
Self-Supervised Bot Play for Transcript-Free
Conversational Recommendation with Rationales
Shuyang Li

shl008@ucsd.edu
UC San Diego

San Diego, California, USA

Bodhisattwa Prasad Majumder
bmajumde@ucsd.edu

UC San Diego
San Diego, California, USA

Julian McAuley
jmcauley@ucsd.edu

UC San Diego
San Diego, California, USA

ABSTRACT
Conversational recommender systems offer a way for users to en-
gage in multi-turn conversations to find items they enjoy. For users
to trust an agent and give effective feedback, the recommender
systemmust be able to explain its suggestions and rationales. We de-
velop a two-part framework for training multi-turn conversational
recommenders that provide recommendation rationales that users
can effectively interact with to receive better recommendations.
First, we train a recommender system to jointly suggest items and
explain its reasoning via subjective rationales. We then fine-tune
this model to incorporate iterative user feedback via self-supervised
bot-play. Experiments on three real-world datasets demonstrate
that our system can be applied to different recommendation models
across diverse domains to achieve state-of-the-art performance in
multi-turn recommendation. Human studies show that systems
trained with our framework provide more useful, helpful, and
knowledgeable suggestions in warm- and cold-start settings. Our
framework allows us to use only product reviews during training,
avoiding the need for expensive dialog transcript datasets that limit
the applicability of previous conversational recommender agents.
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1 INTRODUCTION
Traditional recommender systems often give static suggestions, af-
fording users no way to meaningfully express their preferences and
feedback. Conversational recommendation allows users to interact
with agents and suggestions, increasing their willingness to trust
and accept recommendations [24]. Techniques for conversational
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recommendation are based on the paradigm of conversation: how
an agent can explain their suggestions and how users can give
feedback.

Recent work has explored conversational recommendation
through dialog agents trained to ask the user questions in free-form
dialog [32]. Such models require large training corpora comprising
transcripts from crowd-sourced recommendation games [8]. To
create high-quality training data, crowd-workers must be knowl-
edgeable about many items in the target domain—this expertise
requirement limits data collection to a few common domains like
movies. It is thus difficult to scale dialog-based recommenders to
domains where users have specific preferences about subjective
rationales but no dialog transcripts exist (e.g. food and literature).

We address this challenge of data scarcity by proposing a frame-
work for training conversational recommender systems based on
conversational critiquing and self-supervised bot-play. Our ap-
proach reflects an realistic interactive paradigm where the agent
suggests items and explains their rationale, while the user specifies
their preferences via specific feedback to guide the next turn’s sug-
gestions [36]. Our framework does not rely on supervised dialog
examples and can be applied to any setting where product reviews
or opinionated text can be harvested.

We propose a framework comprising two parts: First, we learn to
jointly recommend items and generate justifications based on sub-
jective rationales, leveraging ideas from conversational critiquing
systems [33] trained via next-item recommendation. We then fine-
tune ourmodel for multi-turn recommendation viamultiple turns of
bot-play in a recommendation game based on natural-text product
reviews and simulated critiques.

Our framework is model-agnostic—we apply our method to two
different underlying recommendation architectures [25, 26] of dif-
fering sizes and evaluate our models on three large real-world
recommendation datasets with user reviews but no dialog tran-
scripts. Our method can provide more useful explanations and
better adapts to user feedback compared to state-of-the-art (SOTA)
conversational recommender systems—users interacting with our
rationales reach their goal items faster and with greater success. We
conduct a study with real users, showing that our models can effec-
tively help users find desired items in real time, even in a cold-start
setting.

We summarize our main contributions as follows: 1) We present
a framework for training conversational recommender systems us-
ing bot-play on historical user reviews, without the need for large
collections of human dialogs; 2) We apply our framework to two
popular recommendation models (BPR-Bot and PLRec-Bot), with
each showing superior or competitive performance in comparison
to SOTA recommendation and critiquing methods; 3) We demon-
strate through human evaluation and user studies that models
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Figure 1: In our conversational recommendation workflow, the system scores candidates and generates a justification for the
top item. If the user critiques a rationale, the system uses the critique to update the latent user representation.

trained with our bot-play framework are more useful, informative,
knowledgeable, and adaptive compared to SOTA baselines.

2 RELATEDWORK
Justifying Recommendations. Users prefer recommendations that

they perceive to be transparent or justified [27]. Some early recom-
mender systems presented the same attributes of suggested items
to all users [30]. Another line of work attempts to generate natural
language explanations of recommendations. McAuley et al. [21]
mine key attributes from textual reviews via topic extraction. These
attributes can be expanded into explanatory sentences via template-
filling [35] or recurrent languagemodels [23]. In this work, we allow
the user to provide feedback about specific rationales mentioned
across natural language product reviews in large recommendation
datasets.

