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Commuter comfort in cab rides affects driver rating as well as the reputation of ride-hailing firms like

Uber/Lyft. Existing research has revealed that commuter comfort not only varies at a personalized level but

also is perceived differently on different trips for the same commuter. Furthermore, there are several factors,

including driving behavior and driving environment, affecting the perception of comfort. Automatically ex-

tracting the perceived comfort level of a commuter due to the impact of the driving behavior is crucial for

a timely feedback to the drivers, which can help them to meet the commuter’s satisfaction. In light of this,

we surveyed around 200 commuters who usually take such cab rides and obtained a set of features that im-

pact comfort during cab rides. Following this, we develop a system Ridergo which collects smartphone sensor

data from a commuter, extracts the spatial time series feature from the data, and then computes the level of

commuter comfort on a five-point scale with respect to the driving. Ridergo uses a Hierarchical Temporal

Memory model-based approach to observe anomalies in the feature distribution and then trains a multi-task

learning-based neural network model to obtain the comfort level of the commuter at a personalized level. The

model also intelligently queries the commuter to add new data points to the available dataset and, in turn,

improve itself over periodic training. Evaluation of Ridergo on 30 participants shows that the system could

provide efficient comfort score with high accuracy when the driving impacts the perceived comfort.
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1 INTRODUCTION

The growing success of ride-hailing services (Uber/Lyft) has increased most city dwellers’ reliance
across the globe on these firms, both for daily commuting and intercity travels. While these app-
based cab services have emerged rapidly, a growing concern is the driver quality for such on-
demand cab services [45, 63]. The app-based cab companies typically employ an open business
model, where both the drivers and the riders register themselves by authenticating and validating
their details [8]. Typically, these cab companies continuously monitor the drivers’ performance
through the smartphone app’s data and, more importantly, the feedback or the driver rating from
the riders at the end of each trip. Such performance metrics are, in general, used for incentivizing
the drivers and, therefore, are extremely important for the operational efficiency of the system.
Although driving performance monitoring through the app-sensed data (primarily the GPS)

and the riders’ feedback at the end of the trip is crucial to monitor and maintain the service qual-
ity and resolve customer grievance, the current approaches have many limitations. First, com-
muter feedback on trip-end only provides a consolidated view of the riding experience. Such feed-
back does not capture, (a) impact of the driving in different sections of the trip temporally, nor
(b) the specific events during the trip that have impacted the commuting experience. For example,
a smooth trip might be given a poor rating because the driver drove into a pothole at the end of
the trip. Several studies on Uber driver ratings have shown that such trip-end rating is not the
correct measure and also introduces multiple biases depending on the age, gender, and demog-
raphy [27, 34]. Second, the consolidated trip-end rating combines multiple factors; for example,
the driver’s micro-behavior towards the rider impacts the rating significantly [27]. Such consoli-
dated ratings lack transparency, where the drivers and the cab companies remain unaware of the
low-level factors that affected the rating for a particular ride. Although the riders may provide the
reason for a low rating, it is in general optional. As analyzed from Uber data, most riders either
refrain from giving detailed feedback or share biased or random feedback [27]. Third, the impact
of driving on the commuting experience is very much personalized depending on the riders’ age,
gender, demography, health, mental conditions, etc. [64, 78]. For example, a fast-driving experi-
ence, within speed-limits, might be uncomfortable for an old or physically weak commuter. But
the same fast-driving experience would be good for an office-goer.
Therefore, understanding the impact of driving behavior on a personal-scale is essential for both

the drivers and the app-cab companies. Considering a ride-hailing service like Uber, the smart-
phones of the drivers and the cab riders are typically connected through the ride-hailing service,
like the Uber app. Incidentally, a cab rider’s smartphone can capture her personal traits, which
can also signify her comfort parameters [16]. In a collaborative environment, the rider’s smart-
phone can continuously sense the driving data to derive the driving behavior and then correlate
it with the commuter’s comfort parameters. An application that understands commuter comfort
could open doors for other applications like (a) a live feedback system for the driver, which pro-
vides commuter profile information and suggests what driving actions could make the commuter
uncomfortable. The driver can tune or control their driving behavior based on the commuter’s
personal preference, making the riding more interactive and get a better rating [13, 61]; (b) the
app-cab companies can also match the drivers with the riders based on the driving profile of the
driver and the riding preference of the rider.
Technology requirements and associated challenges: Automated systems for generating

ratings from behavioral observations can play an essential role in addressing such issues, as the
works by Thebault-Spieker et al. [74], and Liang et al. [44] have shown, either by utilizing surveys
or simulations. However, to address the issues at a practical level and build various other value-
added services based on the impact of driving behavior over a rider’s riding experience, we need
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an end-to-end driving profiling toolbox. This mechanism should continuously assess the driving
behavior’s influence over the rider’s comfort and provide critical feedback, recommendations, or
alert to the driver and the cab companies. However, as we mentioned earlier, such a model should
capture the riders’ personality traits, as different factors have quite distinct impacts on other rid-
ers. However, these factors may not carry a direct signature to understand the impact of driving
behavior on the commuter’s perceived comfort. For example, on a bumpy road, even a good driver
may not avoid the jerkiness altogether; therefore, the commuter’s discomfort, in this case, is linked
to the driving environment and not to the driving behavior. However, the driving behavior can be
alarming if a sudden jerk is felt on a smooth road. Therefore, even a personalized learning model
is not suitable to capture the commuter’s comfort as it also widely varies across different driving
environments.
Effectively, the need here is to have a model which can (a) not only take decisions at a personal-

ized level but also take into account the differences in the road conditions or the driving environ-
ments, (b) understand different baseline signatures associated with factors like acceleration, jerk,
congestion, etc. that are associated with the comfort level of the commuter under various driving
environments, and (c) estimate the deviation of these signatures from their typical pattern (corre-
sponding to commuter comfort) indicating possible discomfort for the commuter. We also target to
make the profiling online, based on the streaming sensor data (accelerometer, GPS) captured from
commuters’ smartphones running the riding app. This ensures that our framework could be used
for developing online services, such as alerting the driver during the trip itself if the passenger is
likely to feel uncomfortable due to some driving actions.
In this paper, we first develop an application to collect various sensor data from the rider’s

smartphone while on a cab ride to link the driving style with her comfort perception (Section 3).
The data collection drive was executed with 50 volunteers. The application helps us to generate
a rich dataset of driving and commuter comfort labels. Our primary contributions relying on the
collected dataset are as follows;

• Based on an online survey and a user study, we define what features affect a rider’s comfort
while on a ride (Section 4).
• Wemodel the spatio-temporal self-exciting (the value at the current time instance influences
the value at the next time instance) features, viz. speed of the vehicle, jerkiness, and conges-
tion, by analyzing their spatial time series distribution (Section 5).
• We develop a Hierarchical Temporal Memory (HTM) [9, 29] based approach to detect
anomalies in the distribution of these spatio-temporal features, which are analogous to the
rider’s discomfort (Section 6).
• As HTM only detects anomaly for a single feature at a time, we develop a neural network
model to map the likelihood of the discomfort of all the three features along with other static
features to compute the rider’s comfort level. Keeping personalization of comfort in mind,
we opt for Multi-task Learning [12] (Section 7). The model also has a feedback mechanism
to improve itself with time (Section 7.2).

