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ABSTRACT
Session-based recommender systems (SBRSs) have shown superior
performance over conventional methods. However, they show lim-
ited scalability on large-scale industrial datasets since most models
learn one embedding per item. This leads to a large memory re-
quirement (of storing one vector per item) and poor performance on
sparse sessions with cold-start or unpopular items. Using one pub-
lic and one large industrial dataset, we experimentally show that
state-of-the-art SBRSs have low performance on sparse sessions
with sparse items. We propose M2TRec, a Metadata-aware Multi-
task Transformer model for session-based recommendations. Our
proposed method learns a transformation function from item meta-
data to embeddings, and is thus, item-ID free (i.e., does not need to
learn one embedding per item). It integrates item metadata to learn
shared representations of diverse item attributes. During inference,
new or unpopular items will be assigned identical representations
for the attributes they share with items previously observed dur-
ing training, and thus will have similar representations with those
items, enabling recommendations of even cold-start and sparse
items. Additionally, M2TRec is trained in a multi-task setting to
predict the next item in the session along with its primary cate-
gory and subcategories. Our multi-task strategy makes the model
converge faster and significantly improves the overall performance.
Experimental results show significant performance gains using our
proposed approach on sparse items on the two datasets.
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1 INTRODUCTION
Session-based recommender systems (SBRSs) accurately model se-
quential and evolving preferences of users from their session data
(e.g., clicks and add-to-cart events). Session data can be associated
with item metadata, allowing SBRSs to capture item dependencies
at the attribute level within the session. However, most of the exist-
ing SBRSs take the IDs of users and items as the main input source
to learn session contexts and produce next item recommendations
[13, 14, 40]. Recent hybrid models demonstrated improved perfor-
mance when combining item embeddings and their attributes to be
used as additional side information [5, 10, 27, 31, 32, 32, 38].

However, there are two major issues that these recommenda-
tion models face. The first issue is that they cannot scale with the
gigantic sizes of industrial datasets. For instance, The Home De-
pot (THD) industrial dataset used in this paper has approximately
40 million sessions and 0.6 million items. Since the dataset is cre-
ated by sampling several months of online sessions, the actual
full dataset (e.g., a year-long one) will be even much bigger. Most
SBRSs [5, 8, 13, 14, 19, 40, 41, 44] that utilize a large item-ID em-
bedding matrix can suffer from slow training or memory shortage
problems.

The second issue arises due to cold-start items and sparse ses-
sions, i.e., sessions that contain new or unpopular items. SBRSs will
have limited or no ability to generate good representations for such
items since they have no-to-few interactions. Moreover, many exist-
ing models are incapable of scoring and recommending new items
unseen during training [25, 35]. Even combining metadata informa-
tion with item-IDs, i.e., item embeddings, to learn compound item
representation results in only a slight performance improvement
compared to using item-ID only [5, 10, 16, 27, 31, 33, 38]. This can
be attributed to the model overfitting item-ID as the main feature.

To tackle the above issues, we propose M2TRec, a Metadata-
aware Multi-task Transformer model (Figure 1). M2TRec is com-
pletely item-ID free (i.e., no item-ID embeddings) and uses only item
attributes such as title, category, brand, color, and other metadata to
learn item representations. Since M2TRec does not require creating
and learning a large item-ID embedding matrix, it can be easily
applied to large industrial datasets. In addition, new items will still
have accurate representations using their metadata attributes, and
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Figure 1: M2TRec Architecture. (left) M2TRec first encodes metadata of each item in a session into embeddings and feeds the
concatenation of those metadata embeddings to a Transformer encoder. A current session encoding is obtained via average-
pooling of the item encodings from Transformer, and the session encoding is used for next item and next category predictions.
(right) Detailed architecture illustration of a Transformer encoder used in M2TRec.

their similarity with previously-observed items can be captured
even if they have no or few interactions with users, making it
suitable even in highly dynamic deployment settings where the
item catalog changes frequently. Finally, recent research has shown
that multi-task learning (MTL) results in increased performance
and generalizability of the model [6, 7]. Thus, given the focus on
leveraging item metadata, we design M2TRec as a multi-task SBRS
trained not only to predict the next item but also its category and
subcategories to enhance the prediction accuracy of an individual
task.