Conversational Critiquing. Critiquing systems allow users to in-
crementally construct preferences, mimicking how humans refine
their preferences based on conversation context [29]. Early cri-
tiquing methods treated user feedback as hard constraints to shrink
the search space [3]. Wu et al. [33] introduced a critiquing model
with justifications comprising natural language attributes mined
from user reviews—with which users can then interact. Antognini
et al. [2] provide a single-sentence explanation alongside a set of
rationales, requiring users to interact only with the rationale set.

Luo et al. [20] use a variational auto-encoder (VAE) [10] for joint
recommendation and justification, learning a bi-directional map-
ping function between latent user and rationale representations.
Current critiquing techniques are either trained only for next-item
recommendation, or to handle a single turn of critiquing [1], and
struggle to incorporate feedback in multi-turn settings. We adopt
techniques for encoding user feedback from critiquing systems [19],
but we introduce a multi-step, model-agnostic bot-play method to
explicitly train our models for multi-turn conversational recom-
mendation.

Dialog Agents for Recommendation. We view recommenders as
domain experts who can elicit preferences from human customers
and suggest appropriate items over the course of a session [4]. A
recent line of work formulates conversational recommendation
as goal-oriented dialog: at each turn, the user is either a) asked if
they prefer a specified attribute; or b) recommended an item [5, 34].
Other question-answering models use reinforcement learning to
dialog policies for when to ask users about attributes, updating a
cumulative belief state of item attributes [13, 14]. These models ask

templated questions and surface recommendations from an open
candidate pool without explaining their reasoning to the user.

Another line of research treats conversational recommenders as
free-text dialog agents that interact with users via natural language
utterances. Bot-play has been explored as a way to train such dialog
agents [8, 17], which requires models to be trained and fine-tuned
using existing dialog transcripts. Such agents are thus limited to do-
mains where crowd-sourced workers can accurately play the roles
of expert and seeker to collect data via Wizard-of-Oz setups [6].
By allowing users to critique natural text rationales of a suggested
item, our framework for conversational recommendation allows for
multi-turn recommenders that can be trained using only product
review texts—which are available in a wide range of domains. In Ta-
ble 1 we compare our approach to recent frameworks for critiquing
and dialog agents for conversational recommendation.

3 MODEL
Our model comprises (Figure 2):

(1) a recommender modelMrec that ranks items based on their
suitability for a user;

(2) a justification module Mjust that predicts rationales for a
given recommendation; and

(3) an interactive critiquing function fcrit that allows users to
edit a rationale and modifies the user representation to rec-
ommend a different item on the next turn.

We support multi-step critiquing (Figure 2): at each turn a user may
indicate which rationales they dislike about the current suggestions
via a critique ct . The critiquing function then modifies the latent
user representation γu via the critique to bring it closer to the target
item.

3.1 Recommender System
Ourmethod can be applied to any recommender that learns user and
item representations. We show its effectiveness with two popular
methods:

Bayesian Personalized Ranking (BPR) [25] is amatrix factorization
recommender system that aim to decompose the interaction matrix
R ∈ R |U |× |I | into user and item representations [11]. BPR optimizes
a ranked list of items given implicit feedback (binary interactions
between users and items). Scores are computed via inner product
of h-dimensional user and item embeddings: x̂u,i = ⟨γMF

u ,γ
MF
i ⟩.

At training time, the model is given a user u, observed item i and
unobserved item j . We maximize the likelihood that the user prefers
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Table 1: Critiquing systems (top) are not equipped for multi-turn interactions (*M&M VAE is trained for a single turn of cri-
tiquing). Q & A systems (middle) ask the user to build a list of search criteria but do not provide rationales for recommended
items. Dialog agents (bottom) learn multi-turn behavior via large corpora of domain-specific transcripts. Our framework al-
lows us to train conversational recommenders without costly transcript data.

Paradigm Model Year Justifies Suggestions Multi-Turn Conversations Transcript-Free

Conversational Critiquing
LLC [19] 2020 % % "

CE-VAE [20] 2020 " % "

M&M VAE [1] 2021 " %* "

Question & Answer
SAUR [34] 2018 % " "

EAR [13] 2020 % " "

SCPR [14] 2020 % " "

Dialog Agents
Li et al. [17] 2018 % " %

Kang et al. [8] 2019 " " %

Zhou et al. [36] 2020 " " %

Ours " " "

Table 2: Notation used in this paper.

Notation Description

U , I , A User, item, and rationale sets .
R ∈ R|U |×|I | Matrix of binary user-item interactions
KU ∈ R|U |×|K | User aspect frequency matrix; kUu,a is the number of times user u mentioned aspect a in their reviews.
KI ∈ {0, 1} |I |×|K | Binary matrix, where kIi,a is 1 if and only if aspect a was used to describe item i in any of reviews.
γu, γi ∈ Rh Learned h-dimensional user and item embeddings.
x̂u,i ∈ R The predicted score of item i for user u .
k̂u,i ∈ {0, 1} |K | Predicted justification (binary across all aspects).
c tu ∈ R

|K | The cumulative critique vector representing the user’s evolving opinion about each aspect.
mt
u ∈ {0, 1}

|K | The user critique vector at turn t .mt
u,a is 1 if and only if the user critiqued aspect a at turn t .

the observed item:

LR = P(i >u j |Θ) = σ (x̂u,i − x̂u, j )

where σ represents the sigmoid function 1
1+e−x .

