
GRIN: Make Rewriting More Precise
Linan, Tian

Institute of Information Engineering, Chinese Academy of
Sciences, School of Cyber Security, University of Chinese

Academy of Sciences Beijing, China
tianlinan@iie.ac.cn

Liwei, Chen∗
Institute of Information Engineering, Chinese Academy of
Sciences, School of Cyber Security, University of Chinese

Academy of Sciences Beijing, China
chenliwei@iie.ac.cn

Delin, Kong
Ruixin Academy of Classic Learning, Beijing Institute of

Technology, Beijing, China
1120210705@bit.edu.cn

Gang, Shi
Institute of Information Engineering, Chinese Academy of
Sciences, School of Cyber Security, University of Chinese

Academy of Sciences Beijing, China
shigang@iie.ac.cn

ABSTRACT
In computer security, many systems and applications depend on
binary rewriting techniques when source code is absent, including
binary instrumentation, profiling and security policy reinforcement.
While the rewriting technique is continuously evolving, many static
binary rewriters are still unable to correctly disassemble and accu-
rately cover all legal instructions. Dynamic binary rewriters can
achieve accuracy, but are not able to guarantee a full-coverage.
Therefore, existing binary rewriting techniques do not meet all the
requirements for binary rewriting, and make various assumptions
for their application purposes. In this paper, we present GRIN, a
novel and practical binary rewriting tool that can accurately iden-
tify each legal instruction, while guaranteeing a code full-coverage.
We design a dynamic execution technique, which can identify each
legal instruction. Also, we develop a branch backtracking technique,
which can address various challenges of identifying Our tool does
not require any assumptions and relocation information, and can
be applied to all security applications. We have implemented a
prototype of GRIN and evaluated the SPEC2006 and the whole set
of GNU Coreutils. The experiment results show that the average
instruction redundancy for SPEC is only 0.135% and for Coreutils
is 0.062%.
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1 INTRODUCTION
Binary rewriting is a core technology in computer security, which
can transform binary without source code. It has many application
scenarios, including enforcing security policy, binary code hard-
ening and recovering the call graph (CG) and function boundary.
A common key point of these application scenarios is the need
to accurately identify the memory addresses of all legal instruc-
tions when rewriting binaries. But accurate rewriting identification
technique is still an unsolved problem.

Identifying memory addresses of all instructions is a significant
indicator of the sophistication of rewriting technology [3], and has
various categories: (1)To recognize code and data [9]. Due to hand-
written code or compiler performance optimizations, they mixed
in-line data within code section. It is very difficult to distinguish
them in CISC architecture (e.g., x86); (2)To identify static memory
addresses. Since existing alignment-related padding [46], [39] in the
variable-length instruction set, and there is no distinction between
instructions and data addresses in executable, the correctness of
rewriting cannot be guaranteed if it is not correctly identified; (3)To
recognize dynamic memory addresses and data, containing indi-
rect control-flow addresses whose addresses need to be computed
dynamically through the form of base address plus index and offset
(e.g., jump table, x86 assembly ”jmp [eax]”), code pointers(they
will be assigned a valid address at runtime, e.g., function pointer),
and dynamically determined addresses data(e.g., function pointer
arguments in callbacks [5]).

