group of people can change their opinion about a product or a political party,
the attacks a network receives change as new barriers are created, and so on. Learning from data
that distribution may change over time is challenging for conventional batch machine learning
algorithms. These algorithms assume that the data distribution is static. Conventionally, data
streams that contain drifts are identified as evolving streams.
There are many aspects to consider when discussing concept drift, including its cause, rate,

and data distribution. Generally, a drift can be characterized either as “real” or “virtual” [38]. A
real concept drift happens when changes affect the class labels’ posterior probabilities, 𝑝 (𝑦 |𝑋),
i.e., the output variable distribution changes affecting the upcoming predictions. Virtual concept
drift is said to occur if the distribution of the incoming data 𝑝 (𝑋) changes without affecting
𝑝 (𝑦 |𝑋). Usually, there is not much interest in virtual drifts because they do not change the output’s
conditional distribution. A sizeable amount of research has been dedicated to discuss different
aspects concerning concept drift [38, 91]. This section focuses on discussing concept drift in
scenarios where labels are delayed and often partially available.

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 17

z4z3z2z1

x5x4x3x2x1

y

z4z3z2z1

x5x4x3x2x1

Fig. 4. An unsupervised model (left), able to form a representation of data points as 𝑧1, . . . , 𝑧𝑘 . In this figure
an undirected graphical representation is depicted, but representations of generative models (where arrows
point from 𝑧 to 𝑥) are also possible, depending on the learning algorithm chosen for this step. In a second
step, the representation can then be used directly as input to the supervised learning model (along with
training label 𝑦, whenever it is available; i.e., learns to map z ↦→ 𝑦). A second specific option is to consider
the representation part of a neural network (shown here, right – where arrows show the direction of the
forward pass) and use a backward pass through all layers whenever a training label 𝑦 is available – thereby
fine-tuning the representation for discriminative power. Shaded nodes are those observed in the data stream
and white nodes are the latent/hidden representation that is learned.

Most concept drift detection algorithms are applied to the univariate stream of correct/incorrect
classifier predictions. Such strategies require that labelled data is available as soon as possible to
respond to concept drifts in a timely fashion. From a practical standpoint, despite their intrinsic
differences, most drift detectors trigger when the observed model’s predictive performance starts
to degrade. Algorithms such as ADWIN [10] and EDDM [4], were tested under the assumption
that labelled data is available almost immediately. However, if the ground-truth is not immediately
available, then these algorithms’ ability to timely detect drifts is severely decreased.

To illustrate the impact of delayed labelling on a drifting stream, we present a small experiment
with data generated using the AGRAWAL generator with 3 abrupt concept drifts (at instances
25, 000, 50, 000, and 75, 000). In these experiments, we used an ensemble algorithm [42] capable
of detecting and adapting to changes by resetting base models whenever changes are detected
(by ADWIN [10]) on their univariate stream of correct/incorrect predictions. Figure 5 depicts the
amount of concept drifts detected (y-axis) over the processing of 100, 000 instances with and without
delayed labelling. In Figure 5, the detections for the “No delay” experiment shows a high rate of
detection immediately after the concept drifts, except for a few arbitrary drift signals in-between
the concept drifts. A labelling delay of 10, 000 instances severely impacts the ability to detect the
changes, as shown in the Delayed labelling variant, where the detections still occur but with a shift
of approximately 10, 000 instances. The impact on the predictive performance in the delayed and
not delayed scenarios is clearly observable in Figure 6. The experiment depicts the prequential
accuracy 3 as the 100, 000 instances are processed. The delayed labelling causes longer periods of
poor accuracy (below 50% on a balanced binary problem).

The occurrence of a concept drift indicates that something is off concerning the learning model.
Several actions can be taken after drift is detected, such as raise the alarm to the user, trigger
automatic changes to the underlyingmodel, or selectively request new labelled data (active learning).
Research is often devoted to automatic detection and recovery [41]; however, these can be frowned
upon because they give less control over the model. Raising the alarm and signalling the need
for new labelled data is a less drastic approach that gives the data scientists behind the model
more control. This control is especially useful in scenarios where prediction stability and fairness
3A window of 1, 000 instances was used in this prequential accuracy evaluation.

, Vol. 1, No. 1, Article . Publication date: June 2021.

18 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
instances (thousands)

0

2

4

6

8

10

dr

ift
s d

et
ec

te
d

No delay

-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
instances (thousands)

0

2

4

6

8

10

dr

ift
s d

et
ec

te
d

Delayed labelling (10,000)

Fig. 5. Drifts detected by a 10 learner SRP model using ADWIN on AGRAWAL with and without labelling
delay. Red dotted vertical lines indicate the location of concept drifts.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
instances (thousands)

60

65

70

75

80

85

90

95

pr
eq

. a
cc

ur
ac

y

No delay

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
instances (thousands)

40

50

60

70

80

90

pr
eq

. a
cc

ur
ac

y

Delayed labelling (10,000)

Fig. 6. Accuracy by a 10 learner SRP model using ADWIN on AGRAWAL with and without labelling delay.
Red dotted vertical lines indicate the location of concept drifts.

are equally (or more) important than accuracy. A brand new model might be accurate for the
immediately new data, yet it may be unstable to produce predictions given that it was only trained
on a small amount of data. On top of that, automatically re-training the model leaves room for
unfair treatment of underrepresented groups in the data, e.g., it is harder to prevent gender and
race discrimination if the model is being updated on the fly without being reviewed. Therefore,
one interesting application is to detect concept drift and only notify the user. Depending on the
machine learning pipeline, a new model might be created on the fly to replace the old model, but it
will not be deployed immediately without user interference. Another option is to notify the user to
suggest instances for labelling using active learning strategies for data streams [106].

Žliobaite [105] presented an analytical view of the conditions that must be met to allow concept
drift detection in a delayed labelled setting. These conditions depends on characteristics of the
concept drift, i.e. how the change affected the input probability 𝑃 (𝑋) and the posterior probabilities
𝑃 (𝑤𝑖 |𝑋) of the class labels𝑤𝑖 . Žliobaite [105] thoroughly discussed when it can be expected that
changes are observable or not as shown in Table 1. One interesting connection between semi-
supervised learning and unsupervised concept drift detection is that if the underlying marginal data
distribution 𝑃 (𝑋) over the input does not contain information about 𝑃 (𝑦 |𝑋) or indicates changes
on 𝑃 (𝑦 |𝑋), then it is impossible to exploit unlabelled data to improve a supervised learner (SSL) or
detect a change ((3) in Table 1).

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 19

𝑃 (𝑤𝑖 |𝑋)
change no change

𝑃 (𝑋) change (1) important & observable (2) observable
no change (3) important & unobservable (4) no drift

Table 1. When concept drift detection is observable and important (affects the decision rules), adapted
from [105]

A handful of algorithms focus on drift detection on delayed, partially labelled or unlabelled
data streams. Examples include SUN [94] and the method from Klinkenberg [57] based on support
vector machines. The former uses a clustering algorithm to produce ‘concept clusters’ at the leaves
of an incremental decision tree, and drifts are identified according to the deviation between history
concept clusters and the current clusters. Haque et al. [47] proposed an approach that dynamically
determines the boundaries of windows by detecting significant changes in classifier confidence
scores using a limited number of labelled instances. This approach is integrated with a classifier
to form a complete SSL framework that utilises dynamic chunk boundaries to address concept
drift and concept evolution. Cerqueira et al. [19] presents an unsupervised drift detector based on
a teacher-student approach, where a predictive model (teacher) is built using an initial batch of
labelled training data. The teacher’s predictions are used as class labels to train a surrogate model
(student), which will learn to mimic the teacher. A drift detection algorithm is used to identify
variations in the mimicking error of the student. The hypothesis is that if the mimicking error
increases, then it means that a concept drift has occurred.

5 FAIR COMPARATIVE ANALYSIS
Like other machine learning methods, SSL methods should be evaluated in a realistic process
to verify their capabilities while considering other applicable methods. Van Engelen and Hoos
[86] observed that additional factors have to be considered during evaluation compared to fully
supervised learning scenarios.

First and foremost, the question arises of whether the use of a semi-supervised approach yields
performance gains compared to supervised methods [71]. Furthermore, a comparison of an SSL
method of interest with other SSL methods is required. Similarly to other machine learning methods,
the selection of the data for which predictions are evaluated has to be followed by calculating
performance measures. Interestingly, due to the latency of ground truth labels, multiple predictions
made for a single instance at different times before the arrival of its true label may be considered in
the evaluation [45]. The objective of this section is to address the unique aspects of the evaluation
of semi-supervised stream mining methods while taking into account non-negligible delays in the
availability of ground truth labels.