Via thorough experiments, we demonstrate the superior perfor-
mance of the proposed model on real-world datasets. Our multi-task
training allows faster convergence, higher accuracy with fewer it-
erations, and robust performance with fewer training data (some
experimental results are omitted due to space limits). Our scalable
architecture serves both item and category recommendations in
one model with higher prediction performance than baselines in
both tasks.

2 RELATEDWORK
Neural networks have served as the main architecture of exist-
ing SBRSs. Earlier works [8–10] utilize a recurrent neural net-
work (RNN) to model sequential dependencies of items within
a session. Recently, attention-based approaches [13, 14, 19, 23, 37]
and graph neural network (GNN)-based methods [39–42, 44] have
been proposed to enhance the longer and deeper dependencies for
SBRSs. Furthermore, Transformer [34]-based SBRSs [2, 4, 5, 18]
show the state-of-the-art prediction performance due to its pow-
erful and efficient self-attention mechanism. Multi-task learning
(MTL) [11, 16, 20] has been also adopted for SBRSs to enhance the
next item prediction via generalization. However, the above models
have shortcomings that they (1) are susceptible to cold-start items
or sessions, (2) cannot predict the categories of the next item in a
session, or (3) are not scalable to the real-world billion-scale rec-
ommendation setting since they have to store item-IDs and their
embeddings, which are this paper is solving.

Methodologies are developed to incorporate item metadata into
SBRSs for modeling user/item dependencies [5, 10, 12, 16, 21, 27, 28,

31, 33, 38, 43]. However, the vast majority of such methodologies
have at least one of the following two shortcomings. The first short-
coming is that cold-start items and/or users are removed during the
pre-processing of datasets used for evaluations of proposed mod-
els [5, 12, 21, 28, 43]. Item metadata alone cannot give the model the
ability to recommend such cold-start items [17]. The model needs
to have a separate mechanism for using items’ content informa-
tion and representation to recommend cold-start items. Tagliabue
et al. [30] propose a pipeline to learn accurate cold-start item repre-
sentations with small changes to an existing model infrastructure.
However, a separate neural model needs to be trained to obtain the
cold-start embeddings, which limits the scalability of the solution.
Raziperchikolaei et al. [22] and Zheng et al. [45] suggest hybrid
and metadata-aware recommendation models to predict implicit
feedback for cold-start items of users, respectively. However, those
models are not designed for the session-based recommendation set-
ting. The second shortcoming of such methodologies is that they do
not make use of item titles or descriptions as attribute features for
capturing product similarities [12, 16, 21, 27, 33, 38]. In such cases,
item-IDs are used as inputs to represent different products. Such
representation is unable to incorporate any relevant information
about cold-start items as opposed to using title encodings.

3 METHODOLOGY
Next ItemPrediction:Wedenote a user sessionS = [𝐼1, 𝐼2, 𝐼3, ..., 𝐼𝑛]
as a sequence of items a user interacted within that session. Each
item 𝐼𝑘 = {𝐴𝑘,1, 𝐴𝑘,2, 𝐴𝑘,3, ..., 𝐴𝑘,𝑚} is described by a set of𝑚 at-
tributes which could be context-specific or item-specific. In this
work, we consider item-specific attributes only (e.g., title, descrip-
tion, category). Each attribute𝐴 could be either textual, categorical,
or numerical. In the setting of session-based recommendations, we
are given a session S, and our objective is to maximize the predic-
tion probability of the next item the user is most likely to interact
with given all previous items in S. Formally, the probability of the
target item 𝐼𝑛 can be formulated as:

𝑝 (𝐼𝑛 |S[𝐼<𝑛 ] ;\ ) (1)
where \ denotes the model parameters and S[𝐼<𝑛 ] denotes the

sequence of items prior to the target item 𝐼𝑛 . As in previousworks [9,
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Table 1: Statistics of datasets used in the experiments.
Dataset Diginetica THD
# of training and test sessions 191K, 16K 39M, 1.5M
# of items 119K 575K

Metadata / Attributes Product title, Category

Product title, Categories (L1, L2, L3, Leaf),
Manufacturer, Brand, Department Name,