Projected Linear Recommendation (PLRec) is an SVD-based
method to learn low-rank user/item representations via linear re-
gression [26]. The PLRec objective minimizes:

argmin
W

∑
u
∥ ru − ruVW

T ∥22 +Ω(W )

whereV is a fixedmatrix obtained by taking a low-rank SVD approx-
imation of R such that R = U ΣVT , andW is a learned embedding.
We obtain an h-dimensional embeddings for users (γMF

u = ruV ) and
items (γMF

i =Wi ).

3.2 Justification Module
Our justification model (rationale prediction head) consists of a
fully connected network with two h-dimensional hidden layers
predicting a score su,i,a for each natural language rationale a. This
model takes the sum of user and item embeddings as input. At
training time, we incorporate a rationale prediction loss LA by
computing the binary cross entropy (BCE) for each rationale given

the likelihood the user cares about the rationale:

LA = −
1
|A|

|A |∑
a=0

kIi,a · logpu,i,a + (1 − k
I
i,a ) · log(1 − pu,i,a )

At inference time, we again compute the likelihood for each ratio-
nale pu,i,a = σ (su,i,a ) and sample from the Bernoulli distribution
with pu,i,a to determine which rationales a appear in the justifica-
tion.

3.3 Critiquing Function
We posit that the user’s latent representation is partially explained
by their written reviews. We thus learn a rationale encoderMRE—a
linear projection from the rationale space to the user preference
space:MRE(c

t
u ) =W

T ctu +b, where ctu ∈ Z |K | is the critique vector
representing the strength of a user’s preference for each rationale.
We fuse this rationale encoding with the latent user embedding
fromMrec to form the final user preference vector:

γu = fcrit(γ
MF
u ,MRE(c

t
u ))

For both models, we fuse via the element-wise mean of the two
vectors: fcrit(a,b) = a+b

2 . In training, the rationale encoder takes
in the user’s rationale history: ctu = kUu .
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(a) Model Architecture (b) Latent Critiquing Process

Figure 2: (a) Given a user, items, and rationale critique vector, our model encodes the critique MRE(c
t
u ) and fuses it with the

user embedding γMF
u via critiquing function fcrit. The fused user (γu ) and item (γi ) representations are then used to predict the

justification and score items. An example is shown in (b), where user feedback about the rationales slow (c0) and fairy tale (c1)
modify our prior latent user preference vector to bring it closer to the target item (“The One and Future Witches”).

Critiquingwith OurModels. To perform conversational critiquing
with a model trained using our framework, we adapt the latent
critiquing formulation from Luo et al. [19], as shown in Figure 1. At
each turn t of a session for useru, the system assigns scores x̂tu,i for
all candidate items i , and presents the user with the highest scoring
item î . The system also justifies its prediction with a set of predicted
rationales k̂tu,i . The user may either accept the recommended item
(ending the session) or critique a rationale from the justification:
a ∈ {a |k̂u,i,a = 1}.

Given a user critique, the systemmodifies the predicted scores for
each item and presents the user with a new item and justification:

x̂t+1u,i = Mrec(γ̂
t+1
u , i)

k̂t+1u,i = Mjust(γ̂
t+1
u , i)

γ̂ t+1u ← fcrit(γ̂
t
u , c

t
u )

Effectively, a user critique modifies our prior for the user’s prefer-
ences; we then re-rank the items presented to the user.

At inference time, we initialize the cumulative critique vector ctu
with the user’s rationale history (c0u = kUu ). It is then updated via:

ctu = c
t−1
u −max(kUu , 1) ⊙m

t
u ; c0u = kUu

where ⊙ is element-wise multiplication. Here the critique should
match the strength of a user’s previous opinion of the rationale
kUu . Even if a user has not mentioned a rationale in their previous
reviews, the max ensures a non-zero effect from each critique.

3.4 Training
To train our BPR-based model, we jointly optimize each component.
Each training example comprises a user and observed / unobserved
items. We predict scores for each item:

x̂u,i = ⟨γ
MF
u +MRE(kUu ),γi ⟩

We first compute the BPR loss (see Section 3.1) with the predicted
observed / unobserved scores. We add the rationale prediction loss,
scaled by a constant λKP to the ranking loss for our training objec-
tive: L = λKPLA − LR . We find empirically that λKP ∈ {0.5, 1.0}
works well.