5.1 Evaluation of machine learning methods
Evaluation of machine learning methods necessitates applying an appropriate combination of error
estimation methods, which include but are not limited to the selection of data used for model
development and testing. In addition, performance measures matching domain needs have to be
selected. An extensive study on evaluating learning algorithms by Japkowicz and Shah [52] has
already provided in-depth coverage of performance measures for classification, how they should
be calculated and how different candidate methods should be compared. However, the latter work
is focused on the fully supervised batch learning paradigm, i.e. the use of fully labelled data sets
rather than partially labelled data streams for both learning and evaluation purposes.

, Vol. 1, No. 1, Article . Publication date: June 2021.

20 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

In recent years, there has been an increasing number of studies on evaluating learning algorithms
under other settings than fully supervised batch learning. In particular, Oliver et al. [71] examined
the impact of various factors such as hyperparameter tuning, class imbalance, and volume of
unlabelled data on the evaluation of semi-supervised deep learning methods and revealed how
important careful consideration and documenting of these and other factors could be. However, in
this major study on evaluating SSL methods, the focus was limited to batch learning. As far as the
evaluation of machine learningmethods applied to data streams is concerned, new procedures aimed
at how data streams should be used for online learning and evaluation purposes were developed. A
summary of the most popular of these methods was made in [11]. Importantly, these methods do
not consider label latency. Besides new performance measures such as measures reflecting temporal
dependencies in the data [13], intermediate performance measures capturing the performance of
multiple predictions made over time for a single instance [46] were proposed. A particular limitation
of these works from the perspective of our study is that these measures assume a fully supervised
setting.

While each of these studies refers to at least one of the aspects of the evaluation of SSL methods
for delayed partially labelled data streams, to the best of our knowledge, only selected aspects of
the evaluation of SSL methods were covered in them. There are relatively few studies on SSL under
delayed labelling settings (as defined in Section 2), which we refer to below.

Taking into account the complexity of the evaluation of machine learning methods [52], in this
section we aim to focus on the unique aspects of the evaluation of SSL methods for partly labelled
delayed data streams, rather than provide a holistic view of all aspects of the evaluation of stream
mining methods. Our intention is not to repeat these aspects which are common to the evaluation
of other stream mining techniques, but to pay particular attention to how the evaluation relevant
for this study differs from the evaluation suggested for related tasks. Furthermore, we conclude
this section with a unified view of the recommendations we make.

All data streams considered in this section are assumed to be delayed data streams. Furthermore,
let us observe that while data streams are infinite by definition, the evaluation of learning methods
inevitably relies on stream sections Ψ[𝑇min,𝑇max]. In particular, the period [𝑇min,𝑇max] may be the
period of a single concept or may span multiple concepts.
The remainder of this section is organised as follows. First, an overview of the evaluation

processes and measures applicable to stream mining methods is presented. This is followed by a
discussion of the way standard evaluation practices can be tailored to enable a comparison of SSL
methods with fully supervised methods. Next, the role of data streams used in the evaluation and
other key factors influencing the evaluation outcomes are discussed. This provides the basis for the
unified evaluation process proposed in this study, which concludes this section.

5.2 Evaluation of stream mining models
5.2.1 Evaluation process. The evaluation of machine learning methods for data streams is often
focused on “how” past predictions influence the current model’s predictive performance measure.
The most straightforward approach is to evaluate predictions in a test-then-train fashion; as
the name implies, each instance is first used for testing and then for training. The predictive
performance of the learning algorithm in test-then-train represents the average value of all the
instances assessed up to that point in time [11, 45]. In test-then-train evaluation, the latest predictive
performance estimation is influenced by all previous predictions. This characteristic is desirable
when the goal is to understand how well the model performs up to a given point in time. However,
it may not give a clear view of how well the model is performing at a given period of the stream. For
example, several recent incorrect predictions (perhaps caused by a concept drift) may be shadowed
by thousands of old correct predictions.

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 21

Instances

Labels

Model h

Predictions h(xk)

Prediction type

xg xh xi xj xk xu

yc yd yf ye yg ys yk

…

initial periodic final

time

h(xk) h(xk)

xw

…

… …

…

…

Fig. 7. The types of predicted labels under delayed labelling setting. Based on Grzenda et al. [45]
.

One approach to avoid undesired influence from previous predictions is to perform a periodic
holdout evaluation, where training and testing are interleaved using predefined windows, such
that one window is used for training and the following used only for testing. This approach can be
considered wasteful as labelled data that could be used for training (after testing) is discarded. Thus,
an alternative approach is to use a prequential evaluation [11], where test-then-train is applied
to a sliding window, or a fading factor is used, to forget old predictions. A more in-depth discussion
of both approaches to prequential evaluation can be found in Gama et al. [37]. Importantly, when
data are only partly labelled, the prequential evaluation is still applicable, as the loss function can
be calculated only for those observations for which labels y𝑘 are known [37]. A well-accepted
approach for increasing confidence in the evaluation results of batch evaluations is cross-validation.
The challenge associated with cross-validation on a streaming setting is that it is infeasible to
reprocess the whole stream. To cope with this constraint Bifet et al. [9] introduced an approach for
cross-validation in an online setting, where the models are trained and tested in parallel on different
folds of data. Furthermore, in delayed data streams, predictions are typically made at𝑇 (𝑥𝑘) and can
be evaluated only after the corresponding true labels arrive. This means verification latency [31]
occurs.

Grzenda et al. [45] claim that besides “how” predictions affect the predictive performance, it is
also key to consider “when” labels are made available as part of the evaluation. This leads to the
concept of continuous re-evaluation introduced in [45] and further explored in [46]. The goal
of continuous re-evaluation is to observe if, and how fast models can transform an initial, possibly
incorrect prediction made at 𝑇 (𝑥𝑘) into a correct prediction before the true label arrives at 𝑇 (𝑦𝑘).
While waiting for a label 𝑦𝑘 to determine whether a prediction was correct or not, the model is
incrementally trained with labels from other instances that arrived before 𝑇 (𝑦𝑘). These updates to
the model may change the initial prediction yield for 𝑥𝑘 .

This evaluation is essential to scenarios where evolving predictions are relevant, such as contin-
uously re-assessing whether a recently released application is “malware” or “goodware” until the
ground-truth is available [20]. Continuous re-evaluation is the generalisation of the test-then-train
approach, as it provides a way of calculating and assessing initial predictions made for 𝑥𝑘 at
𝑇 (𝑥𝑘), possible periodic predictions made for the instance before 𝑇 (𝑦𝑘), and final predictions
made at 𝑇 (𝑦𝑘) i.e. immediately before using the true label to possibly update a model [45]. Fig. 7
illustrates the way all these types of predictions are produced for the 𝑥𝑘 instance. Continuous
re-evaluation assumes that for every instance, its true label is available with non-infinite delay [45].

, Vol. 1, No. 1, Article . Publication date: June 2021.

22 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

Even in scenarios where evolving predictions are not essential, it might still be useful to also
consider intermediary predictive performance as it indicates how fast the model can adapt to
predictions given that other labelled data were made available. Finally, one could potentially adapt
continuous re-evaluations to partially delayed labelled streamas, the main difference being that
only instances where 𝑦 arrives will be used for assessment.

5.2.2 Performance measures. A fundamental aspect of every evaluation of stream mining methods
is the selection of performance measures to be calculated. Similarly to other stream mining settings,
apart from measures such as accuracy, measures developed to address the unique aspects of
streaming data, including possible temporal dependencies, should be considered. Kappa temporal
(𝜅+) [13] is of particular importance for many data streams as it compares the performance of a
model against the performance of a simple “No Change” model. The “No Change” model always
predicts the next 𝑦 using the previous true label, which causes it to be consistently correct when
temporal dependencies are expected. A summary of all the aforementioned measures can be found
in Bifet et al. [11]. In addition, when multiple predictions are made for a single instance, the
values of measures such as accuracy and kappa can be aggregated into intermediate performance
measures [46]. In this way, the performance of both initial and periodic predictions made for an
instance 𝑥𝑘 before its true label arrival 𝑇 (𝑦𝑘) can be assessed [45].
Furthermore, it is essential to note that for the evaluation to be complete, the memory and

computational overhead should be reported. In [68], running time and memory allocation were
reported for both supervised and semi-supervised technique. Importantly, the evaluation of stream
classification methods in [41] revealed that some of the tested methods failed to process data
streams even when 200GB of operating memory were made available for these methods. Hence,
ideally, CPU and memory consumption should be reported for all evaluated methods, including
SSL methods, along with the measures focused on assessing the ability of individual methods to
minimise the loss of prediction.