To address these challenges, current binary rewriting techniques
had made significant efforts, but still do not fulfill requirements.
BIRD [24] can disassemble all legal instructions in a binary file, but
its approaches are only used for binary hardening and profiling.
BINCFI [46] is the first practical rewriting technique to handle mem-
ory addresses for binary security. BINCFI presents an approach that
combines linear and recursive disassembling to recognize instruc-
tion addresses. However, it cannot handle mixed code and data and
still need a copy of code for rewritten binary. SecondWrite [2] and
Zipr [18] are both lift the binary to the intermediate representation
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(IR) when the transformation phase of rewriting. They leverage
multiple static analysis techniques to disassemble binaries, but they
are not guaranteed to accurately cover all legal instructions in the
binary. UROBOROS [39] recognizes memory addresses by a set of
heuristics and can relocate instructions when rewriting binary, but
it still cannot be precise to identify code pointers. REV.NG [16]
lifts binary into LLVM IR [21] by using QEMU tiny code generator
(TCG) [6] lifter, and which retrieves these IRs and recognizes pos-
sible memory addresses, realizing a multi-architecture rewriting
system. But it still lacks precision in determining indirect memory
addresses. Recently approach MULTIVERSE [5], that uses an iter-
ativeoffset disassembly from binary start address combined with
lookup tables to solve the problem of recognizing addresses. How-
ever, it has a high memory overhead and also brings unnecessary
compatibility issues (rewriting the libraries).

According to our in-depth investigation, many existing tools can
recover data and control structures from executables, but consider-
ing the perennial problem of the distinction between data and code,
or handling dynamically computed address and data, the state-of-
the-art rewriting tools still require many assumptions and incur
high overhead. In particular, when rewriting the stripped binaries
without symbol and relocation information, existing techniques
still cannot accurately recover all legal instructions.

In this paper, we propose a novel, practical binary rewriting tool
called GRIN. In GRIN, we develop two key techniques to address the
challenges of accurately rewriting.We propose a dynamic execution
technique, which executes each path of the binary program and
identifies memory addresses of the executed instruction. In addition,
we also can recognize dynamically computed addresses and data by
the execution state information of each execution path. Meanwhile,
unlike the previous dynamic execution techniques of providing
random input when program inputs are required, we leverage the
execution state information in combination with practical inputs to
ensure program normal execution in the explored path and avoid
program crashes as possible.

Based on the instruction memory address we identified, we lift
the legal instruction to an IR and then we transform IR to the rewrit-
ten executable. Moreover, to cope with program crashes during path
exploration, we propose a branch backtracking technique, which
can determine an actual execution path where the crash is located.
Along this path, we perform use-def analysis and data flow analysis
based on lifted IRs, which can quickly and easily supply a valid
value to program crash points and guarantee code path coverage.
Therefore, our approach can easily and completely identify memory
addresses of instructions.

In summary, our main contributions are as follows:

• We present GRIN, a novel dynamic binary rewriting system
that can precisely identify the address of any instruction in
an executable and rewrite binary both accurate and complete.
• We design a dynamic execution technique that does not re-
quire any assumptions and relocation information to identify
address but instead executes each path of an executable to ob-
tain the precise address of the legal instruction, meanwhile,
guaranteeing code coverage.
• We develop a branch backtracking technique, which can
determine an actual execution path. Based on this sensitive

execution path, we use the use-def analysis for backward
retrieving to recover program crashes and handle indirect
addresses.
• Our approach does not consider relocation issues and can be
applied to all security applications. We have implemented a
prototype of GRIN and evaluated it with the SPECint CPU
2006 benchmark suite and all of the GNU Core Utilities bina-
ries. The experiment results show that GRIN can correctly
rewrite all binaries we have tested and substantially improve
the accuracy of rewriting.

2 RELATEDWORK
The binary rewriting work began in the 1960s. One of the first static
rewrites is Honeywell [20], which is used to translate programs
from the IBM 1400 series machines to Honeywell’s Series 200 sys-
tem for emulation. The earliest dynamic binary rewriting system
[7] is implemented in 1987, which construct a special node map-
ping table to retarget indirect branch targets. Afterwards, there are
many binary rewriting systems that are implemented for code and
performance optimization (e.g., Hollingsworth et al. [19], ETCH
[32]), instrumentation and observation for profiling (e.g., ATOM
[36], Valgrind [25]), emulation [6], and architecture translation (e.g.,
TIBBIT [10], Sites et al. [35]).