To train our PLRec-based model, we follow Luo et al. [19] and
separately optimizeMrec,Mjust, andMRE. We optimizeMRE via the
linear regression:

argmin
W ,b

∑
u
∥ γMF

u −MRE(kUu ) ∥
2
2 +Ω(W )

Finally, we optimize the rationale prediction (justification) loss LA
to train the justification head.

Learning to Critique via Bot Play. We propose a framework for
critiquing via bot play that simulates user sessions when provided
just a set of user reviews. We first pre-train our expert model (rec-
ommender, justifier, and rationale encoder). We use a rule-based
seeker with a simple prior: provided a target item and justification,
it selects the most popular rationale present in the justification
but not the target’s historical rationales kIi to critique. For each
training example (user and a goal item they have reviewed), we
allow the expert and seeker models to converse with the goal of
recommending the goal item.

We fine-tune the expert by maximizing its reward (minimizing
loss) in the bot-play game (Algorithm 1). We end the session after
the goal item is recommended or a maximum session length of
T = 10 turns is reached. We define the expert’s loss to target both
surfacing the correct recommendation and inferring the user’s
ground truth preferences per turn:

Lexpert =
T∑
t
δ t−1 · (LCE(д, x̂

t
u,i ) +

1
2
LA)

where δ is a discount factor to encourage successfully recommend-
ing the goal item at earlier turns, LCE(д, x̂

t
u,i ) is the cross-entropy

loss between predicted scores and the goal item, and LA is the
binary cross-entropy rationale loss defined in Section 3.2. We find
that a discount factor of δ = 0.9 is effective for both BPR- and
PLRec-based conversational recommenders.

4 EXPERIMENTAL SETTING
We select hyperparameters for our initial models via AUC, and
for bot-play fine-tuning via the success rate at 1 (SR@1) on the
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Algorithm 1: Bot play framework for fine-tuning conversational recommenders.
Recommender and JustifierMrec,Mjust;
Critique fusion function fcrit;
Seeker modelMseeker;
for each user u do > Fine-tune across users in training set

for goal item д ∈ I+u do > Sample goal item from reviewed items
initialize γ 1u fromMrec, L = 0;
for turn t ∈ ranдe(1,T ) do > Simulate up to T turns of user feedback

x̂tu,i = Mrec(γ tu , i) ∀ i ∈ I ;
L ← L + δ t · (LCE(д, x̂

t
u,i ) +

1
2LA);

ît = argmaxi x̂tu,i ;
if ît = д then > Terminate session if goal item recommended.

break with success
k̂u, î t = Mjust(γ

t
u ,γî t ); > Generate justification for suggested item

simulate user critique usingMseeker: ctu ;
γ t+1u ← fcrit(γ

t
u , c

t
u ); > Update user latent representation

return fine-tuned agent

validation set. We train each model once, taking the median of three
evaluation runs per experimental setting. For baseline models, we
re-used the authors’ code.

All experiments were conducted on a machine with a 2.2GHz
40-core CPU, 132GB memory and one RTX 2080Ti GPU. We use
PyTorch version 1.4.0 and optimize our models using the Rectified
Adam [18] optimizer. Best hyperparameters for each base recom-
mender system model are included in supplementary material. We
perform hyperparameter search over a coarse sweep of:h ∈ [2, 512],
LR ∈ [1e − 5, 1e − 2], λ ∈ [1e − 5, 1e − 2]. Model parameter sizes are
a function of the hidden dimensionality h and number of items |I |
and users |U |, and is dominated by h · (|I | + |U |).

4.1 Datasets
We evaluate our models on three public real-world recommendation
datasets with 100K+ reviews each: Goodreads Fantasy (Books) [31],
BeerAdvocate (Beer) [21], and Amazon CDs & Vinyl (Music) [22].
We keep only reviews with positive ratings, setting thresholds of
t > 4.0 for Beer and Music and t > 3.5 for Books. All reviews
in these dataset are in English; we hope to extend our work to
identify related rationales in multi-lingual reviews in the future.
We partition each dataset into 50% training, 20% validation, and
30% test splits.

We follow the pipeline of Wu et al. [33] to extract subjective
rationales (Table 3) from user reviews:

(1) Extract high-frequency unigram and bigram noun- and ad-
jective phrases;

(2) Prune bigram keyphrases using a Pointwise Mutual Infor-
mation (PMI) threshold, ensuring rationales are statistically
unlikely to have randomly co-occurred; and

(3) Represent reviews as sparse binary vectors indicating
whether each rationale was expressed in the review.

These noun/adjective phrase rationales describe qualities ranging
from taste for beers (e.g. citrus) and emotions for music (e.g. soulful)
to perceived character qualities in books (e.g. strong female). Our
framework is agnostic to the rationale format, and in future work

we aim to extend ourmodels to encode full sentences and utterances
as critiques.