Streaming algorithms are expected to be efficient, so it is reasonable to also assess them in terms
of computational resources [11]. On top of that, other key features of the data stream should be
reported, such as the proportion of labelled and unlabelled instances, the number of true labels in
the latest window, the proportion of individual classes, and others. All these factors may have a
substantial impact on the performance of a stream mining method.

5.3 Comparison of semi-supervised vs. supervised methods
5.3.1 Evaluation based on removing some labels. When an SSL method is considered, its merits
should be verified through comparison against supervised methods, including methods of possibly
lower computational complexity. This should be done by using an appropriate combination of
evaluation process and performance measures. Whether other periodic predictions are justified by
the domain problem or not, continuous re-evaluation adapted to a partially labelled setting can
be used to analyse the performance of just initial predictions, or possibly also final and periodic
predictions. As previously mentioned, computational resources are paramount to stream mining
algorithms. Hence, when a supervised method yields the same performance as an SSL method,
which is achieved at a lower computational overhead, it is natural that the supervised method will
be preferred. SSL methods may require more computational resources as they potentially use all
incoming instances for training.

Comparison of an SSL method against a fully supervised method can be made in two ways. First
of all, some labels can be removed from an initial data stream to provide a delayed and partially
labelled data stream processed by an SSL method [47, 59, 68]. We will refer to such a data stream
as a reduced partially labelled data stream, which we denote by 𝐹U (Ψ[𝑇min,𝑇max], 𝑝u). We propose

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 23

to generate such a data stream, by removing with probability 𝑝u individual true labels {(·, y𝑘)}
from Ψ[𝑇min,𝑇max]. In this way, in every run of an evaluation process fed with Ψ[𝑇min,𝑇max] data,
a possibly different reduced partially labelled data stream 𝐹U (Ψ[𝑇min,𝑇max], 𝑝u) will be generated
and used to evaluate the impact of the reduced number of true labels on the evaluation process.
Importantly, this means that each of the originally labelled instances {(x𝑘 , ?)} is converted with
probability 𝑝u into an unlabelled one.
Furthermore, let us observe that any fully supervised method will ignore the existence of

unlabelled instances. Hence, it will operate on what we call a reduced fully labelled data stream
𝐹L (Ψ[𝑇min,𝑇max]). This stream refers to the one created from the initial stream after removing
instances for which no labels have arrived until𝑇max. In other words, 𝐹L (Ψ[𝑇min,𝑇max]) neglects the
existence of unlabelled instances. Hence, it provides input for fully supervised learning methods.

The practice of removing labels to create partly labelled data sets is frequently present in studies
on SSL methods. Van Engelen and Hoos [86] observed that data sets used in research are usually
obtained by removing several labels from existing supervised learning data sets. In line with these
practices, a comparison of the performancemeasures attained by a fully supervisedmethod operated
on a 𝐹L (Ψ[𝑇min,𝑇max]) data stream and an SSL method operated on a 𝐹U

(
𝐹L

(
Ψ[𝑇min,𝑇max]

)
, 𝑝u

)
data stream can be made. Such a comparison of SSL methods operating on partly labelled data with
supervised methods using fully labelled data streams has been made inter alia in [35, 47, 59, 68].
Moreover, the impact of the 𝑝u value on the performance measures of an SSL method should

be analysed to provide insight into the way the method responds to varying volumes of labelled
and unlabelled data. In particular, a supervised method’s performance can be compared with an
SSL method’s performance operating on a reduced number of labelled instances. It is now well
established that some batch SSL algorithms may work well or not depending on the volume of
labelled and unlabelled data [71, 86]. Analysing individual methods’ performance under varied
ratios of labelled and unlabelled instances produced from the same set [71, 94] and diverse data sets
with different quantities of labelled and unlabelled data [86] was already recommended to address
this phenomenon. Analysing the impact of 𝑝u on individual methods’ performance is a way to
adapt these findings to the needs of SSL evaluation under streaming scenarios. Le Nguyen et al.
[59] presented a summarised analysis considering different ratios (from 90% to 99%) of unlabelled
instances for streaming evaluation.

Comparison of an SSL method against a fully supervised method based on removing some true
labels is particularly challenging for the SSL method, as it makes the latter method rely on a lower
number of labelled instances than the fully supervised method. Still, as shown in Haque et al. [47]
and Masud et al. [68], an SSL stream mining method may provide accuracy comparable to or even
competitive with a fully supervised technique under such circumstances. Further examples of
works reporting that SSL approaches, even in such cases, can yield accuracy comparable to purely
supervised learning are provided in the study Oliver et al. [71], which is focused on the evaluation
of deep SSL methods in a batch setting.
It is important to observe that 𝐹U (Ψ, 𝑝u) can be created from an initially available data stream,

which could be either fully or partially labelled data stream.While we propose that an SSLmethod ex-
ecuted on 𝐹U (𝐹L (Ψ[𝑇min,𝑇max]), 𝑝u) is compared with a fully supervised method 𝐹L (Ψ[𝑇min,𝑇max]),
this does not exclude the use of a partially labelled original stream Ψ. In particular, the SSL method
can use both originally unlabelled instances and unlabelled instances caused by the use of 𝐹U. Let us
note that constraining SSL methods to make them use only those unlabelled instances which were
originally labelled, would not reflect the real needs and opportunities provided by SSL techniques.

5.3.2 Evaluation based on removing unlabelled instances. Another way of comparing the perfor-
mance of a fully supervised method with the performance of an SSL method is based on removing

, Vol. 1, No. 1, Article . Publication date: June 2021.

24 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

unlabelled instances. Unlike the former approach, under this scenario, the initial data stream has to
be a partially labelled data stream Ψ, rather than fully labelled. The objective of the evaluation is
to verify the merits of using unlabelled instances by comparing results attained on the partially
labelled Ψ with the results provided by a fully supervised method on a fully labelled stream 𝐹L (Ψ)
i.e. the Ψ stream constrained to fully labelled instances. Indeed, the interest in semi-supervised
learning is partly driven by the abundance of unlabelled data combined with scarce labelled data. In
such cases removing unlabelled instances is acceptable rather than removing already scarce labels.

Among others, Oliver et al. [71] removed unlabelled instances to verify whether the performance
obtained by training a model on 𝑋𝐿 ∪ 𝑋𝑈 (i.e. union of labelled data and unlabelled data) is better
than the performance observed on labelled instances 𝑋𝐿 alone. Oliver et al. [71] observed that such
a baseline is also frequently reported in other studies.

The comparison of SSL methods exploiting both labelled and unlabelled parts of data streams to
fully supervised methods which discard unlabelled data was performed in the study proposing a
semi-supervised SVM learning framework [99]. The SSL methods proposed in the study outper-
formed the methods discarding unlabelled data. A related aspect of the impact the growing number
of unlabelled training instances used by an SSL method on the overall accuracy was addressed in
[68]. The growth in the number of unlabelled training instances used by an SSL method resulted in
accuracy improvements. In [59], the cluster-and-label method with pseudo-labeling was compared
with its version without pseudo-labelling and found to outperform it for a number of synthetic
and real data streams. This kind of comparison is one more example of investigating the benefits
arising from including unlabelled training instances. Interestingly, the original data streams were
fully labelled. Hence, Le Nguyen et al. [59] illustrate the case of removing some labels from a fully
labelled data stream first and considering or not unlabelled instances in pseudo-labelling next.

5.3.3 The benefits of both evaluation scenarios. It follows from the related works that by a “fully
supervised baseline” two different baselines are meant in different studies. The first of them, which
we refer to as the label removal scenario relies on removing some labels from an initially fully
labelled data stream. The other approach i.e. the unlabelled instance removal scenario is to use a
partially labelled data stream to remove unlabelled instances from it. Both scenarios can be used
to develop a fully labelled data stream and use it for supervised learning. Using two different
approaches can in fact be justified by the merits of each of them, which we summarise in Table 2.