The developed model continuously predicts the rider’s comfort level based on the driving behavior
and her personality traits, and such information can be used for developingmultiple applications in
a driver-rider collaborative environment, as stated earlier. As a proof of concept implementation,
we implement an automated driving rating system which provides continuous feedback to the
driver over the ride-hailing app.
Finally, we develop a rating application based on the overall comfort felt during the trip, which

uses Ridergo as a framework (Section 8). The evaluation experiments are performed over 30
users who downloaded our application from the Google Play Store. Following this, we provide a
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discussion of the limitations and possible future directions for this work (Section 9). Before pro-
ceeding into the system’s details, we first give a brief survey of the related literature in the next
section (Section 2).

2 RELATEDWORK

In this section, we discuss related literature that built ways to define commuter comfort, a crucial
unit of the transport system, and develop systems to compute comfort in different scenarios.

2.1 Commuter Comfort: How is It Perceived?

Understanding commuter comfort could be dated back toMayr [48] coining the term traveling com-
fort composed of riding, local and organizational comfort [53]. Local comfort is the comfort felt
on stations or airports and takes into consideration factors like comfortable transfers or condition
of waiting rooms. Organizational comfort takes into consideration the comfort linked to organi-
zational origin, like availability of transport or reliability of a service. Riding comfort, which is
the comfort inside the vehicle, was later quantified by Kottenhoff [38] based on the experience
observed due to vehicle movements like accelerations, shaking, vibration, or jerks. So effectively,
it could be linked to the driving style of the driver, which could include instances like uneven driv-
ing, heavy braking, sharp acceleration, jerkiness, as observed by Kottenhoff et al. [39]. In transport
research literature, such as [23, 70, 75] and the references therein, personal interviews are used to
measure comfort, which being time-consuming and labor-intensive lacks scalability. Furthermore,
there have been several works which have shown that comfort is a personalized concept. For in-
stance, Clear et al. [17] report that in a building the perception of comfort might vary between
the occupants. ComfRide [78] shows that multiple factors could affect a commuter’s perception
of comfort in public buses, and every other commuter could give preference to a different set of
features. This varies with age, sex, occupation, etc. Similarly, works like [5, 26] have shown similar
results for commuters using taxis or ride-sharing options like Uber/Lyft.

2.2 Participatory Sensing as a Cooperative Solution

The advent of several participatory sensing works [14, 31, 47, 49, 59] opened grounds for ap-
proaches towards understanding commuter comfort from data obtained frommultiple commuters.
For instance, Cyclopath [57] obtains bikeability rating from multiple cyclists in a city to recom-
mend the best route for a user. Similarly, PASSAGE [25] recommends safe paths for pedestrians.
SmartTransfer [18] provides a crowd-aware route recommendation system for public transit com-
muters. Works like CMS [43], RESen [72], CommuniSense [68], and UrbanEye [81] used com-
muter’s smartphone sensor information to gain trip-related features. These works make use of
multiple smartphone sensors like GPS, accelerometer, gyroscope, gravity sensor, etc. to obtain
such information. Several of the new research works have tried to understand commuter comfort
in public transport [11, 19, 20, 78, 86]. RideComfort [11] utilizes smartphone sensors to obtain
vibration-based ride comfort in train rides. Dunlop et al. [19] used a smartphone-based survey
to observe comfort perception of a commuter on a transit ride. Other works utilize smartphone
sensors to get a perception of commuter comfort on buses [15, 20].

2.3 Commuter Comfort in Cabs

Public transport has the privilege of fixed routes and scheduled times, the absence of which adds
uncertainty to computing comfort in private cabs. There have been works that compute related
factors like driving behavior, driver stress [40–42, 50, 51, 58, 66, 76, 85], or the relationship be-
tween the driver-commuter pair [55], which could indirectly impact the comfort of a commuter.
Yuan et al. [84] build a system for recommending the personalized fastest route to a driver based
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Table 1. Comparing Ridergo with Existing Works

Work Sensing Method Transport Mode Online/
Offline

Comfort
Computation

Personalized
for Commuter

SmartTransfer [18] Public transit transaction records Public Buses Offline Yes (crowd-
aware only)

No

ComfRide [78] Commuter’s smartphone sensors Public Buses Offline Yes Yes
Join Driving [87] Driver’s smartphone accelerometer Cabs Online Yes No
Ruzic et al. [65] Cab mounted sensors Cabs Online Yes No
Elbanhawi et al. [21] Cab mounted sensors Autonomous Cars Online Yes Yes
Ridergo Commuter’s smartphone sensors Cabs Online Yes Yes

on his driving history, surrounding traffic flow, and weather conditions through using the GPS
trace of the driver. Eren et al. [22] utilize accelerometer, gyroscope, and magnetometer data ob-
tained from a driver’s smartphone to compute the driving behavior and estimate the commuting
safety on the ride. Verma et al. [80] utilize the roster information collected from multiple drivers
to compute stress and relate that to predicting the driving behavior, which could cause possible
accidents. However, these works utilize the data obtained from the driver and hence couldn’t be
personalized for the commuter. Works which directly target the comfort of a commuter also rely
on data either from the car or the driver [54, 65, 83]. Join Driving [87] performs commuter com-
fort calculation using accelerometer data obtained from the driver’s smartphone. Wang et al. [83]
assess the driving behaviour using GPS trajectory data of the driver only, and further compute
the behaviour depending on temporal data using representation learning. A similar approach is
followed by Machaj et al. [46] utilizing smartphone sensors. Park et al. [54] utilize vibrations ob-
served from the commuter’s body using sensors mounted on the seat to perceive comfort. On the
other hand, Ruzic et al. [65] utilize thermal sensors in the car to compute the comfort of the passen-
ger. Elbanhawi et al. [21] look into personalized comfort for a passenger, but that is in the context
of autonomous cars.

2.4 Limitation of the Existing Works

In a nutshell, although there exist several works on understanding the impact of driving behav-
ior on commuter’s comfort or the overall riding experience, they have the following limitations.
(1) The majority of the works use offline information to understand the driving behavior and its
impact on the commute experience. They cannot capture online and instantaneous impact of the
driving behavior on the commute experience, and therefore are limited only to the applications for
offline analysis. (2) The existing approaches fail to separate the impact of environmental factors
from driving behavior. For example, Join Driving [87] looks into jerkiness by measuring the accel-
eration but does not consider whether the jerkiness is due to a bumpy road or due to poor driving
behavior. (3) The personalized preferences of the commuters based on age, gender, demography,
occupation, etc. have not been captured in the existing models; therefore, the models are not suit-
able for providing fine-grained recommendation or alerts to the drivers. As Table 1 shows, Ridergo
addresses these limitations by utilizing the data from the commuter’s smartphone to assess her
comfort at a personal level and understand when a driving style is causing any discomfort.