However, most of the early rewriting work rewrites binaries are
RISC architectures, which instructions are a fixed length ISA and
have a well-aligned. But for CISC architecture, which is a variable-
length instruction set (e.g., x86), identifying and rewriting themmay
not be easy and is more challenging. Although ETCH [32] operates
target is binaries of x86 architecture, it is mainly used for perfor-
mance optimization and does not rewrite all binary instructions
instead by static minimal-invasive alteration to instrument code,
which cannot solve the problem of identifying and rewriting in-
structions. As such, early approaches do not meet the requirements
of rewrites.

BINCFI [46] is the first practical rewriting system that can handle
memory addresses and enforce control-flow integrity into binaries.
BIINCFI presents a combination of linear and recursive disassem-
bling approaches to recognize instruction memory address, but it
still fails when handling mixed code and data. UROBOROS [39]
summarizes a set of heuristics to identify binary memory addresses.
It implements the reassembleable disassembling process by using
the same disassembling algorithm from BINCFI [46]. UROBOROS
assumes all static ICF targets stored in data sections are n-byte
aligned and point to the function entry or jump table entries. How-
ever, it has false positives and false negatives for its approach to
datatype identification.

SecondWrite [2] lifts the disassembled code of binaries into
LLVM IR, then rewriting and converting back the executables. Sec-
ondWrite can solve the problem of identifying ICF target addresses
by run-time checking metadata tables that store the mapping for
the old ICF target and its corresponding new address [27]. Second-
Write identifies the static memory addresses by leveraging multiple
static analysis techniques, but cannot still accurately identify each
instruction. Zipr [18] leverages existing multiple disassemblers to
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Figure 1: An artificial example that illustrates the identifying challenge in rewriting.

solve the problem of identifying static memory addresses. In re-
cent work MULTIVERSE [5], we have discussed their approach and
compared it with GRIN in section V.

Compared with the existing works, GRIN can provide a practical
solution to precisely identify each static memory address of an
instruction, thereby ensuring the correctness of rewritten executa-
bles. It also does not require relocation information, can be used in
binary code hardening, instrumentation, profiling, security policy
enforcement.

3 CHALLENGES AND OVERVIEW
As mentioned in the introduction, we have discussed the techni-
cal challenges of identifying the memory addresses of all legal
instructions in rewriting. In this section, we introduce an example
to further illustrate these challenges clearly, moreover provide an
overview of our rewriting system.

3.1 Rewriting Challenges
As an artificial example of the challenge of accurately identifying
all legal instructions in rewriting, consider the snippet program as
shown in Figure 1. It shows that function pointer foo is assigned
by functionmode1 ormode2, in which foo also pass a function
pointer argument that is stored in an array of pointers op. Therefore,
when rewriting our example binary file, we will encounter two
dynamically computed indirect control-flow (ICF) target addresses
at line 18 of Figure 1(b) and at 0x4002cd of Figure 1(c). In addition,
the function mode(1/2) received by foo is implemented in assembly,
which shows an example of in-line data within instructions in lines
9-13 of Figure 1(b).

In our example, the ICF instruction call is assigned within intra-
procedural (as shown in Figure 1(c)), which receives function ad-
dresses (mode 1 or 2) through two mov instructions at address
0x400292 or 0x4002a5. In fact, the target address of this ICF instruc-
tion is determined by the stack variable select, which is assigned
a specific value at runtime (as shown in Figure 1(a)). Another ICF
instruction is assigned within inter-procedural (as shown at line

Figure 2: Garbage instructions.

18 of the source code formode), which receives function pointer
argument (rsi at line 7), which has a value of lsh or rsh, and is
specified by stack variable p. As shown in the binary code of test,
p is an index value of a jump table (at 0x4002bd), which is also
determined at runtime (rdx at 0x4002b7 is set by stack, and assign
the value of the array of op of the rdx index at 0x4002bd to rcx).