In the label removal scenario, the fully supervised approach is assumed to yield an upper bound
for the SSL performance, as the SSL model relies on a lower number of labelled instances. Moreover,
the SSL model can access the same number of instances as its fully supervised counterpart, but
true labels of some of these instances are not available for the SSL method. Hence, the benefits of
using unlabelled instances are not expected to surpass the benefits of using the same instances
provided with true labels. On the other hand, the unlabelled instance removal scenario means that
all the labelled instances are available for both the fully supervised and SSL methods. In addition,
an SSL method may benefit from unlabelled instances available for this method only. This means
that in the case of the unlabelled instance removal scenario, we intuitively expect the performance
of fully supervised models to be worse than the performance of SSL models. Let us observe that
in the case of both expected upper and lower bound, the performance of the supervised method
can be in some cases unexpectedly, respectively, worse and better than the performance of an SSL
method. These dependencies are not rigid due to multiple factors, some of which are: a) possible
superiority of the supervised part of an SSL method over the fully supervised method, b) noisy true
labels disturbing fully supervised learning, c) the use of data augmentation techniques by some
of the SSL methods increasing their chances of surpassing supervised methods despite the lower
number of labelled instances.

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 25

Table 2. Two scenarios of obtaining reference fully supervised baselines for the comparison of the performance
of SSL methods (SSM) with fully supervised methods (FSM)

Scenario Original
method

Modified stream
and method

Key features Sample
works

Label
removal FSM 𝐹U (Ψ[𝑇min,𝑇max], 𝑝u)

SSM • suitable when the source data
stream is fully labelled

• the number of labelled instances
available for SSL methods lower
than for fully supervised setting

• the same number of instances
available for both fully supervised
and SSL methods

• fully supervised setting provides
an expected upper bound for SSL
model performance

[35, 47,
59, 68,
86, 94]

Unlabelled
instance
removal

SSM 𝐹L (Ψ[𝑇min,𝑇max])
FSM • suitable for evaluation made for

real partially labelled data streams,
for which complete labelling is not
feasible

• the same number of labelled in-
stances available for both fully su-
pervised and SSL methods

• fully supervised setting provides
an expected lower bound for SSL
model performance

[59, 71,
99]

To sum up, we propose both scenarios described above to be applied simultaneously to benchmark
SSL methods against fully supervised methods. This is because comparison under a lower number of
labelled instances and the same number of labelled instances accompanied by unlabelled instances
are inherently different, and each provides additional insight into the functioning of SSL methods.

5.4 Reference data streams
5.4.1 The selection of data used for comparative analysis. The evaluation of individual stream
mining methods under consideration should be made on a benchmark set of data streams. Similarly
to other stream mining studies, we propose that evaluation performed with real data streams should
be accompanied by evaluation performed with synthetic data streams including the streams for
which predefined concept drift events, including the periods affected by gradual concept drift, can
be defined. The evaluation of both synthetic and real data streams is a common practice in works
proposing new stream mining methods [12, 41, 42, 99, 99].

By definition, the evaluation requires multiple partly labelled delayed data streams to be included.
However, synthetic data streams are typically fully labelled and rely on immediately available
labels. This includes synthetic data streams frequently used in the evaluation of stream mining

, Vol. 1, No. 1, Article . Publication date: June 2021.

26 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

methods such as Agrawal [45], Hyperplane [45], LED [45, 59], and Random Tree [59]. As proposed
in Le Nguyen et al. [59], labels from their instances can be removed with probability 𝑝 to provide a
partly labelled data stream.
In their recent study, Le Nguyen et al. [59] proposed establishing a baseline to evaluate semi-

supervised learning methods in data streams. Importantly, this includes the extension of the MOA
framework, which enables such evaluation. Even though this proposal does not consider the delayed
labelling, but immediate labelling only, it can serve as a starting point for defining a baseline set of
delayed data streams and developing software serving evaluation needs. Data streams for which
no natural delay exists, including all the synthetic data streams listed above, can be converted to
delayed ones by adding a fixed delay [45].
To sum up, some reference data streams can be developed under the label removal scenario

from their fully labelled versions, but also from real data streams. In this way, partially labelled
data streams can be developed. Next, fully labelled data streams can be developed by applying the
unlabelled instance removal scenario to the former streams. As a consequence, the results of such
studies can be compared to the studies already made under a fully labelled setting for the original
data streams. Such data streams ideally should be accompanied by real partially labelled delayed
data streams illustrating the abundance of unlabelled data.

5.4.2 Key aspects of the evaluation process. Let us observe that for the evaluation of SSL methods
to be fair, it is important to document all the assumptions and limitations it relies on, but also
alternative approaches. Let us first discuss some of the assumptions which may have a potentially
significant impact on the interpretation of evaluation results and on the evaluation process needed.
First of all, in some studies, an assumption can be made that the number and distribution of

classes in the labelled and unlabelled parts of a data stream are the same. In some tasks, such as
binary classification, in which the probability that an instance has no label depends neither on
the instance data nor the true label, this approach can be justified. However, as pointed out in
Oliver et al. [71], the predictive performance of SSL techniques can degrade drastically when the
assumption of equal distribution of classes in the labelled and unlabelled parts of a data set is not
met.

Another important aspect of the evaluation is whether hyperparameter tuning aimed at finding
the best settings of the individual stream mining methods under comparison has been performed or
not. In the case of stream mining methods, unlike in the case of batch methods such as the methods
analysed in Oliver et al. [71], a single pass over the data is expected i.e. every instance should be
inspected at most once [11]. Hence, in contrast to batch learning, hyperparameter tuning should
not rely on multiple runs with the same data. Whether such multiple runs were applied or not,
we suggest it should be one of the solutions explicitly documented in the performance analysis of
SSL methods applied to data streams. Not surprisingly, comparing a method for which large-scale
hyperparameter tuning was carried out before its ultimate performance assessment to methods not
tuned in such a way may be misleading.

One more important aspect of the evaluation is sensitivity analysis i.e. the analysis of the impact
of varied hyperparameter settings on the performance of the methods under comparison, which is
frequently illustrated with the plots showing the impact of parameter settings on the accuracy of
the models. The sensitivity analysis of this kind was performed in [35] and [68]. When the method
relies on fixed parameter settings not evolved during stream processing, such sensitivity analysis
provides an insight into the resilience of the methods to varied, including possibly suboptimal
parameter settings.

Furthermore, as noted by Oliver et al. [71], a rarely reported baseline against which to compare
SSL approaches is transfer learning. More precisely, the authors suggested comparing results

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 27

attained with the SSL method to the results observed when a model was trained with a different
(but similar and large) data set to be tuned with the small data set representing the ultimate task in
the next stage. Not surprisingly, whether this approach can be applied, depends on the availability
of similar data making the training of the initial model possible.
In a stream setting, a similar data stream may be a data stream containing instances collected

from a similar sensor. Hence, to fully document possible alternatives, the availability of related
data streams which could be used to provide initial stream mining models in a transfer learning
setting could be checked. Nevertheless, transfer learning is a challenging approach for online
scenarios [100].

5.4.3 Key features of data streams. The impact of label latency. Much of the research on su-
pervised learning for delayed data streams had focused on evaluating predictions made for the
instances when they were received from a data stream Ψ i.e. initial predictions. In contrast to the
works considering label latency, immediate labelling studies assume that an instance’s true label is
available immediately after this instance. In such cases, the test-then-train approach is frequently
applied. This approach, when adopted to delayed labelling, suggests evaluating final predictions
i.e. predictions made for the instances immediately before the arrival of the true labels of these
instances.

Considering the needs of the evaluation of SSL methods for delayed data streams, let us observe
that it should be focused on initial predictions. However, final predictions should also be included
to reveal to what extent models evolve and predictions change in turn whilst waiting for true
labels [45, 46].

Class label distribution. One more factor that may have a substantial impact on the perfor-
mance of SSL methods is the presence of instances related to new classes (concept evolution [11]) in
the unlabelled data. Oliver et al. [71] showed that in such cases performance can even be degraded
compared to not using any unlabelled data at all. In the case of stream mining methods, the ability
to deal with novel classes is frequently assumed. Still, whether and if so how many examples
of different classes were present in the form of both labelled and unlabelled instances should be
documented in the evaluation of individual methods, both fully supervised and semi-supervised.

Volume of unlabelled data.A goodmatch between the data characteristics and the SSL method
biases is required to allow improvement by leveraging unlabelled data. On top of that, SSL methods’
merits depend on the volume of unlabelled data available to them. A larger volume of unlabelled
data can raise the confidence of such methods, for example, those that rely on ensuring that the
decision boundary must pass through low-density areas in the input space [7]. Hence, for the
evaluation of an SSL method to be complete, an analysis of the impact of the volume of unlabelled
data on the performance of the method should be included. Not surprisingly, when the number
of unlabelled instances available for the method is minimal, the performance advantage of SSL
over fully supervised methods is unlikely to be significant, if any. Some of the works made in the
immediate labelling setting have already analysed the impact of a growing number of unlabelled
instances on the performance of the methods they proposed [68].