3 DATA COLLECTION

We developed an in-house data collection app1 in order to (a) conduct the pilot experiments
and (b) to pre-train the models present in the developed Ridergo system. The developed Android
application is equipped to collect driving data from smartphone sensors and label the data
based on the perceived comfort label in a 5-point scale. This app records the inertial sensor

1https://github.com/rv355/rateride.git.
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Table 2. Data Collection Details

Participants
Age

Group

Android

Version

Total

trips
Cities Days

Max-Min

Trip Length

Max-Min

Trip Time

50 20–50 6.0–8.1 150 5 22 2–56 km 5–120 mins

data (accelerometer, gyroscope, magnetometer) and GPS information along with vehicle speed.
Additionally, the app also takes comfort rating input from the commuters using a 5-point slider
scale (1 being least discomfort and 5 being the most discomfort). The default value of this scale
is set to 1. Whenever a commuter feels some discomfort, she could update a new value, which
is set as the value of the comfort label until updated again by the commuter. Moreover, the app
also probes the commuter in every 5min of the last input to check if the label has changed. The
commuter need not respond to this whence the previous label is used. The collected data is
continuously streamed to a server to be uniquely stored for each commuter.
We distributed the developed application among 50 participants, who frequently take cabs for

their commute, to collect data in a natural and uncontrolled environment. The participants were
asked to start the application when boarding a cab and to stop the application on alighting. They
were also asked to rate the driving anytime they felt discomfort and to update their rating anytime
they felt a change in their perception of comfort. The participated commuters belonged to different
age groups and used different models of smartphones like Lenovo K6 Power, Moto G5, Redmi 5,
Redmi Note 5 Pro, with Android versions ranging from Android 6.0 to 8.1. A brief summary of the
data collection experiment has been provided in Table 2. This data is used to carry a set of pilot
experiments and to extract essential insights which helped us in developing the basic building
blocks of Ridergo. The details follow.

4 USER STUDY: IDENTIFICATION OF INDICATORS OF COMMUTER DISCOMFORT

First, we conduct an online survey on a set of commuters to discover the source of discomfort
experienced by them in their daily commute. Next, we demonstrate the potential of those indicative
features for the identification of commuter discomfort, and subsequently highlight the challenges
in developing a system that can assess the comfort of the commuter leveraging on those features.

4.1 Commuter Survey

The objective of this survey is to identify the factors which play major role in the commuter dis-
comfort. The survey was designed as an online Google form2 and was circulated through multiple
channels like Facebook, Twitter, and WhatsApp. Additionally, it was also shared through email
to different mailing groups, with which the authors were associated. The survey questionnaire is
composed of multiple components. (a) First, the survey collected general information regarding the
respondent, like the demography and cab usage frequency of the commuter. (b) Next, it inquired
the commuters about the factors which affect their comfort when in a cab ride. Six options were
provided from which to choose (speed, jerkiness, congestion, weather condition, driver behavior, cab
condition). These options were selected as a set of common features from existing works on riding
comfort [38, 53, 78]. The commuters had the flexibility to choose multiple options. Additionally, a
text box was also provided if the commuter felt any other factor should be included. (c) Further-
more, the survey queried if the discomfort she felt was usually at the beginning or end of the trip,
or throughout the trip. (d) Finally, the commuter had to report if the time of the day affected the

2https://tinyurl.com/t93npg5.
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Fig. 1. Online survey results. (a) Which features affect you when on a trip? (b) Which part of the trip have

you usually felt discomfort? (c) Does the time of the day impact your discomfort?.

discomfort she felt on a trip. The commuter was asked to comment on the reason in a textbox for
a positive response.

4.1.1 Survey Responses. We obtained responses from 200 respondents who avail cab services
in different cities from India, USA, Germany, Denmark, and the Netherlands. More than 70% of
these respondents avail cabs regularly (and 40% commuters use quite frequently). The outcome of
the survey has been summarized in Figure 1. The majority of the respondents feel discomfort due
to congestion (67.8%) (Figure 1(a)), followed by jerkiness (42.5%) and vehicle speed (37.7%). All the
other factors, including user-suggested factors like cyclist/pedestrian behavior, honking by other
vehicles, collectively received 5% responses. The responses also showed that more than 50% of
the commuters face discomfort either at the start or the end of the trip (Figure 1(b)). Furthermore,
the time of the day also affects the discomfort of a majority of the commuters (74.7%) (Figure 1(c)).
This discomfort induced from the trip time has been attributed by their illustrative responses, such
as “poor driving at late night is more dangerous and hence uncomfortable than in the day” or “it’s
possible to miss potholes or bumps at night which causes more discomfort”.

4.1.2 Lessons Learnt. Our survey study reveals that (i) speed of the vehicle, (ii) jerkiness, and
(iii) road congestion are the key indicators for assessing the commuter discomfort. Additionally,
the segment of a trip, which causes discomfort, can be characterized as (iv) time spent on the trip
(travel time) and (v) distance covered on the trip (distance travelled). Moreover, (vi) time of the day,
when the commuter is taking the trip would also be an important feature to predict commuter
discomfort.

4.2 Opportunities and Challenges

We conduct a pilot study to show the potential of the aforesaid indicators in order to discrimi-
nate between a comfortable vs uncomfortable ride of a commuter. We collect the recorded data
obtained from the pilot data collection experiment on 50 participants (see Section 3) and extract
the key features (i) speed of the vehicle, (ii) jerkiness from acceleration data [52], and (iii) road con-
gestion from the inertial sensors (accelerometer, gyroscope, magnetometer) following the standard
techniques in [79]. We consider the comfort labels 1–3 as comfortable and 4–5 as uncomfortable for
this experiment. In Figure 2, we plot the kernel density estimate, with a Gaussian kernel, of these
three features for instances when the commuter is in a comfortable and uncomfortable state on
the same trip. It is interesting to observe that the distribution varies considerably for discomfort
state as compared to comfort for all the three features. This points to the fact that just by observing
any kind of variation in the distribution of the features (speed of the vehicle, (jerkiness, and road
congestion), one can automatically perceive once the commuter starts feeling uncomfortable in a
ride.
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Fig. 2. Kernel Density Estimate plot (with Gaussian kernel) of all the three features for samples of comfort

and discomfort instances on a single trip. (a) Speed (b) Jerkiness (c) Congestion.

The above observation provides us with two possible approaches. First, to develop a model
solely dependent onMachine Learning, whichwould generate a trainedmodel learned from a large
dataset of commuter data. The second approach could be to estimate the features of the commuter’s
comfort perception, any variation (or anomaly) observed over this estimate can be perceived as
commuter discomfort. However, any learning based approach would require a large volume of
data and the learning would be historical. On the contrary, the anomaly detection approach, as we
show later, has two advantages. First, it could work with sparse data resolving the need of a large
dataset. Second, it performs learning after a trip starts with a small duration of bootstrapping at
the beginning of the trip which provides an option for online learning.
However, to leverage on the aforementioned opportunity, we need to address the following

challenges.

• Unlike travel time, distance, and time of the day, that can be calculated at any time instance;
the other three features (speed of the vehicle, jerkiness, and congestion) vary spatially as well
as temporally. Hence, calculating these features at any time instance is non-trivial. Instead,
the value of these features can be estimated from the distribution that each feature follows.
The first challenge roots out from this need to develop suitable spatio-temporal feature
models, that can represent each feature at the comfort state of the commuter in a ride.
• A deviation (or anomaly) from the baseline feature models (termed as comfort distribution)
can be identified as discomfort. Hence, in every new trip, such anomaly likelihood needs
to be learned for each feature. Moreover, since the learning would start at the beginning of
the trip, the data available would be quite sparse. Hence the second challenge would be to
develop a model for detecting anomaly from the comfort distribution, that can learn well on
sparse data too.
• The third challenge arises from the understanding that each commuter is different, and
her personality traits should be addressed while designing the models.
• The performance of the pre-trained model starts deteriorating when the commuter’s per-
sonal preferences change over time, or a new commuter launches the system. In both cases,
the pre-trained model fails to capture the comfort distribution and anomaly likelihood.
Hence, the fourth challenge is to update and adapt the system with suitable model re-
training mechanism.