Class Name, Color
Prediction tasks Item-ID, Category Item-ID, Categories (L1, L2, L3, Leaf)

13, 14, 40], we generate dense next item sub-sequences from each
session S for training and testing. Therefore, a session S with
𝑛 items will be broken down into 𝑛 − 1 sub-sequences such as
{([𝐼1], 𝐼2), ..., ( [𝐼1, 𝐼2, ..., 𝐼𝑛−1], 𝐼𝑛)}, where ([X], Y) means X as the
input sequence of items and Y as the target next item.
Item Metadata Encoding: Item metadata can be numerical, cate-
gorical, or unstructured such as title, description, and image.We pro-
pose a unifiedmethod for representing all item attributes. The objec-
tive is to map every attribute 𝐴 into a real-valued vector 𝑣𝐴 ∈ R𝑑𝐴 .
Numerical attributes 𝑟 are represented as a single-valued vector
𝑣𝑟 ∈ R. Categorical attributes 𝐶 ∈ {𝑐1, 𝑐2, ..., 𝑐𝑠 } are encoded into
vectors 𝑣𝐶 using an embedding layer dedicated to each attribute,
i.e.,

𝑣𝐶 = 𝑐𝑖\
(𝐶) ∈ R𝑑𝐶 (2)

where 𝑐𝑖 is the one-hot encoded value of 𝐶 , \ (𝐶) ∈ R𝑠×𝑑𝐶 are
the weights of the category embedding matrix, 𝑠 is the number of
possible values of 𝐶 , and 𝑑𝐶 is the dimensionality of 𝐶’s vector.

Textual attributes𝑇 are first tokenized using a subword tokenizer
[26] to obtain individual tokens [w1,w2, ...,w𝑡 ] and then encoded
into vectors 𝑣𝑇 . A simple and efficient encoding strategy is to create
a dedicated embedding layer for 𝑇 to map each token w into a
vector and then aggregate the token vectors using mean or max
pooling, i.e.,

𝑣𝑇 = Pool𝑡𝑖=1 (𝑤𝑖\
(𝑇 ) ) ∈ R𝑑𝑇 (3)

where𝑤𝑖 is the one-hot encoded value of token w𝑖 , \ (𝑇 ) ∈ R𝑘×𝑑𝑇
are the weights of the token embedding matrix, 𝑘 is vocabulary size
of 𝑇 , and 𝑑𝑇 is the dimensionality of 𝑇 ’s vector. Further enhance-
ments to textual attributes encoding can be achieved by sharing
the encoding parameters across all textual attributes that have
similar vocabularies such as item title, description, category, color,
etc. Although the weight-sharing scheme is expected to reduce the
training time, it may increase the overall model size. This is because
the vector size would be the same for all the attributes that share
the same encoder regardless of their vocabulary size. This will lead
to high memory and storage requirements when deploying the
model in production. Alternatively, in this work, we use a separate
embedding layer for each textual attribute as in Eq. (3) and choose
its vector size proportional to the attribute’s vocabulary size.
Session Encoding: After encoding all metadata features for an
item 𝐼𝑘 at position 𝑘 in the input session 𝑆 , we concatenate all the
feature vectors to create a compound vector representation 𝑣𝐼𝑘 for
𝐼𝑘 , i.e.,

𝑣𝐼𝑘 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑣𝐴1
, 𝑣𝐴2

, ..., 𝑣𝐴𝑚
) ∈ R𝑑𝐼 (4)

where 𝑑𝐼 is the summation of the lengths of all feature vectors. Note
that item-IDs are not used to create the compound representation
𝑣𝐼𝑘 in Equation (4). We then use the compound representations of
items in 𝑆 as input to the session encoder in a pre-fusion fashion
to learn a session encoding 𝑣𝑆 . First, Transformer encoder [34]
generates contextual encodings for each session item 𝑣𝐼𝑘 , followed

by an average-pooling layer to generate the session encoding 𝑣𝑆 ,
i.e.,

𝑣𝑆 = Pool𝑛−1
𝑘=1 (Trans-Enc(𝑣𝐼𝑘 ;\

(𝑒𝑛𝑐𝑆 ) )) ∈ R𝑑𝑆 (5)