In existing static rewriting tools, it is difficult to identify the
ICF target address of our example, because these values need to
be determined dynamically. For the ICF instruction assigned in
intra-procedural (in Figure 1(c)), static predicting analysis can re-
trieve the ICF target addresses and ultimately analyzes them as
being derived from the assignment operation at address 0x400292
or 0x4002a5. However, considering the situation of function mode
in Figure 1(b), static analysis techniques have difficulty identify-
ing the targets of the ICF instruction, because statically analysis is
difficult to determine they are computed at 0x4002bd in function
test. Especially, for stripped binary files without symbol and relo-
cation information, retrieving and identifying the address of ICF
target instruction will become intractable. Moreover, in function
mode, static data is mixed within instructions in lines 9-13. When
identifying memory addresses of instructions, linear disassembly
would misinterpret these encoding and yield the following garbage
instructions.

Such a potential gap can be bypassed by recursive disassembly,
which jumps from line 9 to line 13 along the control flow to avoid
identifying data in the code. However, when it executes to line 18,
it will be difficult to determine the value of ICF targets (the value
of rax). In a more complicated situation, if the jump instruction
at line 9 is also an ICF transfer instruction, recursive disassembly
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Figure 3: System Overview.

will be difficult to skip the data mixed in the code and identify legal
instructions.

In GRIN, we make binary “alive”. We first make our example
program execute normally from the entry address. If a branch
is encountered (if and else if in source code of test and jne in
binary code of test), GRIN records the not taken branch address
and current memory state, and continues execution. When the first
execution ends, GRIN will restore the recorded memory state and
execute not taken branch. Assume that if branch is executed in the
first run, we record the else if branch and explore this path later.
Eventually, GRIN identifies that the ICF target address at 0x4002cd
has two values (0x400307 and 0x40035b). While the approximate
technique is proposed by FXE [42] to construct precise control flow
graphs from binaries, it does not attempt to rewrite binary and
make it runnable. In GRIN, we do not need to consider complicated
algorithms (e.g., handling loop), we only care about the correctness
and completeness of rewritten binaries.

When the if branch is taken, we explore mode1 function and
assume that the variable p is zero. When in-line data within instruc-
tions are encountered, GRIN will follow the control flow, jumping
from line 9 to line 13 to identify legal instructions. When GRIN
executes to line 18, the rax is assigned the address of lsh function.
In the path exploration just performed, GRIN lifts each executed in-
struction to IR. Thus, GRIN analyzes the IR generated by executing
this path and performs a backward retrieve. Finally, GRIN retrieves
another value of rax at address 0x4002bd, which is the address of
the rsh function. We record this address(including current CPU
and memory states) and explore it later.

3.2 System Overview
As described above, the system architecture of GRIN is shown
in Figure 3. Our rewriting system follows the following design
principles:
• Execute every piece of code in the binary.
• Make full use of all available data.
• When crashed, assign a valid value.

We run every piece of code in the binary (in execution module)
and lift each executed instruction to IR. In order to keep running
without crashing, we make full use of the state data generated when
exploring this path. Once it crashes, we analyze the IR just gener-
ated on this path and get a valid value to patch crash (in analysis
module). In addition, we analyze IRs and combine current execution
information to obtain more unexplored branch addresses. When all

paths are explored, we will transform all IRs to the newtext section
of rewritten binary (in rewrite module). The original data and code
section will be copied and as part of data section of this binary
data section. Finally, we will create the new rewritten binary.