Keeping the above challenges in mind, we develop Ridergo, which is composed of three broad
modules, as shown in Figure 3: (a) Feature Extractor - which takes care of sensing data and
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Fig. 3. Block diagram of the developed system.

extracting required features, (b) Discomfort Likelihood Estimator - which estimates the likelihood
that the driving could cause discomfort, and (c) Comfort Level Predictor - which based on the dis-
comfort likelihood predicts the comfort level of the commuter. Ridergo runs a smartphone app
which captures the data and finally displays the feedback, and the overall processing of the system
(primarily the above three modules) run on a server. The smartphone app periodically sends the
collected data to the server and fetches the feedback to display it over the app.
In the following sections we describe each module in detail.

5 FEATURE EXTRACTION

Taking clues from the user study (Section 4), in this section we introduce the features, which
carry the signature of commuter comfort. We rely on the sensor data streams collected from the
smartphones to extract those features.
As smartphone sensor data are usually noisy, we perform pre-processing using standard tech-

niques for axis reorientation and data smoothing [81]. Following this, we concentrate on the
extraction of features, which can be broadly categorized into two classes (a) instantaneous and
(b) spatio-temporal features.

5.1 Instantaneous Features

These features can be calculated directly from the sensor data at any time instance. From the
commuter survey, we identify three instantaneous features, namely (a) travel time (Tt ), (b) distance
traveled (dt ), and (c) time of the day (Z ), whichmay directly impact the discomfort of a commuter.Z
is divided into four time zones (6 AM–10 AM(0), 10 AM–4 PM(1), 4 PM–10 PM(2), 10 PM–6 AM(3))
in this paper, however, it is configurable and would change based on the city characteristics.

5.2 Spatio-Temporal Features

Unlike instantaneous features, these features vary both spatially as well as temporally, hence are
difficult to compute at any time instance. For instance, determining the exact speed of a vehicle
at any point is difficult, as it depends on both time and the spatial characteristics of the road
the vehicle is driving on. In our survey, we identify three spatio-temporal features, (a) speed (v),
(b) jerkiness (j), and (c) congestion (c). The exact values of these features depend on the actual time
& location of the vehicle as well as the behavior of neighboring vehicles at the time of computa-
tion. Instantaneous values of these spatio-temporal features do not directly indicate the commuter
discomfort. Rather, at any point of journey, we may estimate the instantaneous value of the spatio-
temporal feature at that time & location and then compute the discomfort likelihood, based on
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the deviation of the feature values from their baseline (comfort) distribution as perceived by the
commuters in the previous trips (details in Section 7).
The instantaneous speed (v) can be obtained from the GPS sensor. The instantaneous value of

jerk (j) is computed as da(t )/dt within a sampling window of 5s [52], where a(t ) is the accelera-
tion along y-axis at time t . On the other hand, the instantaneous value of congestion (c) could be
calculated by observing the stop-move-stop-move pattern of acceleration along y-axis [77]. Let
the time period for the stop-move pattern be tsm , then we have medium congestion (1) when
1min ≤ tsm < 5min and high congestion (2) when tsm ≥ 5min. Otherwise, the congestion value is
set to zero.
It is interesting to note that although the features like congestion and time of the day cannot

be explicitly controlled by the cab driver, nevertheless, this is important to observe how the cab
driver deals with such scenarios; this discriminates between efficient driving with the poor driving
and impacts the (relative) comfort of the commuter. By modeling the comfort distribution for con-
gestion (as spatio-temporal feature), we speculate the driving behavior, which provides (relative)
comfort to the commuter in congestion.

6 DISCOMFORT SIGNATURE FROM THE SPATIO-TEMPORAL FEATURES

Notably, detecting commuter comfort from spatio-temporal features is not trivial; the instanta-
neous values of the spatio-temporal features would not directly provide a measure of comfort. For
example, on a bumpy road, the jerkiness is likely to be higher – even an expert driver cannot avoid
jerks completely. However, in this case, although the commuter may feel discomfort, it is not due
to the driving behavior, rather due to the driving environment. Even a personalized model does not
help, as the trip environment, like road condition, congestion, etc. may vary for each trip, which
may affect the commuter comfort.
In order to address this issue, we develop a model that could identify the commuter’s discomfort

at a personalized level on any trip. The personalized model has two important steps. First, we
model the baseline distribution of the spatio-temporal features perceived at the comfort state of the
commuter; we call these distributions as comfort distribution. Importantly, the comfort distribution
exhibits different behavior on different trips. For instance, the distribution of jerkiness on a bumpy
roadwould be different compared to that on a smooth highway. In the second step, we estimate the
spatio-temporal features from the extracted sensor data at any point of time, observe its deviation
from the baseline comfort distribution, and compute the likelihood of commuter discomfort. Hence,
we train a model to learn the comfort distribution, that can compute the deviation of the estimated
feature distribution from the comfort distribution for the commuter. We designate this deviation as
the discomfort likelihood. The details follow.

6.1 Step 1: Modeling Comfort Distribution of Spatio-Temporal Features

Wemodel the distribution of speed, jerkiness, and congestion at the comfort state of the commuter,
which are represented as spatial time series. We start with the speed (v), which at any time in-
stance could take any random value in a metric space; however, it is always dependent on the time
instance and occurs over the period [0,T ], where T is the total trip time of the commuter. Such
characteristics are shown by temporal point processes. Moreover, past speed history impacts the
current speed of the vehicle which shows a self-exciting characteristic. Consequently, we model
v as a self-exciting temporal point process [62]. Hawkes proposed the concept of a self-exciting
temporal point process [28] based on the notion of causality, i.e., if an event occurs, another event
becomes more likely to occur locally in time. If Ht is the history of all speed events in a trip,
for which the commuter felt comfortable up to time t , then the conditional intensity [60], which
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characterizes the speed process is represented as;

λv (t |Ht ) = μ (t ) +

∫ t

0

д(t − u)dv (u) (1)

Here, μ is background rate of the speed events describing how the likelihood of the speed values
evolves in time. д(t ) is called triggering kernel, which regulates the influence of recent history vs.
older history on the current value of speed [28].

Next we turn toward the other two features jerkiness (j) and congestion (c). Unlike speed,
both of these features are affected by the time and spatial information. For instance, congestion
observed by a vehicle at some location is obviously regulated by the current time t . Nevertheless,
the congestion felt by that vehicle at time t also gets affected by the action of nearby vehicles
present in that location, attributing the role of spatial factor. Similarly, the jerkiness of the vehi-
cle is impacted by the spatial characteristics of the road. We suitably extend the temporal point
process of Equation (1) to model the jerkiness and congestion as a self-exciting spatio-temporal
point process [62]. The conditional intensity function which characterizes a spatio-temporal self-
exciting process for feature (f ), where f could be j or c at times tϵ (0,T ], and at locations rϵX ⊆ Rd
can be expressed as;

λf (r , t |Ht ) = μ (r , t ) +

∫ r

0

∫ t

0

д(r − u, t −w )df (u)df (w ) (2)

6.2 Step 2: Discomfort Estimation from the Spatio-Temporal Features

In this section, we compute discomfort likelihood as the deviation of the observed distribution of the
spatio-temporal features during a trip, with respect to the modeled comfort distribution. During a
trip, we estimate the observed spatio-temporal features, speed v , jerkiness j, and congestion c from
the recorded smartphone sensor stream following Section 6.2. The two prime requirements for
discomfort estimation, as discussed in Section 4.2 are (a) identifying anomalies in comfort distribu-
tion and (b) identify such anomalies even with sparse data. With these requirements in mind, we
develop an HTM based model that is trained on the comfort distribution. Hence, this HTM model
allows us to predict the spatio-temporal feature, pretending the comfortable state of the commuter.
On the run time, during a trip, the model computes the deviation of this predicted and observed
features as discomfort likelihood, indicating the commuter discomfort. Figure 4 summarises the
procedure.