4.2 Multi-Step Critiquing
Following prior work on critiquing [15, 19], we simulate multi-step
recommendation sessions to assess model performance. We simu-
late user sessions following Algorithm 1, with two main differences:
1) We randomly sample user u and their goal item д from the test
set, and 2) We do not compute loss or update our model during a
session. We set a maximum session limit of T = 10 turns. To evalu-
ate how our models can help different types of users, we simulate
each observation with three different critique selection strategies
[15] as seen in Figure 3:

(1) Random: Users who are new to the domain (e.g. new read-
ers) tend to critique rationales at random;

(2) Pop: Users with some domain knowledge and general pref-
erences can correct more common rationales; and

(3) Diff: Knowledgeable users with specific preferences will try
to correct the weakest rationale.

In all settings, a user may only see any single item once and critique
each rationale once per session.

4.3 Candidate Algorithms
Our method can apply to any base recommender system; here we
train bot-play models based on BPR and PLRec—BPR-Bot and
PLRec-Bot respectively. BPR-Bot is lightweight and much faster,
while PLRec-Bot is similar in size to SOTA baseline models for
conversational critiquing. We demonstrate in Section 5.1 that our
framework is indeed model agnostic, and that BPR-Bot and PLRec-
Bot both out-perform baselines.

We assess linear critiquing baselines that co-embed critique and
user representations [19], where fcrit is a weighted sum of the user
preference vector γu and embeddings for each critiqued rationale.
UAC uniformly averages γu and all critiqued rationale embeddings.
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Table 3: Dataset statistics, including number of unique rationales (R), sample subjective rationales from user reviews, and
average unique rationales per user, item, and review.

Users Items Reviews Unique R Sample Subjective R R/User R/Item R/Review

Books 13,889 7,649 654,975 75 Realistic, Strong Female, Gripping 25.0 27.0 1.77
Beer 6,369 4,000 935,524 75 Smoky, Citrus, Nutty, Bitter, Metallic 54.6 60.2 7.39
Music 5,635 4,352 119,081 80 Techno, Reggae, Catchy, Soft, Soulful 16.5 20.0 2.54

Figure 3: Example of user behaviors after receiving a book recommendationwith rationales. A new readermay randomly select
a rationale to critique. Readers with less specific preferences may critique common / popular rationales. A knowledgeable
reader with specific preferences will critique a specific weakest (most different from their target) rationale.

BAC averages γu with the average of critiqued rationale embed-
dings. LLC-Score learns weights by maximizing the rating margin
between items containing critiqued rationales and those without.
Instead of directly optimizing the scoring margin, LLC-Rank [15]
minimizes the number of ranking violations. These models can-
not generate justifications; we binarize the historical rationale fre-
quency vector for the item (kI

u, î t
) as a justification at each turn. We

also compare against a SOTA interactive recommender, CE-VAE
[20], which learns a VAE with a bidirectional mapping between
critique vectors and the user latent preference space.

5 EXPERIMENTS
In this section, we evaluate our bot-play models to answer the
following questions:

• RQ 1: Can our framework enable multi-step critiquing?
• RQ 2: Does bot-play specifically improve multi-step cri-
tiquing ability?
• RQ 3: Can our models generate useful and accurate ratio-
nales?

5.1 RQ1: Can our framework enable multi-step
critiquing?

Following standard practice [1, 15, 19], we measure multi-step cri-
tiquing performance via average success rate (SR@N)—the percent-
age of sessions where the target item reaches rank threshold N—and
the average session length for the target to reach a rank threshold
(Figure 4). We find that both of our candidate models (BPR-Bot and
PLRec-Bot) out-perform all baselines. As our bot-play fine-tuning
seeker model picks critiques by popularity, we expect our models to
perform best in the Pop setting. However, BPR-Bot and PLRec-Bot

succeed faster and at a higher rate than baselines in all user settings,
including random critiquing with no prior on user behavior.

Linear critiquing models (UAC, BAC, LLC-Score/Rank) perform
poorly on multi-step critiquing compared to models that can gener-
ate justifications, especially when trying to find the goal item out-
right (N=1). This suggests that personalized justifications help users
choose more effective rationales to critique. Despite out-performing
linear critiquing models, CE-VAE performs worse across all settings
compared to models trained in our bot-play framework. This sug-
gests that our models generate personalized justifications that are
more helpful for narrowing down a user’s preferences compared to
CE-VAE. In Section 5.3, we further investigate the usefulness and
accuracy of our rationales.

ForPLRec-Bot, our base recommender system is initialized with
the same base model used in linear critiquing models (UAC, BAC,
LLC-Score/Rank). However, we observe an order of magnitude
improvement in success rate across all rank thresholds N compared
to linear models (and the similarly complex CE-VAE model). This
demonstrates that we do not need to solve a linear programming
problem for each critiquing step (like LLC-Score/Rank)—fine-tuning
a model with our bot-play framework is more effective at teaching
conversational agents to incorporate user feedback.