Algorithm 1 Dynamic Execution
input : entry point address of binary entry
input : empty executed blocks set instructions
input : empty unexplored target addresses container branches
output: executed code basic blocks are in instructions
definition: program counter pointer pc, the have executed address
set addresses;
1 pc← entry;
2 while execution flow , exit do
3 blocks← translate(pc);
4 if pc < addresses then
5 instructions← instructions ∪ blocks;
6 branches← RecordBranch(blocks);
7 addresses← addresses ∪ pc;
8 pc← update(pc);
9 while branches do
10 pc← branches.pop();
11 while vaild(pc) do
12 if pc ∈ addresses then
13 break;
14 blocks← translate(pc);
15 if crash then
16 handleCrash();
17 break;
18 instructions← instructions ∪ blocks;
19 branches← RecordBranch(blocks);
20 addresses← addresses ∪ pc;
21 pc← update(pc);

4 IDENTIFYING AND REWRITING
4.1 Dynamic Execution
In order to identify the memory address of each instruction, we
dynamically execute every instruction in the binaries. However, it
will incur poor covered paths drawback. Here, our dynamic execu-
tion technique can explore different paths of a given binary. While
guaranteeing code coverage, this approach solves the various chal-
lenges to identify instruction addresses. During execution, it will
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Figure 4: An actual execution path.

inevitably explore repeated paths and identify many duplicate in-
structions. As our goal is to rewrite binary instructions, so we check
the address of the next code block of instructions to be executed. If
the next address has been executed, we will stop executing this path
and explore the next path. This process work is shown in algorithm
1

We make the binary program run normally from the entry point
(line 1). We execute the program with basic block-grained (line 3),
these blocks end with a control transfer instruction. If the block
we retrieved contains a conditional transfer instruction (e.g., jcc in
x86), we will record the address of the not taken branch and store
current CPU and memory states (line 6). In lines 4-8, we save the
executed code block in instructions, and according to the current
block execution result, we update the pc to the address of the next
code block to be executed. Then, we check whether the pc has been
executed (condition pc < addresses at line 4), if so, we will keep
the code blocks run to continue, and do not save this block and any
state.

In the first exploration, once the execution is over, wewill capture
the exit signal and explore the branch storing in branches (line
2 and 9). We update the pc to the unexplored path address (line
10) and continue to execute from this address. In lines 14-21, if the
executing code block contains branch instruction, we still record the
address of not taken branch and the current runtime environment
(at line 19). When a code block is executed, we will mark the end
instruction type of this block in translate (e.g., indirect jmp and
call in x86), which can provide convenience for handling the jump
table later. When an error occurs in the execution path and the
program crashes, we analyze the cause of the error and further
locate the crash point. We analyze the source of the crash value
and assign a valid value to it (detailed in Crash Analysis). Then
we break out of the loop and continue our exploration from the
crash location (in lines 15-17, and update pc at line 10). Note that
each time we update the pc, we will check whether the address
has been explored in lines 12-13. Once this address has been done,
we terminate exploring and continue to update the pc. As soon as
all the branch addresses in addresses are executed, we traverse all
the paths of the binary. Because in software design, most program
paths are inter-related and reachable. Therefore, by traversing all
the branches recorded when exploring each path, we can guarantee
complete path coverage.

4.2 Backtracking Analysis
In order for the path exploration to execute normally when the
program crashes or needs to identify other branch ad dresses, we

Figure 5: A lookup example for Branch Backtracking tech-
nique.

perform a backtracking analysis along the path just executed. Since
we explore the binary paths in a depth-first fashion, when we
retrieve a branch path, we will retrieve all the branch paths related
to this branch. In other words, our branch backtracking technique
will find a sensitive path in the binary control-flow graph, as shown
in Figure 4. This sensitive path is an actual execution path from
the program entry point during dynamic execution (due to the
repeated address, some paths will stop exploring, so the repeated
part is not counted as the sensitive path of this path). Based on it,
we perform a usedef analysis, which can easy to patch crash points
or identify more indirect addresses. To this end, tracing sensitive
paths allows us to always trace one valid execution path, preventing
path explosion.

In order to get the actual execution path of one branch. We use
a mapping table to record the address relationship between the
starting address of a branch path and the location of the conditional
branch that yielded this not taken address. When a new path is
executed, we simply map the start address as an lvalue of an item
and map the conditional branch address as rvalue of this item. In
addition, if this branch has been explored, we alsowill not record the
repeated mapping relationship, which is the same as the dynamic
execution algorithm.