Oliver et al. [71] showed that the sensitivity of different SSL approaches to the amount of labelled
and unlabelled data significantly varies. This finding, while observed for batch learning techniques,
indicates that accuracy gains arising from the use of unlabelled data must be interpreted with
caution. In particular, the superiority of a SSL method following from experiments not including
an evaluation of the impact of the proportion of unlabelled data on the performance of this
method should be considered to be true for the quantity of labelled and unlabelled data used in the
experiment, rather than for other ratios of unlabelled data.

, Vol. 1, No. 1, Article . Publication date: June 2021.

28 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

The influence of the number of unlabelled instances can be observed for both real and synthetic
streams. Even though the number of unlabelled instances for individual concepts may be strictly
constrained by the data, it is possible to use only a subset of the available unlabelled instances
in some of the runs of the method under consideration. Hence, individual method runs may rely
on a different number of unlabelled instances and possibly different proportions of labelled vs.
unlabelled instances.

5.4.4 Additional evaluation of active learning methods. Some SSL methods rely on active learning
(AL). Active learning can be used not only to increase the availability of labelled data, but also
to contribute to model adaptation to concept drift. A method relying on active learning to obtain
additional labelled instances when concept drift is detected was proposed inter alia in [34]. When
active learning becomes a part of an SSL method, additional evaluation of the method has to be
considered. It is important to note that comparison of active learning models vs. models trained
on initially available labelled data should only take into account the cost of obtaining additional
labels by the active learning method. In particular, in the case of the active learning method, the
superiority of the method in terms of the performance of its predictions is not sufficient to confirm
the actual improvement offered by the method over a method not requesting extra labels from an
oracle such as a human expert.

The evaluation of the cost of obtaining extra labels from an oracle can be made a) in an on-line
manner to control the number of requests for additional labels, in order not to jeopardise the benefits
of the SSL/AL method and b) in an off-line manner i.e., calculated after the active learning method
has been executed. When active learning methods are considered, which is problem-dependent,
the problem of selecting the best method for a data stream or set of data streams can be defined
as a multi-objective optimisation problem, as both the performance of the method and the cost of
obtaining extra labels have to be considered.
Recent studies on the evaluation of stream mining methods for delayed data streams [45, 46]

reported that the accuracy of initial predictions is typically lower than the accuracy of final
predictions. This phenomenonwas observed both for synthetic and real data streams. This difference
between the accuracy of initial and final predictions was even more significant for concept drifting
data streams. This is because a more recent model benefits from a larger number of labelled
instances, possibly reflecting recent changes in the underlying process [45]. Therefore, for the
evaluation of active learning approaches to be realistic, not only the cost of obtaining additional
labels from an oracle but also the latency with which these labels are available should be considered.
This latency cannot be neglected, especially when a human expert is assumed to be involved in
the labelling process. If this latency of obtaining additional labels were neglected, the evolution
of a model benefiting from these labels would be assumed to be faster than actually possible.
As a consequence, taking into account the results of the aforementioned studies, the value of
performance measures reported for active learning while not considering labelling latency could
potentially be unrealistically superior to the measure values reported for other methods.

To sum up, when a SSL method relies on the active learning paradigm, a recommendation can be
made to both report the cost of obtaining extra labels and consider in the evaluation of the method
the latency of obtaining additional labels from the method.

5.5 Unified fair evaluation
Taking into account all the aforementioned aspects of the evaluation of SSL methods applied to
delayed partially labelled data streams, let us propose Alg. 1 for such evaluation. Importantly, the
algorithm aims to show logical data flow rather than its physical implementation. Similarly to the
seminal work on Hoeffding trees [33], additional measures can be applied at the implementation

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 29

stage to reduce the computational load and storage needs of Alg. 1, some of which are outlined
below. The input for the algorithm is the set of reference data streams, which are expected to
include both real and synthetic data streams. The algorithm starts by determining dependent data
streams. As discussed above, any evaluation is constrained to a certain time period and the set of
instances and labels from this period.
In Alg. 1, two categories of Ψ𝑞 streams can be used i.e. fully labelled data stream as used in the

label removal scenario, or a partially labelled data stream, used as an input in the unlabelled instance
removal scenario. We suggest that both cases can be unified i.e. in both cases, the evaluation can
include the input data stream and its labelled part only. Moreover, a particular disadvantage of
comparing the performance of an SSLmethod observed on partially labelledΨ𝑠 with the performance
of a fully supervised method applied to 𝐹L (Ψs) is the fact that the performance of both methods is
analysed for only one proportion of labelled and unlabelled instances - already present in the input
Ψ𝑠 stream. Hence, we propose testing the impact of removing some of the labels on both methods,
including the unlabelled instance removal scenario. As a consequence, for every Ψ𝑞 data stream,
two categories of fully labelled data streams i.e. ΨUFS and ΨLFS, providing an expected upper bound
and lower bound respectively for the SSL method are developed. In the case of ΨLFS streams, the
number of such streams matches the number of different 𝑝u settings controlling the number of
removed true instances. The partially labelled data streams are used to evaluate SSL methods𝑀SSL,
while the fully labelled data streams are used to evaluate𝑀FS methods. By a method a combination
of stream mining method and its hyperparameter settings is meant. In this way, sensitivity analysis
of individual methods can be performed. Ideally, both real and synthetic data streams including
the streams with known presence of concept drift should be represented in the reference stream
sections.
As far as the main instance loop operating on the instances of a single stream is concerned,

let us emphasise that we take into account the initial predictions i.e. predictions made at the
time of receiving instance data, final predictions i.e. predictions made at the time of receiving a
true label, and periodic predictions. Furthermore, if active learning methods are included in the
evaluation, additional labels received on request from an oracle can be included and possibly used
to update a model at the time of actually having them available. Last, but not least, we propose
these labels to be used for updating a model, but not for updating performance indicators, as the
performance indicators should rely entirely on the performance observed on input instances. This
is because the distribution of instances for which additional labels are requested is not likely to
match the distribution of x examples. Furthermore, by performance indicators both the indicators
aggregating the similarity of predicted and true labels, including accuracy, 𝜅 , 𝜅+, and intermediate
performance measures [46] and indicators revealing resource consumption, such as computation
time and memory use are meant. In the former case, the assessment of initial, periodic and final
prediction may reveal varied abilities of individual methods to evolve the models before true label
arrival. In parallel, stream statistics including label latency histograms, distribution of classes, and
the volume of labelled and unlabelled data can be collected.

As far as implementation aspects are concerned, all the streams present in Ω𝑞 sets can be devel-
oped in parallel. In particular, multiple runs for every 𝑝u and stream mining method combination
can also be executed in parallel. Furthermore, all dependent streams can be gradually produced
and processed in parallel without the need to store all their instances and labels. In contrast, every
time a new instance or a label of an instance arrives, it may or may not, depending on whether it is
included in a dependent stream, become a part of the dependent stream and be processed in the
instance-based loop of the algorithm for this dependent stream.

, Vol. 1, No. 1, Article . Publication date: June 2021.

30 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

Input: {Ψ𝑞 [𝑇min (𝑞),𝑇max (𝑞)] : 𝑞 = 1, . . . , 𝑄} - reference stream sections, {𝑝𝑖 : 𝑖 = 1, . . . , 𝑃} - label
removal probabilities, 𝑅 - the number of runs,𝑀SSL and𝑀FS - semi-supervised and fully
supervised stream mining methods to evaluate, respectively

Data: S1,S2, ... - data stream; 𝐿 - list of examples ({(x𝑘 , ?)}, . . .), containing the data of instances
awaiting their true labels, 𝑃 (𝑘) - list of timestamped predictions made for S𝑖 = {(x𝑘 , ?)}, ℎ𝑖 -
the prediction model after processing 𝑖 instances,𝑀 (Ψ) - applicable methods i.e.𝑀SSL and𝑀FS
for partly and fully labelled Ψ, respectively

begin
for 𝑞 = 1, . . . , 𝑄 do

Ψs = Ψ𝑞 [𝑇min (𝑞),𝑇max (𝑞)]; ΨUFS = 𝐹L (Ψs);
Ω𝑞 = {Ψs,ΨUFS};
for 𝑝u ∈ {𝑝𝑖 : 𝑖 = 1, . . . , 𝑃} do

for r=1,. . . ,R do
ΨSSL = 𝐹U (ΨUFS, 𝑝u); ΨLFS = 𝐹L (ΨSSL);
Ω𝑞 = Ω𝑞 ∪ {ΨSSL,ΨLFS};

end
end
for Ψ ∈ Ω𝑞 do

for𝑀 ∈ 𝑀 (Ψ) do
ℎ1 = 𝜙 ; 𝐿 = 𝜙 ; 𝑃 = 𝜙 ;
/* Instance loop */
for 𝑖 = 1, . . . do

S𝑖=fetchNext(Ψ);
/* New unlabelled instance arrived */
if S𝑖 = {(x𝑘 , ?)} then

𝐿.add({(x𝑘 , ?)});
/* obtain first time prediction */
P(𝑘).addFirst(ℎ𝑖 (x𝑘), 𝑡 (S𝑖));
ℎ𝑖+1=trainSSL(𝑀,ℎ𝑖 , {(x𝑘 , ?)};

else
/* S𝑖 = {(x𝑘 , y𝑘)}, i.e. a true label arrived */
/* if the label is a delayed label */
if c(S𝑖) = DELAYED then