6.2.1 Predicting Spatio-temporal Features from Comfort Distribution. We develop aHierarchi-

cal TemporalMemory (HTM) [9, 29] model (see Figure 4) to predict the spatio-temporal features
π (xt ) at time t , pretending the comfort state of the commuter.3 First, we encode the instantaneous
value of a spatio-temporal feature as input xt semantically as a sparse array called the Sparse

Distributed Representation (SDR) through a spatial pooler to get a(xt ). Then, using the comfort
distribution for each of the three spatio-temporal features, obtained from Equation (1) and (2), we
train the HTM model in temporal pooler such that the predicted π (xt ) is equal to a(xt ). The spa-
tial and temporal poolers follow the architecture proposed by Numenta [9]. In this way, the HTM
model gets trained to predict any spatio-temporal feature (from the comfort distribution) at a given
time t .

6.2.2 Estimating Anomaly: Deviation of Observed and Predicted Features: Hierarchical Temporal
Memory (HTM)model is equipped to detect the anomaly observed in the sparse data obtained from
the commuter’s smartphone. At run time during a trip, the instantaneous value xt of the observed

3https://github.com/rv355/ridergo_htm_module.git.
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Fig. 4. HTM architecture and anomaly detection.

spatio-temporal feature is fed as input to the trained HTMmodel, which is then again represented
as axt using the encoder. The temporal pooler, on the other hand, predicts the expected value
π (xt ) at the comfortable state of the commuter. Given the observed representation a(xt ) and the
predicted representation π (xt ) of the current feature input xt , the prediction error is computed
that will be 0 for accurate prediction and 1 for completely orthogonal prediction.

6.2.3 Discomfort Likelihood Calculation: Notably, prediction error only shows the instanta-
neous predictability of the system. For instance, a sudden brake may or may not lead to poor
driving. Thus, a threshold on the prediction error would not be a proper measure of commuter dis-
comfort. Rather, HTM model relies on the distribution of errors as a discomfort metric. It stores a
window of lastW prediction errors as raw anomaly scores and models the distribution as a rolling-
normal distribution. Given the sample mean ρt and variance σt inW , HTM then calculates a recent
short-term average of the raw anomaly scores, and computes the discomfort likelihood based on
the Gaussian tail probability (Q-function) [36].

Lt = 1 − Q
(
ρ̂t − ρt
σt

)
(3)

where ρ̂t is the sample mean for the short-term moving average windowW ′, whereW ′ <<W .
We calculate this likelihood score for all the three spatio-temporal features, (i) speed of the ve-

hicle (v), (ii) jerkiness observed (j), and (iii) congestion on the road, from the recorded smartphone
sensor data during the trip of a commuter.

7 DEVELOPMENT OF RIDERGO

In this section, we develop Ridergo which infers the comfort level of a commuter, based on the
driving quality during a trip. The core of Ridergo is a Multi-task Learning (MTL) model, which
leverages on the discomfort likelihood of spatio-temporal features along with the instantaneous
features, to indicate the commuter comfort on a 5-point scale. Ridergo captures the personality
traits of the individual commuter as well as adapts & retrains itself for a newly joined commuter
or if the existing commuter changes her preferences. It is interesting to note that, in principle, the
proposedMTLmodel for commuter comfort detection may indeed work on the raw data. However,
the MTL model requires a massive volume of raw data to automatically learn the complex spatio-
temporal features, as stated before, and it should take a long time for loss convergence. As we wish
to develop a personalized MTL model equipped to predict the rider’s comfort in real-time on a trip,
the availability of a sufficient volume of data on a trip is a significant challenge. This challenge
gets manifold if we allow MTL to automatically learn those complex features from raw data; fast
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Fig. 5. Architecture of an MTL-NN.

convergence of loss is another issue. Hence, in our data constraint environment, we handcraft
those complex features (as discomfort likelihood of spatial features) and feed them to the MTL
model, which allows us to ‘quickly’ train the model with ‘reasonably sparse volume’ of data.

7.1 MTL Driven Comfort Detection

We develop the model to identify the commuter’s perception of driving using the Multi-task Learn-
ing technique [12]. The perception of each commuter is taken as a separate task, thus taking into
consideration the personality trait of the commuter regarding the driver’s driving style. Addition-
ally, the model also ensures robust learning by sharing the data across multiple tasks to learn
features of one commuter (one task) from related commuters. The model provides an indicator
vector of dimension 5 (for 5-point comfort scale), designating a probability for each comfort level
(ranging from completely comfortable (1) to highly uncomfortable (5)). The comfort level with the
highest probability gets inferred as the perceived comfort of the commuter.
Effectively, as shown in Figure 5, theMulti-task learning Neural Network (MTL-NN)model

learns the features at two levels, the shared and the task-specific levels. The input containing the
feature vector, obtained from the spatio-temporal and instantaneous features, which it obtained
from the previous layer, is fed into the model. The next layer is the shared layer, which contains a
set of hidden nodes; the parameters of these nodes are shared across other nodes of this layer for all
the tasks. This shared layer enables inductive transfer which improves learning for one task (say,
the impact of congestion on one commuter) by using the information contained in the training
signals of other related tasks (say, the impact of congestion on other commuters who are similar
to the commuter in some way). This improves the overall model performance since some features
may be easy to learn for Commuter 1 while being difficult to learn for Commuter 2. This might
occur since Commuter 2 interacts with those features in a more complex way than Commuter 1.
The shared layer allows the model to eavesdrop from Commuter 1, and learn the features for Com-
muter 2.

Simultaneously, MTL-NN allows few hidden nodes to become specialized for capturing the com-
fort perception of just one commuter (i.e., specialized in one task); this personalized computation,
capturing the characteristics of the specific commuter, is carried out in the final task-specific layer.
In this layer, computation of one specific commuter can ignore the hidden nodes connected to
other commuters, by keeping the weights connected toit small, as they do not appear useful. In
this layer, the learning mechanism maps the generalized information learned at the shared layers
to a final prediction personalized by the characteristics of the specific commuter (task).
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7.2 Model Adaptation and Retraining

We initially train the Ridergo based on the pilot data collected in Section 3. However, Ridergo
is equipped to adapt itself, once the performance of the model drops significantly. Precisely, as
the confidence of comfort prediction deteriorates, the model occasionally probes the commuter
for ground truth comfort levels (without resulting in survey fatigue). The drop in the prediction
confidence is determined from the probabilities in the indicator vector; comparable probability
values across diverse comfort levels (say, level 2 and 5) in the vector indicate the compromise
in the prediction quality.4 Subsequently, the commuter responses are uploaded on the server to
retrain the MTL-NN model with newly collected labeled data. This facilitates Ridergo to enrich
the dataset with more data points, both from existing and newly joined commuters and, in turn,
improves the model by training on a higher volume of data.