With BPR-Bot, we demonstrate that our bot-play framework
can also be effectively applied to extremely lightweight and sim-
ple base recommender systems. Our base BPR models require an
order of magnitude (5x-40x) fewer parameters than baseline mod-
els, representing users and items with only 20 latent dimensions.
Nonetheless, by fine-tuning this model with our bot-play frame-
work, we are able to again out-perform baselines by wide margins
in all settings. Success with both PLRec-Bot and BPR-Bot show-
cases the model-agnostic nature of our framework, and in future
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(a) Success Rate (%) @ N (b) Avg. # turns for target item to reach rank N

Figure 4: User simulation evaluation of our models—BPR-Bot (brown triangle) and PLRec-Bot (pink circle)—compared to lin-
ear critiquing and variational baselines for conversational recommendation (dashed lines). Models trained with our bot-play
framework succeed at significantly higher rates (a) and surface desired items significantly faster (b) than all baselines.

work we hope to investigate its benefits with a wider range of base
recommender systems.

While we were unable to access to code for and replicate the
results for the recent MM-VAE model [1], we note that both of
our bot-play models significantly out-perform MM-VAE’s reported
success rates: for Beer, we achieve 38-53% SR@1 with BPR-Bot and
51-67% SR@1 with PLRec-Bot compared to 5-6% reported SR@1
for MM-VAE; for Music, we achieve 13-25% SR@1 with BPR-Bot
and 20-35% SR@1 with PLRec-Bot compared to 3-8% for MM-VAE.

Overall, our models can better assist users with varying levels
of domain knowledge and specific preferences compared to SOTA
methods for conversational critiquing. We have thus shown that
our bot-play framework enables the training of multi-turn conver-
sational recommenders without the need for costly supervised dialog
transcripts.

5.2 RQ2: Does bot-play specifically improve
multi-step critiquing ability?

We next demonstrate that our bot-play fine-tuning is responsible for
gains inmulti-step critiquing performance (Figure 5a) by comparing
BPR-Bot (crosses) and PLRec-Bot (squares) against ablated versions
that were trained using the first step of our framework but not
fine-tuned via bot-play. For clarity, we display only results using
the Pop user behavioral model, as we observe the same trends with
all three user models.

Bot-play confers a noticeable benefit for both BPR-Bot (100-300%
improvement in success rate for various N) and PLRec-Bot (250-
400% improvement) across domains, with the largest improvements
observed with the Beer domain. This may be due to relatively dense
occurrence of rationales in user reviews, with an average of 7.4
unique rationales expressed in each review (Table 3). This demon-
strates that we can effectively train conversational recommender
systems using our bot-play framework using domains with user
reviews in lieu of crowd-sourced dialog transcripts.

In domains with more sparse coverage of subjective rationales
(i.e. Books with 1.8 rationales/review and Music with 2.5 ratio-
nales/review), we observe lower improvement when using bot-
play—our model may encounter insufficient cases of rare rationales
being critiqued. This seems to affect lightweight models (BPR-Bot)
much more than more complex base recommender systems (PLRec-
Bot). In future work, we will explore adding noise to our user model
to ensure that the bot-play process encounters more rare rationales.

We next investigate whether our framework is model size-
agnostic. We fine-tune BPR models of varying sizes (varying
user/item representation dimensionality h between 10 and 50), with
success rates shown in 5b. We see that regardless of model size,
simple recommender systems fine-tuned under our framework out-
perform state-of-the-art conversational critiquing methods (CE-
VAE). Models with higher latent dimensionality (h = 10→ 20→
50) benefit more from bot-play, suggesting that our method learns
to effectively navigate complex preference spaces.

Themarginal benefit of increasing latent dimensionality seems to
slow for the Beer domain (with the highest density of rationales per
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(a) Bot-play models (orange) vs. non-bot-play ablations (blue)

(b) CE-VAE (dashed) vs. BPR-Bot for h ∈ [10, 20, 50] (solid)

Figure 5: Success Rate @ N (% sessions where target item rank ≤ N) for ablation settings: (a) Bot-play improves target item
ranking across datasets compared to the ablation for PLRec-Bot (squares) and BPR-Bot (crosses). (b) As latent dimension grows
(h ↑), bot-play fine-tuning confers greater benefits. All models, including extremely lightweight h = 10 out-perform the best
baseline model (CE-VAE).

review, item, and user), while we continue to observe large benefits
from increasing model size in Books and Music. This suggests that
our bot-play framework allows large models to more effectively
learn to encode user feedback in domains with sparse user feedback.

We thus confirm that our method is model-agnostic, as it
improves recommendation success rates for both the matrix
factorization-based (BPR) and linear (PLRec) recommender systems.
Similarly, we have shown that our bot-play method is size-agnostic,
and is generally applicable to base recommender systems with any
latent dimensionality.

5.3 RQ3: Can our models generate useful and
accurate rationales?

We next explore whether our model is surfacing appropriate ratio-
nales to guide the user and elicit feedback. We evaluate two main
criteria with regards to rationales: 1) usefulness, or whether the ra-
tionales can help the user give effective feedback to more easily find
their desired item; and 2) accuracy, or whether our model surfaces
rationales related to the user’s true preferences in that session.