/* obtain final prediction */
P(𝑘).addFinal(ℎ𝑖 (x𝑘), 𝑡 (S𝑖));
/* Calculate performance measures and stream statistics */
updPerformance(𝑃 (𝑘), y𝑘 , 𝑡 (S𝑖)); 𝐿.remove(𝑘);
/* generate new periodic predictions for instances awaiting true labels */
𝐿.generateNewPredictions(ℎ𝑖);

end
/* Update the model with SSL method for SSL streams or FSM method for
UFS and LFS streams, based on delayed and active learning labels */

ℎ𝑖+1=train(𝑀,ℎ𝑖 , {(x𝑘 , y𝑘)});
end

end
end

end
end

end
Algorithm 1: Evaluation of semi-supervised methods under delayed labelling setting

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 31

6 CONCLUSION AND PERSPECTIVES
In this paper, we discussed semi-supervised learning from the perspective of delayed partially
labelled data streams. This setting is a realistic representation of several real-world problems
involving the application of machine learning for data streams. We present several aspects of SSL
in this context, including: related problems; learning guarantees; classic batch methods and their
online counter parts; and fair evaluation of SSL methods.
SSL methods have been explored (and continue to be explored) with varying levels of success

in the batch setting, therefore it is worth reflecting upon how this success can be reflected in the
settings of partially-labelled data streams. An explosive area to look at is that of deep learning
where the interest in SSL techniques has increased rapidly in the community [86]. SSL is particularly
relevant to these models which are notoriously data hungry, and often not enough labeled data
is available. Data augmentation can also be useful in this setting: augmenting the training data
with new examples artificially created from existing ones. A promising, albeit challenging, venue
of research is the application of such techniques to unlabelled examples; some have already been
proposed [96]. Extending such methods to data streams poses several challenges, namely that of
computational complexity. Augmentation strategies defined for batch data already require costly
operations, such as SMOTE [22] which was originally used to address class imbalance problems, but
can also be used to augment the training data. Recently, Bernardo et al. [8] proposed a meta-strategy
named continuous-SMOTE that perform the oversampling step only on a recent subset of instances.

The application of deep neural networks to streaming is controversial. Although gradient descent
is naturally instance-incremental (or, more commonly, minibatch-incremental), a large amount of
labeled data is required, and often the convergence of gradient descent algorithms require many
passes over the data, which is not possible a streaming setting. There are indeed approaches to
apply deep learning models to streams [3, 74], however the advancements in the field are lagging
behind in comparison to the batch community.

Transfer learning is an increasingly popular and powerful technique to improve the performance
of learning one concept, given that an earlier concept has already been learned. There is an obvious
connection here to learning in a concept-drifting data stream, but also more generally when trying
to stream one concept making use of another existing already-learned task. Zhao et al. [100]
introduced a framework for online transfer learning, including algorithms to tackle domains of
common and different feature spaces, as well as an algorithm to address concept-drifting streams.
More recently, Wu et al. [93] explored multiple homogeneous and heterogeneous sources for online
transfer learning, however concept drift was not taken into account for the scenarios studied. We
remark upon this topic because SSL can be leveraged for the application of transfer learning, since
more accurate models can be produced even when labelled data is scarce in the target domain. In
Section 5, we mentioned that comparing the predictive performance of SSL methods against fully
supervised methods that benefit from transfer learning leads to a realistic benchmark. However, this
practice is yet to become popular as transfer learning is not widely used in streaming in comparison
to batch settings.
Also most SSL tasks are focussed on classification, several SSL techniques can be adapted to

regression [86], such as self-training, co-training, and learning by disagreement. One possible
pathway for future research is the application of such SSL techniques in regression problems.

ACKNOWLEDGMENTS
Maciej Grzenda: The project was funded by POB Research Centre for Artificial Intelligence and
Robotics of Warsaw University of Technology within the Excellence Initiative Program - Research
University (ID-UB).

, Vol. 1, No. 1, Article . Publication date: June 2021.

32 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

REFERENCES
[1] Zahraa S Abdallah, Mohamed Medhat Gaber, Bala Srinivasan, and Shonali Krishnaswamy. 2016. Anynovel: detection

of novel concepts in evolving data streams. Evolving Systems 7, 2 (2016), 73–93.
[2] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. 2003. A framework for clustering evolving data

streams. In International Conference on Very Large Data Bases (VLDB). 81–92.
[3] Andri Ashfahani and Mahardhika Pratama. 2019. Autonomous deep learning: Continual learning approach for

dynamic environments. In Proceedings of the 2019 SIAM International Conference on Data Mining. SIAM, 666–674.
[4] Manuel Baena-García, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, Ricard Gavaldà, and Rafael Morales-Bueno.

2006. Early drift detection method. (2006).
[5] Maroua Bahri, Albert Bifet, João Gama, Heitor Murilo Gomes, and Silviu Maniu. 2021. Data stream analysis:

Foundations, major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2021).
[6] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation Learning: A Review and New Perspectives.

IEEE Trans. Pattern Anal. Mach. Intell. 35, 8 (2013), 1798–1828.
[7] Kristin P Bennett and Ayhan Demiriz. 1999. Semi-supervised support vector machines. In Advances in Neural

Information processing systems. 368–374.
[8] Alessio Bernardo, Heitor Murilo Gomes, Jacob Montiel, Bernhard Pfahringer, Albert Bifet, and Emanuele Della Valle.

2020. C-SMOTE: Continuous Synthetic Minority Oversampling for Evolving Data Streams. In IEEE International
Conference on Big Data.

[9] Albert Bifet, Gianmarco de Francisci Morales, Jesse Read, Geoff Holmes, and Bernhard Pfahringer. 2015. Efficient
Online Evaluation of Big Data Stream Classifiers. In ACM SIGKDD. 59–68.

[10] Albert Bifet and Ricard Gavalda. 2007. Learning from time-changing data with adaptive windowing. In SIAM
international conference on data mining. 443–448.

[11] Albert Bifet, Ricard Gavalda, Geoff Holmes, and Bernhard Pfahringer. 2018. Machine Learning for Data Streams: with
Practical Examples in MOA. MIT Press.

[12] Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. 2010. Leveraging Bagging for Evolving Data Streams. In PKDD.
135–150.

[13] Albert Bifet, Jesse Read, Indrė Žliobaitė, Bernhard Pfahringer, and Geoff Holmes. 2013. Pitfalls in Benchmarking Data
Stream Classification and How to Avoid Them. In Machine Learning and Knowledge Discovery in Databases. Springer,
465–479.

[14] Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In Conference on
Computational learning theory. 92–100.

[15] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[16] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[17] Olivier Cappé and Eric Moulines. 2009. On-line expectation–maximization algorithm for latent data models. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 71, 3 (2009), 593–613.
[18] G. Cassales, H. Gomes, A. Bifet, B. Pfahringer, and H. Senger. 2020. Improving Parallel Performance of Ensemble

Learners for Streaming Data Through Data Locality with Mini-Batching. In IEEE International Conference on High
Performance Computing and Communications (HPCC).

[19] Vitor Cerqueira, Heitor Murilo Gomes, and Albert Bifet. 2020. Unsupervised Concept Drift Detection using a
Student–Teacher Approach. In International Conference on Discovery Science. Springer, 190–204.

[20] Fabrício Ceschin, Heitor Murilo Gomes, Marcus Botacin, Albert Bifet, Bernhard Pfahringer, Luiz S Oliveira, and André
Grégio. 2020. Machine Learning (In) Security: A Stream of Problems. arXiv preprint arXiv:2010.16045 (2020).