where \ (𝑒𝑛𝑐𝑆 ) is the model parameters of the Transformer encoder
trained with sessions 𝑆 .
Multi-task Learning: M2TRec incorporates multi-task learning
(MTL) to boost the performance of next item prediction. MTL has
proven to be an effective mechanism to reduce the risk of over-
fitting, learn more generalized shared representations for all the
tasks, and improve the overall performance on each task by sharing
the knowledge acquired from other related tasks [24]. The target
space of next item prediction (i.e., all item-IDs) is much larger than
the space of other item attributes such as all categories or brands.
Therefore, the task of next item category or brand prediction should
be easier to learn than next item prediction. Moreover, learning
such auxiliary tasks would benefit the task of next item predic-
tion since it biases the metadata encoding and the Transformer
encoder layers to learn representations that are close not only to
next item, but also to other similar items belonging to the same
category or brand, thus, narrowing down the space of possible next
item candidates to a much smaller set of items. To this end, we
train M2TRec to predict next item attributes (e.g., item categories)
as auxiliary tasks to the task of next item-ID prediction. For each
task, including next item-ID prediction, we create a prediction head
composed of Fully Connected Layer (FCN) followed by Softmax
function to generate the probability distribution over all candidates
for the corresponding task, i.e.,

𝑦𝑘 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (FCN𝑘 (𝑣𝑆 ;\ (𝑘) )) ∈ R𝑑𝑘 (6)

where \ (𝑘) is the parameters of the FCN for the 𝑘th task, and 𝑑𝑘
is the total number of possible outputs of the 𝑘th task (e.g., total
number of categories for category predictions).

The loss of the 𝑘th task prediction head and overall prediction
of M2TRec are calculated using cross-entropy loss as follows, re-
spectively:

L𝑘 = −
dk∑︁
𝑖=1

𝑦𝑘𝑖 · log 𝑦𝑘𝑖 , L =

N∑︁
𝑘=1

L𝑘 (7)

where 𝑦𝑘 is a one-hot encoding including the ground-truth infor-
mation for the 𝑘th task.

4 EXPERIMENTS
Datasets:We conducted our experiments on two real-world datasets.
We exclude all sessions with only one item. Table 1 shows dataset
statistics along with the item metadata we used and the prediction
tasks for each dataset.
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Table 2: The performance of M2TRec on next item prediction task on all sessions (All) and sessions with tail items (Sparse)
compared to other baseline methods. Tail items indicate items with less than 10 occurrences in a dataset. (Bold indicates the
best model, while the second-best model is underlined).

Dataset Diginetica THD

Method HIT@20 Recall@20 MRR@20 HIT@20 Recall@20 MRR@20
All Sparse All Sparse All Sparse All Sparse All Sparse All Sparse

STAMP 25.45 16.05 41.61 28.89 7.17 4.44 31.91 14.65 38.49 18.90 14.88 6.46
GRU4Rec 29.09 22.33 45.45 36.14 8.51 6.45 32.27 16.81 37.64 20.28 14.97 7.93
NARM 30.49 21.78 47.60 36.90 8.13 5.55 28.98 11.31 35.45 15.59 11.63 3.97
M2TRec 35.47 25.51 53.70 41.01 9.75 6.63 34.78 19.05 41.51 24.86 15.65 7.38
Improvement 16.33% 14.2% 12.82% 11.1% 14.57% 2.79% 7.78% 13.3% 7.85% 22.6% 4.54% -6.94%

• Diginetica 1 is an E-commerce dataset that was a part of
CIKM Cup 2016 challenge. We use the transactional and
product data and use pre-processing similar to [40].

• THD is an E-commerce dataset obtained from The Home
Depot, the largest home improvement retailer in the USA.
The dataset is composed of Add-to-Cart (ATC) events within
millions of online sessions. Similar to SIGIR 2021 data chal-
lenge dataset[29], training data is created by sampling sev-
eral months of online purchase sessions. Test data is sampled
from a disjoint and adjacent time period. The dataset has
rich product metadata including 7 attributes: product title,
categories (L1, L2, L3, Leaf), brand, manufacturer, color, de-
partment, and class name.