We note that accuracy and usefulness of rationales must be
balanced in a conversational critiquing system. This is because a
user’s reviews are necessarily incomplete: the user is unlikely to
take the time to express every single one of their opinions about a
product—including subtle preferences that may help them decide
between very similar items. As a result, the system must both
predict the rationales a user would express in their review of the
target item and the qualities specific to a recommended item that
help users distinguish between similar items.

To measure the usefulness of our rationales, we measure the
mean reciprocal rank (MRR) of the target item for each piece of
feedback given by the user. This reflects the value of each piece
of feedback: we desire a model that can properly incorporate user
feedback to more quickly identify the user’s real preference (im-
prove the goal item rank and MRR). In Figure 6, we plot the MRR
against pieces of user feedback for PLRec-Bot (squares) and BPR-Bot
(crosses) compared to the best baseline conversational critiquing
system (CE-VAE). We see that as the conversation progresses, mod-
els trained with our bot-play framework can more accurately rank
the user’s preferred items compared to CE-VAE. More importantly,
the “slope” of this graph represents themarginal value of each piece
of feedback. For both PLRect-Bot and BPR-Bot, we observe a signif-
icantly higher marginal value of user feedback, suggesting that our
rationales are more useful than those surfaced by CE-VAE. We also
find that the marginal value of user feedback stays roughly constant
for each piece of feedback, showing that our models can effectively
refine user preferences even if a user has already provided several
pieces of feedback.

We next measure the accuracy of rationales surfaced by con-
versational recommender systems. We assume that when writing a
review, the user faithfully expresses their true preferences via the
rationales contained in the review. As such, for each session where
a user u tries to find item i , we take as ground truth the rationales
extracted from the user’s true review of the target item ku,i . In
Figure 7, we plot the average F1 score of the rationales presented
to the user (compared to the ground truth session preferences) at
each turn of conversation for BPR-Bot, PLRec-Bot, and the CE-VAE
baseline.
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Figure 6: Mean Reciprocal Rank (MRR) vs. pieces of user feedback received, comparing the best baseline (CE-VAE, blue circles)
against BPR-Bot (orange crosses) and PLRec-Bot (green squares). Users are able to give much more useful feedback when
presented with rationales for both of our models, improving MRR faster than CE-VAE.

Figure 7: F1 score of rationales surfaced by conversational recommender systems compared to the user’s ground truth ratio-
nales of the target item. When comparing CE-VAE (blue circles) to models trained with our bot-play framework—BPR-Bot
(orange crosses) and PLRec-Bot (green squares)—our models more accurately infer the user’s session preferences, and can
improve their accuracy with each piece of user feedback.

Across all datasets, we find that bot-play models provide more
accurate justifications compared to CE-VAE. Furthermore, unlike
CE-VAE, the accuracy of our justifications tends to increase as the
session progresses. This suggests that when receiving feedback
from the user, our models can improve their understanding of the
user’s preference in that particular session. This may help reinforce
the user’s trust of our system, as it provides the sense of an agent
who “learns” the user’s preferences during a conversation.

We note that models are able to better refine rationales in do-
mains with more dense expression of subjective rationales per user
review (Table 3). In particular, the book domain contains both the
most users and the lowest density of rationales per review, and our
models see the least improvement in F1 score over a conversation.
On the other hand, this may reflect how our models suggest more
rationales than users typically reveal, in order to help users better
evaluate suggested novels.

6 HUMAN STUDY
6.1 Human Evaluation
Following Li et al. [16], we conduct a comparative evaluation of
100 simulated user sessions on four criteria: which agent seems

more useful, informative, knowledgeable and adaptive. We com-
pare each bot-play model (BPR-Bot and PLRec-Bot) against an
ablative version (with no bot-play) and the best baseline (CE-VAE).
Each sample is evaluated by three annotators, with all annotators
recruited via the Amazon Mechanical Turk (MTurk) platform. We
used crowd-workers with a historical 99% acceptance rate on their
work to ensure quality, and crowd-workers were paid in excess of
Federal minimum wage in the United States given the average time
taken to complete an evaluation. We observe substantial [12] inter-
annotator agreement, with Fleissκ [7] of 0.67, 0.79, 0.73, and 0.60 for
the usefulness, informativeness, knowledgeable, and adaptiveness
criteria, respectively. Scores are shown in Table 4.

BPR-Bot and PLRec-Bot are judged to be significantly more in-
formative and knowledgeable than ablative models and CE-VAE,
showing that our models can accurately and convincingly explain
each suggestion. This supports our findings from user simulations
in Section 5.3. In particular, wins in informativeness and knowl-
edgeability reflect how rationales surfaced by our models accurately
describe the subjective opinions of users regarding the suggested
item. If users believe a conversational agent can both accurately
describe an item and reflect their personal opinions, they are more
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Table 4: Session-level human evaluation via ACUTE-EVAL. Users were asked which model was more Useful, (Inform)ative,
(Know)ledgeable, and Adaptive when comparing bot-play models against CE-VAE and an ablative baseline with no bot-play
fine-tuning. Results are shown for BPR-Bot (left) and PLRec-Bot (right). W/L percentages are reported while ties are not. All
results statistically significant with p < 0.05 via binomial test.