[21] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2006. Semi-Supervised Learning. MIT Press.
[22] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002. SMOTE: synthetic minority

over-sampling technique. Journal of artificial intelligence research 16 (2002), 321–357.
[23] Moustapha Cisse, Maruan Al-Shedivat, and Samy Bengio. 2016. ADIOS: Architectures Deep In Output Space. In

Proceedings of The 33rd International Conference on Machine Learning, Vol. 48. PMLR, 2770–2779.
[24] Lucas de Carvalho Pagliosa and Rodrigo Fernandes de Mello. 2017. Applying a kernel function on time-dependent

data to provide supervised-learning guarantees. Expert Syst. Appl. 71 (2017), 216–229.
[25] Rodrigo Fernandes de Mello. 2019. On the Shattering Coefficient of Supervised Learning Algorithms. arXiv preprint

arXiv:1911.05461 (2019).
[26] Rodrigo F de Mello, Chaitanya Manapragada, and Albert Bifet. 2019. Measuring the Shattering coefficient of Decision

Tree models. Expert Systems with Applications 137 (2019), 443–452.
[27] Rodrigo Fernandes de Mello, Yule Vaz, Carlos Henrique Grossi Ferreira, and Albert Bifet. 2019. On learning guarantees

to unsupervised concept drift detection on data streams. Expert Syst. Appl. 117 (2019), 90–102.
[28] Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39, 1 (1977), 1–22.

, Vol. 1, No. 1, Article . Publication date: June 2021.

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 33

[29] Luc Devroye, László Györfi, and Gábor Lugosi. 1996. A Probabilistic Theory of Pattern Recognition. Stochastic Modelling
and Applied Probability, Vol. 31. Springer. 1–638 pages.

[30] Gregory Ditzler, Gail Rosen, and Robi Polikar. 2012. Transductive learning algorithms for nonstationary environments.
In The 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[31] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. 2015. Learning in Nonstationary Environments: A Survey. IEEE
Computational Intelligence Magazine 10, 4 (2015), 12–25.

[32] Carlotta Domeniconi and Dimitrios Gunopulos. 2001. Incremental support vector machine construction. In Proceedings
2001 ieee international conference on data mining. IEEE, 589–592.

[33] Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In ACM SIGKDD. 71–80.
[34] Denis Moreira dos Reis, Peter Flach, Stan Matwin, and Gustavo Batista. 2016. Fast Unsupervised Online Drift Detection

Using Incremental Kolmogorov-Smirnov Test. In ACM SIGKDD. 1545–1554.
[35] K. B. Dyer, R. Capo, and R. Polikar. 2014. COMPOSE: A Semisupervised Learning Framework for Initially Labeled

Nonstationary Streaming Data. IEEE Transactions on Neural Networks and Learning Systems 25, 1 (2014), 12–26.
[36] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. 2005. Mining data streams: a review. ACM

Sigmod Record 34, 2 (2005), 18–26.
[37] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. 2013. On evaluating stream learning algorithms. Machine

Learning 90, 3 (01 Mar 2013), 317–346.
[38] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. 2014. A survey on concept

drift adaptation. ACM computing surveys (CSUR) 46, 4 (2014), 44.
[39] Alex Gammerman, Volodya Vovk, and Vladimir Vapnik. 1998. Learning by transduction. Procs of the Fourteenth

Conference Uncertainty in Artificial Intelligence (1998).
[40] Heitor Murilo Gomes, Jean Paul Barddal, Fabrício Enembreck, and Albert Bifet. 2017. A Survey on Ensemble Learning

for Data Stream Classification. Comput. Surveys 50, 2, Article 23 (2017), 36 pages. https://doi.org/10.1145/3054925
[41] Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck, Bernhard Pfharinger, Geoff

Holmes, and Talel Abdessalem. 2017. Adaptive random forests for evolving data stream classification. Machine
Learning 106, 9-10 (2017), 1469–1495.

[42] Heitor Murilo Gomes, Jesse Read, and Albert Bifet. 2019. Streaming Random Patches for Evolving Data Stream
Classification. In IEEE International Conference on Data Mining. IEEE.

[43] Heitor Murilo Gomes, Jesse Read, Albert Bifet, Jean Paul Barddal, and João Gama. 2019. Machine learning for
streaming data: state of the art, challenges, and opportunities. ACM SIGKDD Explorations Newsletter 21, 2 (2019),
6–22.

[44] Yves Grandvalet and Y Bengio. 2006. Entropy Regularization. MIT Press Scholarship Online: August 2013 (09 2006).
https://doi.org/10.7551/mitpress/9780262033589.003.0009

[45] Maciej Grzenda, Heitor Murilo Gomes, and Albert Bifet. 2020. Delayed labelling evaluation for data streams. Data
Mining and Knowledge Discovery 34, 5 (2020), 1237–1266.

[46] M. Grzenda, H. M. Gomes, and A. Bifet. 2020. Performance measures for evolving predictions under delayed labelling
classification. In International Joint Conference on Neural Networks (IJCNN). 1–8.

[47] Ahsanul Haque, Latifur Khan, and Michael Baron. 2015. Semi Supervised Adaptive Framework for Classifying
Evolving Data Stream. In Advances in Knowledge Discovery and Data Mining. Springer, 383–394.

[48] Geoffrey Hinton and Ruslan Salakhutdinov. 2006. Reducing the Dimensionality of Data with Neural Networks. Science
313, 5786 (2006), 504 – 507.

[49] Shen-Shyang Ho and Harry Wechsler. 2004. Learning from data streams via online transduction. ICDM Workshop
(2004), 45–52.

[50] Mohammad Javad Hosseini, Ameneh Gholipour, and Hamid Beigy. 2016. An ensemble of cluster-based classifiers
for semi-supervised classification of non-stationary data streams. Knowledge and Information Systems 46, 3 (2016),
567–597.

[51] Elena Ikonomovska, João Gama, and Sašo Džeroski. 2011. Learning model trees from evolving data streams. Data
mining and knowledge discovery 23, 1 (2011), 128–168.

[52] Nathalie Japkowicz and Mohak Shah. 2011. Evaluating Learning Algorithms: A Classification Perspective. Cambridge
University Press, USA.

[53] Shayan Jawed, Josif Grabocka, and Lars Schmidt-Thieme. 2020. Self-supervised Learning for Semi-supervised Time
Series Classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 499–511.

[54] Holger Kantz and Thomas Schreiber. 2003. Nonlinear Time Series Analysis. Cambridge University Press, USA.
[55] Artur Karimov, Erivelton G. Nepomuceno, Aleksandra Tutueva, and Denis Butusov. 2020. Algebraic Method for the

Reconstruction of Partially Observed Nonlinear Systems Using Differential and Integral Embedding. Mathematics 8,
2 (2020), 300.

, Vol. 1, No. 1, Article . Publication date: June 2021.

https://doi.org/10.1145/3054925
https://doi.org/10.7551/mitpress/9780262033589.003.0009

34 Heitor Murilo Gomes, Maciej Grzenda, Rodrigo Mello, Jesse Read, Minh Huong Le Nguyen, and Albert Bifet

[56] Shirin Khezri, Jafar Tanha, Ali Ahmadi, and Arash Sharifi. 2020. STDS: self-training data streams for mining limited
labeled data in non-stationary environment. Applied Intelligence (2020), 1–20.

[57] Ralf Klinkenberg. 2001. Using labeled and unlabeled data to learn drifting concepts. In IJCAI Workshop on Learning
from Temporal and Spatial Data. 16–24.

[58] Georg Krempl. 2011. The algorithm APT to classify in concurrence of latency and drift. In International Symposium
on Intelligent Data Analysis. Springer, 222–233.

[59] Minh Huong Le Nguyen, Heitor Murilo Gomes, and Albert Bifet. 2019. Semi-supervised Learning over Streaming
Data using MOA. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 553–562.

[60] Ming Li and Zhi-Hua Zhou. 2007. Improve computer-aided diagnosis with machine learning techniques using
undiagnosed samples. IEEE Transactions on Systems, Man, and Cybernetics 37, 6 (2007), 1088–1098.

[61] Charles X Ling, Jun Du, and Zhi-Hua Zhou. 2009. When does co-training work in real data?. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 596–603.

[62] Beatriz Maeireizo, Diane Litman, and Rebecca Hwa. 2004. Co-training for Predicting Emotions with Spoken Dialogue
Data. In Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions (ACLdemo ’04). Association for
Computational Linguistics, Stroudsburg, PA, USA, Article 28. https://doi.org/10.3115/1219044.1219072

[63] Diego Marrón, Eduard Ayguadé, José R. Herrero, Jesse Read, and Albert Bifet. 2017. Low-latency Multi-threaded
Ensemble Learning for Dynamic Big Data Streams. In IEEE International Conference on Big Data. 223–232.