8 EVALUATION

We followed a client-server model for implementing Ridergo. The server takes care of the major
computation tasks like feature extraction, discomfort likelihood computation, and comfort level
calculation while the client handles the data collection, shows the computed driving feedback
details to the commuters, and logs the commuter responses about their feedback on the driving.
The Discomfort Likelihood Computation Model and the Comfort Level Predictor are both written
in Python over a Debian 9.3 server, with an Intel(R) Xeon(R) E5-2620 v3 @ 2.40GHz CPU, 32GB
memory and 16GBGPU. The client is built for Android andwas published on the Google Play Store.
We performed a measurement study of the app using the Android Profiler Toolkit on three devices,
Lenovo K6 Power (Android v6.0.1, API23, sampling rate of 3μs), Moto G5 (Android v7, API25,
sampling rate of 3μs), and Samsung J8 (Android v8, API26, sampling rate of 3μs). The measurement
study shows that the application utilizes ≈20%(±3%) CPU resources and ≈95MB (±5MB) memory
on an average in an hour. Battery consumption was 5% on an average over an hour of the total
battery consumption, and the energy consumption was light overall.
Figure 6(a) shows the UI of the app, indicating the projected comfort level of the commuter

and the percentage impact of speed, congestion, and jerkiness over the comfort level. The app is
available on Google Play Store and had 30 users at the time of reporting5 with 5 of these also hav-
ing taken part in the data collection experiment for pilot study and model training (as mentioned
in Section 3). The data from the remaining 25 users have not been used for model training and
have been used entirely to test the performance of Ridergo. The users were advised to install the
application in their smartphone and start the application every time they took a cab ride. Once
started the app could be sent to the background. The commuters were also requested to provide
proper feedback whenever the system queried them. The smartphone sampled data in a window
of 5seconds , a threshold as per literature for jerkiness calculation [52], and thus used for all other
features. If not connected to the Internet, the information was stored in a temporary file and up-
loaded to the server when the smartphone got reconnected. For the experiment phase, the users
were also asked to run the data collection application to obtain the ground truth labels. The dataset
details are given in Table 3.
In this section, we first provide the evaluation of the complete system compared to other existing

systems. Following this, we look into the performance of the Discomfort Likelihood Estimator sub-
module, followed by the Comfort Level Predictor. Finally, we provide a use case of the complete
system by showing its usage in a driver-rating application.

4In our implementation, we set a difference of 0.1 between the highest and next highest probability in the indicator vector

as the threshold for probing.
5https://play.google.com/store/apps/details?id=com.rohit.ridecomfort.
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Fig. 6. App UI (a) App interface showing comfort levels at intervals and impact of speed, congestion and jerk-

iness over the comfort. (b) The overall rating unit of the app. (1 - Most Comfortable, 5 - Most Uncomfortable).

Table 3. Dataset Statistics

Count
Percentage of Count for each rating

Mean
1 2 3 4 5

7431376 2 32 33 32 1 3

8.1 Competing Systems

We compare Ridergo with two competing systems which also provide commuter comfort level
using smartphone data. As there are notmany such systems available, we comparewith one system
which is developed for buses [15] (could be easily extended to cabs) and the other for cars [87]. Both
of these models could be used for online comfort level computation. Additionally, we also develop
another model which is similar to Ridergo but gets trained over each commuter in isolation.

8.1.1 Chin et al. [15]. This work provides a method which utilizes statistical analysis using
classification and regression tree method to compute commuter comfort. They utilize kinematic
data collected from commuter smartphone and label the comfort into three levels (No discomfort
(1), Noticeable discomfort (2), and Annoying discomfort (3)). We implemented the model on the
available data and generated a pruned tree of size 26. The terminal nodes were then labeled for the
three comfort labels. As Ridergo is on a 5-point scale, we use the standard Likert Scale relabeling
strategy [6]; using integral labels, we obtain the mapping as, (1, 2) → 1; 3→ 2; (4, 5) → 3.

8.1.2 Join Driving [87]. Join Driving gets the commuter comfort from acceleration data only on
a 6-point scale utilizing the International Standard 2631-1-1997 [33]. They compute the vibration
felt by the commuter using the total value of weighted root mean squared acceleration, combin-

ing the vibration along all axes as av =
√
(1.4ax )2 + (1.4ay )2 + (az )2. Again using the relabeling

strategy, we obtain the labels on a 3-point scale as, (1, 2) → 1; (3, 4) → 2; (5, 6) → 3.

8.1.3 Single Task Learning. In the Single Task Learning (STL) approach, we use the same
architecture of Ridergo, while replacing the MTL-NN with an STL-NN. Thus, the model has to
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Table 4. AUC Values for the Competing Systems

1 2 3 Avg

Ridergo 0.87 0.86 0.889 0.873

STL 0.73 0.753 0.726 0.712

[15] 0.71 0.721 0.68 0.704

[87] 0.53 0.658 0.547 0.578

learn over each commuter in isolation whenever a new commuter installs the application. Here
also, we perform the mapping to a 3-point scale as in [15].
We ran the threemodels alongwith Ridergo overmultiple trips. In each of these trips, the comfort

level provided by each of these models were stored simultaneously. However, as [15] had only
three levels, we map the comfort levels on a 3-point scale. Table 4 shows the AUC values for the
individual comfort levels and also the average AUC. We take into account factors like congestion
or time of the day in addition to the kinematic data to compute comfort, which helps in improving
the result when compared to [15] and [87]. The shared learning and personalization aspect of the
model helps Ridergo to get an edge over the STL model, as STL based models couldn’t capture the
personality traits as MTL could [12]. This personalization aspect also is a shortcoming with the
other two approaches.

8.2 Performance Evaluation: Discomfort Likelihood Estimator

Ridergo doesn’t exactly give an explicit result showing if a distribution is anomalous. Instead, it
uses the discomfort likelihood (Lt ) to analyze the driving behavior. In order to evaluate the HTM
module, we threshold this Lt over a configurable parameter ϵ . We say an anomaly is detected if
Lt ≥ (1 − ϵ ) [10]. Usually, the standard value of ϵ is used as 10−5, which we used for our model
also. We set W and W ′ (described in Section 6.2.3) as 4000 and 10, respectively, which we ob-
tained empirically as shown in Table 5. We compare the HTM model with two competing models
– (a) Multinomial Relative Entropy [82] and (b) EXPected Similarity Estimation (EXPoSE) [69].
These models which are state-of-the-art anomaly detection models were selected keeping in mind
that the algorithms should; (a) make online predictions, (b) learn continuously and in an unsuper-
vised fashion, (c) adapt to dynamic environment changes, and (d) should make anomaly detection
as early as possible. Both these algorithms have open-source implementation.6 We performed pa-
rameter tuning empirically and set the thresholds at our end, as mentioned below. These were kept
fixed across all streams of data.

8.2.1 Multinomial Relative Entropy (RE) [82]. This algorithm compares the observed data
against multiple null hypotheses while representing frequencies of quantized data over certain
window sizes. In the implementation, we tuned the window size and the bin count, which were
set as 55 and 10, respectively. The chi threshold, which is used to determine if a hypothesis has
occurred frequently, was set as 1.