Figure 5 shows a backtracking analysis example for an execution
path. When executing path one, two unexplored branches will be
yielded. So wemap the address relationship of branch b and execute
it later as path two. Then the same operation to branch c and d,
we explore them as path three and four. So, when we perform a
backtracking analysis starting from path four, we retrieve to the
entry address of the current path along path four. We then look up
the mapping table, and through mapping relationship we find that
the instruction address c1 points to the branch starting address
d. Then we switch the backward path and continue to retrieve to
the starting address c from the address c1 of path three. We look
up the mapping relationship in our mapping table and continue to
retrieve basic block from the address a1 of path one. As such, we
can obtain the sensitive execution path of path four. Therefore, by
performing a lookup in the mapping table, we can flexibly get an
actual execution path of any branch.

184



ASSE’ 22, February 24–26, 2022, Macau, Macao Linan Tian et al.

Figure 6: IR example.

4.3 Crash Analysis
When exploring each branch path, the illegal memory state may
cause the program to crash and terminate the current path explo-
ration. In order to restore a valid memory state as much as possible,
we leverage backtracking analysis technique to trace the source of
the crash value.

Since our IR lifting process is based on instruction semantics.
Therefore, by analyzing the IRs of the crashed code block, we can
determine the program crash point, such as illegal access to the
memory address. The IR for an access memory instruction lift is as
follows.

Operand rax has an operation to access memory, and its corre-
sponding IR forms are load and inttoptr instructions. Therefore,
once the explored path crashes, by retrieving lifted IRs, we match
the load-inttoptr dependency. When determining this IR depen-
dency, we check if it is legal access memory address based on its
current memory execution states. If this address value is illegal, we
will backtrack along the actual execution path of this branch path
to analyze the source of this value. We divide the source of ille-
gal value into two categories: (1)illegal value derives from register
assignment; (2)the value derives from memory address.

For the value derived from register assignment, we perform a
backward retrieve. When we encounter the assignment of stack
register (e.g., rsp), we stop the backtracking analysis and identify
that this illegal value is a local variable of this executable. As such,
we pick the current stack address at random as the legal value and
assign it to the crash point. Then continue exploring from the crash
location of the path just explored.

If the illegal value we retrieve derives from the assignment of
memory address, we will identify that this illegal value derives
from a global variable. So unlike the above assignment, we assign
a legal value to the crash point as well as the correlated memory
location. Specially, if thememory location retrieved by backtracking
analysis is a read-only memory, we will not assign random legal
value. If this memory belongs to the heap, we will allocate some
more heap memory while assigning legal value, preventing illegal
access due to unallocated heap memory. By assigning a legal value
to correlated memory locations, we can reduce the frequency of
program crashes when other unexplored instructions operate on
this memory, guaranteeing path execution.

5 IMPLEMENTATION
We have implemented above approaches in a system called GRIN,
which was implemented and evaluated on Ubuntu 18.04 x86 64
GNU/Linux. We rewrite target is 64-bit x86 binaries running atop
the Linux system. Currently, we focus on statically linked executa-
bles and the reason for this will be discussed below. The implemen-
tation of GRIN is based on REV.NG [16], which is a static binary
translator. It employs the QEMU TCG translates binaries to LLVM

IR. Therefore, based on their translation work, we develop our
dynamic execution and branch backtracking techniques.

Based on the instructions identified by exploring each path, we
lift each executed block of code to IR. We map all rewritten code
block addresses into the mapping table. When we transform each
code block, if the end of the code block with a direct control flow
transfer instruction, we insert a branch instruction at the end of
the code block, which allows the block to jump directly to the next
code block at runtime. If the code block does not end with a direct
transfer instruction, we will jump directly to the mapping table and
look up the target address corresponding to the actual address at
runtime.