[64] MohammadMMasud, Qing Chen, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thuraisingham. 2010. Classification
and novel class detection of data streams in a dynamic feature space. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 337–352.

[65] Mohammad M Masud, Qing Chen, Latifur Khan, Charu Aggarwal, Jing Gao, Jiawei Han, and Bhavani Thuraisingham.
2010. Addressing concept-evolution in concept-drifting data streams. In 2010 IEEE International Conference on Data
Mining. IEEE, 929–934.

[66] Mohammad M Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thuraisingham. 2008. A practical approach
to classify evolving data streams: Training with limited amount of labeled data. In ICDM. IEEE, 929–934.

[67] Mohammad M Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thuraisingham. 2010. Classification and
novel class detection in data streams with active mining. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining. 311–324.

[68] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, and Nikunj C. Oza.
2012. Facing the reality of data stream classification: coping with scarcity of labeled data. Knowledge and Information
Systems 33, 1 (01 Oct 2012), 213–244. https://doi.org/10.1007/s10115-011-0447-8

[69] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. 2018. Scalable Model-based Cascaded Imputation of
Missing Data. In PAKDD. Springer, 64–76.

[70] Kamal Nigam, Andrew McCallum, and Tom M Mitchell. 2006. Semi-Supervised Text Classification Using EM.
[71] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow. 2018. Realistic Evaluation of

Deep Semi-Supervised Learning Algorithms. In Advances in Neural Information Processing Systems. 3238–3249.
[72] N.C. Oza. 2005. Online bagging and boosting. In IEEE International Conference on Systems, Man and Cybernetics, Vol. 3.

2340–2345 Vol. 3. https://doi.org/10.1109/ICSMC.2005.1571498
[73] Joshua Plasse and Niall Adams. 2016. Handling delayed labels in temporally evolving data streams. In IEEE ICBD.

2416–2424.
[74] Mahardhika Pratama, Andri Ashfahani, and Abdul Hady. 2019. Weakly supervised deep learning approach in

streaming environments. In 2019 IEEE International Conference on Big Data (Big Data). IEEE, 1195–1202.
[75] Jesse Read and Luca Martino. 2020. Probabilistic Regressor Chains with Monte-Carlo Methods. Neurocomputing 413

(2020), 471–486.
[76] Jesse Read, Fernando Perez-Cruz, and Albert Bifet. 2015. Deep Learning in Partially-Labelled Data-Streams. In SAC

2015: 30th ACM Symposium on Applied Computing. ACM, 954–959.
[77] Jesse Read, Ricardo A. Rios, Tatiane Nogueira, and Rodrigo Fernandes de Mello. 2020. Data Streams Are Time Series:

Challenging Assumptions. In Intelligent Systems - 9th Brazilian Conference, BRACIS Proceedings (Lecture Notes in
Computer Science), Vol. 12320. Springer, 529–543.

[78] Joan Serrà, Xavier Serra, and Ralph G Andrzejak. 2009. Cross recurrence quantification for cover song identification.
New Journal of Physics 11, 9 (sep 2009).

[79] Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Technical Report 1648. University of
Wisconsin–Madison.

[80] Dennis JNJ Soemers, Tim Brys, Kurt Driessens, Mark HM Winands, and Ann Nowé. 2018. Adapting to Concept Drift
in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees.. In AAAI.

[81] W Nick Street and YongSeog Kim. 2001. A streaming ensemble algorithm (SEA) for large-scale classification. In ACM
SIGKDD international conference on Knowledge discovery and data mining. 377–382.

, Vol. 1, No. 1, Article . Publication date: June 2021.

https://doi.org/10.3115/1219044.1219072
https://doi.org/10.1007/s10115-011-0447-8
https://doi.org/10.1109/ICSMC.2005.1571498

A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams 35

[82] Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou. 2010. Multi-label learning with weak label. In Proceedings of the twenty-
fourth AAAI conference on artificial intelligence. 593–598.

[83] Floris Takens. 1981. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980.
Springer, 366–381.

[84] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi Label Classification: An Overview. International Journal of
Data Warehousing and Mining 3, 3 (2007), 1–13.

[85] Masayuki Ushio and Kazutaka Kawatsu. 2020. Forecasting Ecological Time Series Using Empirical Dynamic Modeling:
A Tutorial for Simplex Projection and S-map. Springer, 193–213.

[86] Jesper E Van Engelen and Holger H Hoos. 2020. A survey on semi-supervised learning. Machine Learning 109, 2
(2020), 373–440.

[87] Vladimir Vapnik. 2013. The nature of statistical learning theory. Springer science & business media.
[88] Ulrike von Luxburg and Bernhard Schölkopf. 2011. Statistical Learning Theory: Models, Concepts, and Results. In

Inductive Logic. Handbook of the History of Logic, Vol. 10. Elsevier, 651–706.
[89] Willem Waegeman, Krzysztof Dembczyński, and Eyke Hüllermeier. 2019. Multi-target prediction: a unifying view on

problems and methods. Data Mining and Knowledge Discovery 33, 2 (2019), 293–324.
[90] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing from a few examples: A survey on

few-shot learning. ACM Computing Surveys (CSUR) 53, 3 (2020), 1–34.
[91] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean. 2016. Characterizing concept drift.

Data Mining and Knowledge Discovery 30, 4 (2016), 964–994.
[92] Li Wei and Eamonn Keogh. 2006. Semi-supervised time series classification. In ACM SIGKDD. 748–753.
[93] Qingyao Wu, Hanrui Wu, Xiaoming Zhou, Mingkui Tan, Yonghui Xu, Yuguang Yan, and Tianyong Hao. 2017. Online

transfer learning with multiple homogeneous or heterogeneous sources. IEEE TKDE 29, 7 (2017), 1494–1507.
[94] Xindong Wu, Peipei Li, and Xuegang Hu. 2012. Learning from concept drifting data streams with unlabeled data.

Neurocomputing 92 (2012), 145–155.
[95] Ming-Kun Xie and Sheng-Jun Huang. 2018. Partial multi-label learning. In AAAI.
[96] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. 2019. Unsupervised data augmentation for

consistency training. arXiv preprint arXiv:1904.12848 (2019).
[97] Chang Xu, Dacheng Tao, and Chao Xu. 2013. A survey on multi-view learning. arXiv preprint arXiv:1304.5634 (2013).
[98] David Yarowsky. 1995. Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. In Annual Meeting

on Association for Computational Linguistics. Association for Computational Linguistics, 189–196.
[99] Peng Zhang, Xingquan Zhu, and Li Guo. 2009. Mining data streams with labeled and unlabeled training examples. In

ICDM. IEEE, 627–636.
[100] Peilin Zhao, Steven CH Hoi, Jialei Wang, and Bin Li. 2014. Online transfer learning. Artificial Intelligence 216 (2014),

76–102.
[101] Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on

knowledge and Data Engineering 17, 11 (2005), 1529–1541.
[102] Zhi-Hua Zhou and Ming Li. 2010. Semi-supervised learning by disagreement. Knowledge and Information Systems 24,

3 (2010), 415–439.
[103] Xiaojin Zhu. 2008. Semi-Supervised Learning Literature Survey. Comput Sci, University of Wisconsin-Madison 2 (07

2008).
[104] Xingquan Zhu, Peng Zhang, Xiaodong Lin, and Yong Shi. 2007. Active learning from data streams. In ICDM. 757–762.
[105] Indre Žliobaite. 2010. Change with delayed labeling: When is it detectable?. In IEEE ICDMW. 843–850.
[106] Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, and Geoffrey Holmes. 2013. Active learning with drifting streaming

data. IEEE transactions on neural networks and learning systems 25, 1 (2013), 27–39.

, Vol. 1, No. 1, Article . Publication date: June 2021.

	Abstract
	1 INTRODUCTION
	2 PROBLEM DEFINITION
	2.1 Related Problems

	3 LEARNING GUARANTEES
	3.1 Semi-supervised learning in offline scenarios
	3.2 Semi-supervised learning in online scenarios

	4 METHODS
	4.1 Intrinsically SSL
	4.2 Self-training
	4.3 Learning by disagreement
	4.4 Representation Learning
	4.5 Unsupervised and SSL Drift Detection

	5 Fair comparative analysis
	5.1 Evaluation of machine learning methods
	5.2 Evaluation of stream mining models
	5.3 Comparison of semi-supervised vs. supervised methods
	5.4 Reference data streams
	5.5 Unified fair evaluation

	6 CONCLUSION AND PERSPECTIVES
	Acknowledgments
	References