8.2.2 EXPoSE [69]. The EXPected Similarity Estimation (EXPoSE) approach is based on the
likelihood of the current data-point being normal based on the inner product of its featuremapwith
kernel Hilbert space embedding of the older data points with no assumption of the underlying data
distribution. We have used the decay variant of EXPoSE, which provides better results compared
to windowing [69]. Here we tuned the decay factor to be set as 0.01.

6https://github.com/numenta/NAB/tree/master/nab/detectors (Access: September 21, 2022).
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Fig. 7. Change in AUCwith percentage of data used

for training for all the three features.

Fig. 8. Change in AUCwith percentage of data used

for training for all the competing models.

Table 5. Change in AUC on VaryingW andW ′

W W’ Speed Jerkiness Congestion

3000 5 0.81 0.73 0.71

4000 10 0.83 0.85 0.76

4000 15 0.57 0.56 0.8

5000 5 0.61 0.84 0.53

6000 10 0.78 0.51 0.66

Here we have only shown the best 5 combinations.

Table 6. Comparison of AUC Results with

Existing Models

Model Speed Jerkiness Congestion

RE 0.65 0.74 0.54

EXPoSE 0.4 0.47 0.21

HTM 0.83 0.86 0.78

HTM performs better than RE and EXPoSE.

8.2.3 Impact of Data Stream Size. The prime reason behind using HTM, as discussed before,
was its ability to work well with sparse data, which could be utilized to detect anomalies early on
the trip. In order to check how early can the system catch such anomalies, we performed another
experiment. We trained the model with the data available from only 2mins of the trip up to 16mins
and then tested over the incoming stream of the data for trips more than 20mins (such that we can
test for at least 20% of the total data). We measure Area under the Receiver Operating Char-

acteristics (ROC) Curve (AUC), which indicates how much the model is capable of separating
anomalies in the given input data stream. We use AUC to measure the performance of the HTM
model as the number of anomalous cases are much less compared to the non-anomalous cases. The
AUC results averaged over all the trips for the three features (jerkiness, speed, and congestion) are
given in Figure 7. As is evident, we get good AUC score even at 8mins of trip time, which almost
stabilizes after 12mins . Moreover, it reaches above 80% for speed and jerkiness at 10mins . Thus, for
all our experiments, we start predicting after the first 10mins of the trip gets completed.

Figure 8 shows the AUC values averaged over all the three features for the three models. Com-
pared to the competingmodels, theHTMbasedmodel provides better accuracy quite early on a trip.
Relative Entropy also provides acceptable accuracy over the trip. However, EXPoSE improves only
when it receives considerable data for online training and eventually is almost equal to Relative En-
tropy and comparable to HTM. The figure indicates that HTM converges much faster compared to
Relative Entropy and EXPoSe, and therefore much more suitable in a real-time prediction problem.

8.2.4 Anomaly Detection Performance. Table 6 gives the results of the mean AUC for the anom-
aly detection module for all three features compared to the existing models. The online training
is done for the first 10minutes of the trip, after which the simultaneous learning and prediction
phase starts. EXPoSE, being highly dependent on the size of the dataset, provides inferior results
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Fig. 9. Variation of a feature with respect to comfort level of a user who is primarily affected by the same.

(1 - Most Comfortable, 5 - Most Uncomfortable).

as the data it receives on the first 10 minutes of the trip is not sufficient for its convergence, as
we have seen earlier. The entropy-based approach also performs poorly as it is known to provide
comparatively poor results when the features show both spatial as well as temporal variation at
the same time.

8.3 Performance Evaluation: Comfort Level Predictor

The model was trained using the data collected during the data collection phase (Section 3). The
Feature Extractor calculated all the features required by the model. The discomfort likelihoods
were then obtained from the HTM model. Following this, discomfort likelihood scores for the
three spatio-temporal features (speed, congestion, and jerkiness) along with the three instantaneous
features (Tt ,dt , and Z ), were fed in the model along with the labels obtained from the commuters.
The model was then trained using a loss function for softmax regression [30] with 60% data for
training and 20% for validation. The remaining 20% data was used for testing.
We evaluate the trained MTL-NN model over the data collected from the ten volunteers who

took part in the experiments in Section 3. The discomfort likelihood scores are obtained from the
HTM module for all the three spatio-temporal features, and the remaining three instantaneous
features are directly obtained from the Feature Extractor. As we have discussed earlier, Ridergo
labels the data points on a scale from 1 (highly comfortable) to 5 (highly uncomfortable); however, as
most of the data points are labeled between 1–3, considering this unbalanced dataset, we compute
the AUC [24, 32]. Moreover, in light of the multi-class classification, we utilize a forced binary
classification using the one-versus-all approach. For instance, we consider 1 as the success class
and all other combined as the failure class. We then plot the ROC for all these separate instances
and give the AUC result aggregated over the number of classes. The results of the aggregated
AUC and for the five instances are given in Table 7, where we obtained an average AUC score of
0.876. It can be observed that the AUC for label 5 (highly uncomfortable) is the highest, which can
mostly be linked to extreme scenarios that cause high discomfort for a commuter at a personal
level and would have quite distinctive characteristics compared to other labels. In Figure 9, we
plot the variation for speed and jerkiness with respect to comfort level for two users. One of them
is highly impacted by the speed variations while the other due to jerkiness. As can be seen, the
characteristic for level 5 is quite extreme and easily distinguishable from the other labels in both
the scenarios.
In order to obtain the classification importance of each of the six features, we performed sensi-

tivity analysis [67]. Sensitivity analysis is the study of relative interaction of different input factors
on the model output. We used Sobol Total Order Indices [71] to perform sensitivity analysis as it
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Table 7. AUC Scores for All Labels

1 2 3 4 5 Average

AUC 0.876 0.864 0.861 0.884 0.893 0.876

Table 8. Sobol Indices (TOI) for the

Six Features

Feature Lct T Lst L j
t t d

TOI 0.89 0.85 0.80 0.75 0.71 0.66

Fig. 10. Impact of features on 10 users. Darker value

implies higher impact of the feature on a user.

Fig. 11. Impact of data augmentation. Scenarios:

(1) Data from any one new commuter (2) Data

from all new commuters (3) New data from all

commuters.

converges to the exact relative contributions and interactions of the input factors with respect to
the variability in the output. The results are given in Table 8, and we observe that the total order
confidence is below 10% for each feature, thus confirming that the sample size provided is sufficient
for the analysis and the measured indices are significant. We observe that congestion followed by
the time of the day has the highest impact on the discomfort a commuter feels, which also seems
intuitive. Congestion is associated with long waiting times, and taking a trip at night or early
morning usually would make a commuter more uncomfortable with even a small variations in the
driving. However, this need not be true for all, as is evident from Figure 10 where we have shown
the impact of different features on 10 randomly chosen users. This brings out the personalization
aspect clearly as we can see that each commuter is affected by different features differently.