6 EVALUATION
We evaluate GRIN for correctness and cost. We first evaluate
whether GRIN can accurately identify the instructions in a binary,
and compare it to other tools. Then we report the cost of GRIN,
which reveals the size expansion of the rewritten binary. We use
SPEC CPU 2006 benchmark suite, GNU Core Utilities binaries, and
real-world binaries to evaluate GRIN.

6.1 Correctness
To evaluate the correctness of our rewriting system instruction
identification, we verified from the following two aspects. First,
we summarize some representative instructions of rewritten bina-
ries and compare them against MULTIVERSE. Second, We run the
rewritten executables and test their functionality.

We verify the correctness by comparing the number of control-
transfer instructions (jmp, call and ret) that GRIN identifies during
rewriting. However, that was already a challenge to identify all
control-transfer instructions. Here, we use Objdump to disassemble
the unstripped binaries and count the number of control-transfer
instructions. Then, GRIN rewrites the stripped binaries and records
the control-transfer instruction it identifies. Table I shows the result
of using GRIN to identify SPEC binaries. By comparison, GRIN’s
redundancy rate does not exceed 0.4%. The average redundancy
for SPEC is 0.135%. As expected, the identification results of GRIN
and Objdump are approximately equal. However, the redundancy
for 471.omnetpp looks relatively high. We suspect that inline
data within instructions incur overhead because we do not mark
them, but identify them as part of the code. Other examples with
redundancy have the same reason.

We also list the results recorded by MULTIVERSE in Table I.
We compare the results of MULTIVERSE rewriting dynamically
linked binaries. As shown, although MULTIVERSE guarantees the
correctness of the rewriting, the implementation of its design will
identify a large number of redundant instructions, and theoretically,
its identification results should be less.

To verify correctness, we also tested the functionality of rewrit-
ten executables. We executed both the rewritten version and the
original version of binary with default input configuration. We
tested 12 SPEC2006 benchmark programs using the test input set
they provided, and 105 GNU Coreutils using all the command argu-
ments they specified. We also tested 5 realworld binaries including
a web server, compressing tool and calculator, etc (bc, ctags, gzip,
nweb and thttpd). We compared the output of both Coreutils and
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Table 1: Results of using GRIN to identify SPEC binaries, and compared with MULTIVERSE and Objdump (referring to iden-
tification results in Objdump)

Benchmark Call Jump Ret Redundancy
Objdump GRIN MULT. Objdump GRIN MULT. Objdump GRIN MULT.

400.perlbench 15700 15700 34784 13232 13236 29220 2130 2130 22306 0.01%
401.bzip2 514 514 1270 603 603 1202 177 177 874 0.00%
403.gcc 46439 46438 119038 25060 25084 80212 6281 6281 45410 0.03%
429.mcf 387 387 323 493 493 294 161 161 250 0.00%
445.gobmk 9377 9377 27098 4842 4842 18426 3221 3221 20918 0.00%
456.hmmer 4020 4020 8576 2270 2271 5608 829 829 4106 0.01%
458.sjeng 1371 1371 2822 1441 1441 2996 341 341 1570 0.00%
462.libquantum 685 685 1188 492 492 904 219 219 812 0.00%
464.h264ref 3451 3451 8906 3084 3088 8518 800 800 6318 0.06%
471.omnetpp 24572 24528 37408 10037 10212 11814 3974 3979 14326 0.35%
473.astar 1982 1982 1074 1717 1725 712 469 469 750 0.19%
483.xalancbmk 76301 76301 154546 31808 32992 73308 14091 14091 75674 0.97%

Table 2: Statistics of SPEC binaries identified by GRIN

Benchmark Ind. Jumps Dir. Jumps Ind. Calls Dir. Calls Cond.Branches Orig.Size
(kB)

New
Size(kB)

Inc.