BPR-Bot vs. Useful Inform. Know. Adaptive PLRec-Bot vs. Useful Inform. Know. Adaptive
W L W L W L W L W L W L W L W L

Ablation (BPR) 78* 10 73* 11 68* 15 85* 5 Ablation (PLRec) 86* 5 78* 7 74* 8 81* 9
CE-VAE 83* 9 74* 10 63* 16 81* 8 CE-VAE 87* 7 79* 11 77* 12 83* 10

Table 5: Cold-start user study results. On a per-turn basis, users found our bot-play model to be significantly (p < 0.01) more
useful, informative, and adaptive compared to the baseline. On a session basis, significantly more users (p < 0.01) would use
the bot-play model “often” or “always” to receive book recommendations compared to the baseline.

Avg. Feedback Useful Informative Adaptive Would Use Again

Ablation (No Bot Play) 1.77 ± 0.08 0.67 ± 0.24 0.75 ± 0.21 0.64 ± 0.27 41%
Our Method 2.05 ± 0.13 0.79 ± 0.24* 0.88 ± 0.18 0.78 ± 0.23* 69%*

likely to trust the system and continue to interact with the agent
in a meaningful way [28].

The usefulness and adaptiveness criteria capture how models
help the user achieve their end goal (i.e. finding the most relevant
item in as few turns as possible). Bot-play models are judged to be
more useful than alternatives and follow critiques more consistently
when adapting recommendations. This again suggests that users
1) trust our models’ rationales for recommendations and 2) can
meaningfully interact with our model to achieve their end goal.

Our framework allows us to train conversational agents that are
useful and engaging for human users: evaluators overwhelmingly
judged the models trained via bot-play to be more useful, informa-
tive, knowledgeable, and adaptive compared to CE-VAE and ablated
variants.

6.2 Cold-Start User Study
We conduct a user study using the Books dataset to evaluate if
our model is a useful real-time conversational recommender. In
particular, we wish to see if models trained with bot-play using
existing user reviews could effectively make use of feedback from
new users (cold-start). We recruited 64 native English speakers
from universities across the United States, randomly assigning half
to interact with BPR-Bot and half to interact with the ablation (no
bot-play).

We initialize each session with the mean of all learned user
embeddings to provide the same initial set of suggestions for each
new user. At each turn, the user sees the three top-ranked itemswith
justifications (rationales) and can critique multiple rationales. On
average, users critiqued two rationales per turn—this suggests that
when training interactive agents we can assume multiple critiques
at each turn. In future work, we aim to studywhether users in warm-
start and cold-start situations give differing amounts of feedback at
each turn of conversation.

At each turn, we again follow Li et al. [16] to ask users if the
generated explanations are informative, useful in helping to make a
decision, and whether our system correctly adapted its suggestions
in response to the user’s feedback. We provide four options for

each question: no, weak-no, weak-yes, and yes. We then map these
values to a score between 0 and 1 [9], with normalized scores for
each question shown in Table 5. BPR-Bot significantly out-scores
the ablation in all three metrics (p < 0.01), showing that fine-tuning
via our bot-play framework instills a stronger ability to respond
to critiques and provide meaningful explanations—even for new
users.

At the end of a session, we additionally ask the user how fre-
quently (if at all) they would choose to engage with our interactive
agent in their daily life. Users preferred BPR-Bot by significant
margins—69% indicated they would “often” or “always” use BPR-
Bot to find books compared to 41% for the ablation. We are encour-
aged that over two thirds of users would regularly use our system,
and it confirms that our critiquing approach to conversational rec-
ommendation reflects a realistic and appealing human interaction
paradigm.

7 CONCLUSION
In this work we develop conversational recommenders that can
engage with users over multiple turns, providing rationales for
suggestions and incorporating user feedback. We present a model-
agnostic framework to train conversational agents in this modality
via self-supervised bot-play in any domain using only review data.
We use two popular underlying recommender systems to train
the BPR-Bot and PLRec-Bot agents using our framework, show-
ing quantitatively on three datasets that our models 1) offer supe-
rior multi-turn recommendation performance compared to current
SOTA methods; 2) provide more useful and informative rationales
for each recommended item compared to current SOTA methods;
and 3) can effectively refine suggestions in real-time, as shown in
user studies. We further show that our bot-play framework confers
its benefits for models with different underlying architectures and
levels of complexity. In future work, we aim to adapt our frame-
work to free-form natural language critiques, allowing users to
more flexibly express feedback.
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