8.3.1 Impact of Data Augmentation. We also tried to observe the impact of data augmentation
on the model, where we retrained the model over the data collected during the testing phase of the
experiments. Here, the commuter was asked to provide their labels whenever themodel was nearly
ambiguous (decided based on comparable classification probability between two ormore classes, as
discussed earlier) about predicting the label. In order to perform this experiment, we observed the
results whenwe received new data in three scenarios: (1)Onenew appuser:Asmentioned earlier,
only five of the 30 users were involved in the data collection experiment described in Section 3.
Whenever one of the new users were polled for feedback, the data was tagged as to be obtained
from a new user. In this scenario, we only considered the impact on the model when we added
data from only one of these 25 new commuters to the existing dataset. (2) All new app users: In
this scenario, data from any new user was added to the dataset, and the corresponding impact on
the model was observed. (3) All app users: In this experiment, we collected feedback from all the
30 users who had used the application.
Following this, we trained and tested the model with a 60− 20− 20 split for training, validation,

and testing. It should be noted that for the first scenario, the test was done for all new app users,
and the final AUC was calculated as an average over the result of adding data of any one new user
to the existing data. As is observed from Figure 11, data from one new user improves the results
but not much. However, adding data from all the 25 new users considerably improves the model.
Nevertheless, once the model has learned over all 30 users, adding new data over this, though it
improves the performance, but not considerably.
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We also noted the instances when the model requested for user feedback owing to nearly am-
biguous prediction. There were two scenarios when such a drop in confidence could occur:
Existing Commuter: In this scenario, we consider any existing user, who has used the app for

at least a week, for conducting the experiment and observe that on average only for 5% of cases,
there is a drop in confidence. This is mostly attributed due to the (rare) changes in commuter
preference in a trip, for almost similar conditions (say, in a trip, she initially preferred moderate
speed, however, at the last leg of the trip, preferred high speed to quickly reach the destination).
NewCommuter: In this scenario, we consider the case where a new user joined the experiment.

This new commuter’s comfort labels are initially detected from the existing model, trained on few
existing commuters, exhibiting similarity with the new commuter (similarity is handled by the
MTL-NN). Evidently, the proposed model makes mistakes for those new commuters, exhibiting
a drop in confidence in indicator vectors. Precisely, frequent retraining was required initially for
these new commuters (average of 35% labels requiring a commuter feedback), but it gradually
decreased with time.

8.4 Application: Driver Rating System Based on Ridergo

In this subsection, we provide a prototype application where we use Ridergo to assist the com-
muters. It should be noted, though, that the following application is just a proof-of-concept to show
the utility of Ridergo and can be further modified and looked into as a separate research problem.
Ratings are an essential aspect of companies like Uber/Lyft, which affect the driver’s commis-

sion, number of rides, and – in pressing cases – losing their job [7]. However, commuters are
usually conflicted when giving a rating to a driver unless the ride has been poor [3, 4]. This, in
turn, profoundly affects the driver as well as the company reputation. An application that takes
cues from the driving and provides a suitable rating to the driver would thus be quite useful. Rid-
ergo could be used as an excellent framework for such an application. We added a module to our
application (Figure 6(b)), which performs an averaging over the comfort rating throughout the trip
to rate the driver. It also shows the impact of speed, congestion, and jerkiness over the complete
trip comfort averaged over individual values. As can be observed in the figure, we also asked the
commuters to provide a comfort rating to the ride, which was stored in our server as ground truth
value.

In order to calculate the agreement between the calculated and user ratings, we use Kendall’s
coefficient of concordance (W) [37] which is a good metric for such 5-point rating scales [1]. This

is calculated asW =
12
∑
n

i=1 (Ri−R )2
m2 (n3−n) , where Ri is the total rank given to rating i , R is the mean of Ri

whilem and n are the numbers of competing rating systems and number of ratings, respectively.
Herem = 2 and n = 5. Calculating over all the responses, we observed aW value of 0.79, which is
considered as a good agreement as per the existing literature [2].

9 DISCUSSION

Although Ridergo shows considerable promise as a system to assess commuter comfort at a per-
sonalized level which could be utilized by many other services, in this section we discuss some
limitations and future directions to improve the overall system.

9.1 Incorporating Additional Features for Model Improvement

Ridergo focuses on two generic feature classes – (i) instantaneous (time of the day, distance traveled,
and time traveled) and (ii) spatio-temporal features (speed, congestion, and jerkiness), rather than
specific feature variations, and use directly available quantitative features to develop the model.
However, there could be several non-quantifiable features which impact the commuter’s comfort.
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For instance, the personalized features like if the commuter is in a hurry, weather conditions,
laptop or phone usage, etc. are more qualitative in nature. A possible direction could be to take
such information as an input from the user. For instance, expected travel time could be an input
from the user which could be normalized based on the average travel time on the route to measure
urgency; the OpenWeatherMapWeather API could be used to get the weather condition on a three-
point-scale [80]; binary inputs could be taken from the user for usage of laptop or phone. The MTL
model that we have used for comfort level prediction is generic and is expected to provide proper
predictions when including such features with suitable quantitative mapping.

9.2 Improving the Rating System

The rating system discussed in this paper is a simple proof-of-concept to show the utility of Ridergo.
The main goal of this work is to develop a methodology to connect commuter’s comfort with
the driver rating system while computing the comfort solely from the travel parameters without
explicitly asking the commuter and thus eliminating a rating bias. However, any rating system
has a primary linkage with the business policy of the cab companies, therefore, the cab companies
can use a more sophisticated rating system, which might even vary across cab companies, while
considering the commuter’s comfort as one of the important parameters.

9.3 Privacy Concerns

User privacy is crucial for personalized systems like Ridergo. We ensure that the commuters data
does not contain any personal information but only the user id. Furthermore, the data collected
from the app does not contain any GPS location data, but only the speed recorded at a given
timestamp. As a means to further improve user privacy, we plan to bring the server computation
to the mobile device. Although such computations are highly resource intensive, there are several
existingworks that have tried to run computationally intensivemodels on smartphones [35, 56, 73].

9.4 Future Research Directions for Ridergo

There are several other research problems that Ridergo could be utilized for. One direction is com-
muter profiling that involves analyzing commuter comfort distribution and rating variations. On
the trip commuter profiling is another direction where online training and prediction is required.
Such profiling will enable drivers to take calculated decisions based on the commuter’s current
state. Driver-commuter matching is an interesting research direction where driver and commuter
profiling using Ridergo could be utilized.

10 CONCLUSION

In recent times, there has been an increasing demand for comfortable ride-sharing options like
Uber, Lyft, etc. in contrast to public transport. As these ride-sharing companies hugely rely on
the ratings the drivers received from the commuters, it has become imminent to maintain the
comfort level for a commuter taking the ride. In light of this, we develop a system Ridergo, which
understands the comfort needs of a commuter at a personalized level and computes whether a
specific driving style at a time on the trip is causing discomfort to the commuter. Based on an online
survey and pilot study, we understand what features could affect the comfort of a commuter. We
then use a Hierarchical Temporal Memory and Multi-task learning-based model to compute if any
change in the distribution of three spatial time-series features– speed, jerkiness, and congestion–
along with other static trip information, is causing discomfort to a commuter and to what level.
Furthermore, we also add another feature in Ridergo, which checks if the current computation

of comfort level is near ambiguous and requests the commuter for feedback, which improves the
dataset on which further training could make the model robust and scalable to new and existing
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users both. Thorough experiments with Ridergo shows that it not only computes the comfort lev-
els effectively, but could also understand at what level a feature affects a particular commuter’s
comfort. Thus, it efficiently captures the personal comfort needs of the commuter. Such a sys-
tem, which computes commuter discomfort at a personalized level, could be utilized for several
applications like driver rating, alerting a driver of a commuter’s discomfort, assigning drivers to
commuters based on their comfort profile, etc. We have built a comfort rating application to show
the utility of the comfort calculation framework. Further detailed research in this line could help
build much more efficient and similar applications utilizing the perceptions of commuter comfort
during a cab-ride.
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