400.perlbench 101 13135 224 15476 30000 2217 48579 21.91x
401.bzip2 9 594 32 482 1799 397 3355 8.45x
403.gcc 496 24588 802 45637 77158 4200 98384 23.43x
429.mcf 9 484 17 370 1349 444 2469 5.56x
445.gobmk 22 4820 114 9263 15843 4562 33260 7.29x
456.hmmer 35 2236 41 3979 7491 940 11899 12.66x
458.sjeng 24 1417 18 1353 3912 616 8217 13.34x
462.libquantum 8 484 19 666 1345 562 3103 5.52x
464.h264ref 26 3062 571 2880 9940 1134 19041 16.79x
471.omnetpp 449 9763 3928 20600 18645 6647 40664 6.12x
473.astar 46 1679 210 1772 4391 1253 6858 5.47x
483.xalancbmk 2305 30687 27045 49221 76266 11842 173241 14.63x

Figure 7: A comparison of GRIN and MULTVERSE code ex-
pansion.

SPEC with original binaries. In all of our tests, their execution
behavior and output result are as expected.

6.2 Cost
In order to evaluate the cost of GRIN, we summarize the statistics
of rewritten binaries. Table III shows the statistics of SPEC binaries
and also shows how the GRIN rewriting system affects the file size
of each benchmark binary. The average size expansion for SPEC
is 11.76 times. We analyzed the main reasons for the increase in
size and have two speculations: the additional helper library in
rewritten binary and IR transformation when rewriting.

Our current implementation of the dynamic execution technique
is based on QEMU’s TCG dynamic translator, which performs a
runtime conversion. However, QEMU’s dynamic translator cannot
still convert all instructions(e.g., syscall, div). In order to execute
these instructions, QEMU implements a helper library. Therefore,
in our current implementation, our rewritten instruction still needs
these helper libraries to produce execution effects. We do not at-
tempt to substitute this implementation, and we believe that the
size of the helper library can be optimized in future development.
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Another reason for the increase in binary size is that our rewrite
transformation is based on instruction semantics. In our implemen-
tation, our IR lifter is based on execution semantics of instruction,
which will bring the size increase when we transform these IRs
to executable. So, we will update the IR optimization technique to
reduce the code sizes in future work.

We also evaluate the cost of GRIN by comparing it with MUL-
TIVERSE, and which mainly manifests in the size expansion of
rewritten binaries. As shown in Figure 7, we compare the size ex-
pansion of rewritten binary of GRIN and MULTIVERSE. We find
that the size expansion rewritten by GRIN has significantly reduced
than MULTIVERSE. We also notice that some of the benchmarks
have a higher size expansion than MULTIVERSE. That is because
we rewrite some library functions as part of the rewritten bina-
ries, but our average size expansion is lower than MULTIVERSE.
We have analyzed the reason for expansion rewritten by GRIN in
the previous section. In the rewrite implementation mechanism
of MULTIVERSE, it rewrites the global mapping of libraries into
rewritten binaries. If an original binary includes many libraries,
the global mapping will dominate more space of rewritten binary.
However, GRIN does not need to consider such issues.

7 CONCLUSION
We have presented GRIN, a novel binary rewriting tool that can
precisely identify the memory address of each legal instruction
in binary. In GRIN, we develop a dynamic execution technique
and branch backtracking technique to address the challenges of
identifying and rewriting binary. We rewrite instructions that we
have executed into the rewritten binaries and do not consider relo-
cation issues, guaranteeing correctness. As such, our solution can
be applied to all security applications, such as binary hardening,
instrumentation, and security policy reinforcement. Our experi-
ments show that GRIN can successfully rewrite all the binaries
we have tested (the whole set of GNU core utilities, SPECint 2006
benchmark, and realworld binaries) and correctly identify all legal
instructions without redundancy. Therefore, GRIN can potentially
be used as foundation work for binary-based software applications.
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