Baselines:We select the following 3 state-of-the-art SBRSs to com-
pare them with M2TRec: (1) GRU4Rec [9]: A popular and first-
generation SBRS that utilizes a Gated Recurrent Unit (GRU) [3] to
model long-term dependencies within a session, (2) NARM [13]:
An attention-based SBRS that employs a hybrid encoder to reflect a
user’s global and local interests with an attention mechanism, and
(3) STAMP [14]: An attention/memory-based SBRS that incorpo-
rates a user’s short-term and long-term interests via a short-term
attention and long-term memory modules, respectively.
EvaluationMetrics:We use HIT@K, Recall@K, andMRR@K [36]
to evaluate the performance of M2TRec. All the metrics range from
0 to 1, and higher values are better. We choose 𝐾 = 20 since it is a
standard value [15].
Implementations: We used open-source implementations for all
baseline methods2. With M2Trec, we encode all the attributes as
textual. We use a dedicated embedding layer for each attribute
followed by average pooling of individual tokens’ vectors. The
embedding dimension is set proportionally to the total number of
distinct tokens of the corresponding attribute vocabulary. For the
Transformer encoder, we used 2 encoder layers with 8 attention
heads in each layer and point-wise feed-forward networks consist-
ing of two fully-connected layers [2048, 128] with a ReLU activation
[1] in between. We fine-tuned all the hyperparameters of M2TRec
on a validation dataset sampled randomly from THD data.
Next item prediction task on all sessions: The performance of
all the models on all sessions of the two datasets is shown in Table
2. As we can notice, M2TRec outperforms all the baselines across
all the evaluation metrics. On Diginetica, the relative performance
improvements of HIT@20, Recall@20, and MRR@20 are in the

1https://competitions.codalab.org/competitions/11161
2https://github.com/rn5l/session-rec

range of 13% ∼ 16%. On THD dataset, the relative performance
improvements are in the range of 5% ∼ 8%. As in [27], we compute
the relative performance improvement of a metric as the difference
in the performance of M2TRec and the second runner over the
performance of the second runner on that metric reported in per-
centage. These improvements indicate the effectiveness of utilizing
item metadata and the multi-task learning regime which are unique
to M2TRec, compared to other baselines which use only item-ID as
the main and only input for session-based recommendations.
Next item prediction task on sparse sessions: Table 2 high-
lights the performance of all the models on sparse sessions contain-
ing cold-start or tail items in the two datasets. Tail items indicate
items with less than 10 occurrences in a dataset. These sessions
represent 34% and 12% of the total sessions in Diginetica and THD
datasets respectively. As we can notice, M2TRec relative improve-
ments on sparse sessions are much higher than all the other models,
especially on HIT@20 and Recall@20 for both datasets (e.g., 11% ∼
23% boost on both datasets). These results demonstrate the effec-
tiveness of our proposed item-ID free approach on sparse sessions
and its robustness in mapping tail and cold-start items within these
sessions into meaningful representations based on their metadata.
Predicting next item’s category: One of the main objectives of
this research is to develop a scalable architecture that serves both
item and category recommendations in one model using an effi-
cient MTL regime. We found significant performance gains when
jointly training our model to predict next item and its categories
at different levels of the catalog taxonomy (see ablation study be-
low). We demonstrate the efficacy of training our SBRS to predict
next category over deriving it from session items by comparing the
category prediction performance against two heuristics: (1) Per-
sonalized top-N Frequent: This simple heuristic uses past session
items’ categories and recommends the most frequent ones, and (2)
Top-N Predicted: This simple strategy works by first predicting
top-N next items from a metadata-aware single task model called
MeTRec (see ablation study below), and then uses their categories
as recommendations such that the category of the top-ranked next
item will be ranked first and so on.

Figure 2 shows the performance of category recommendation
using M2TRec against the two heuristics. Performance is measured
in terms of HIT@20 and reported for L1, L2, L3, and leaf categories
of THD dataset. As we can notice, the performance of M2TRec is
significantly better than the two other strategies across all tasks.
For example, on leaf category prediction, the performance gains are
in the range of 3%∼45%. These results demonstrate that M2TRec
can effectively perform next category prediction tasks.
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Figure 2: M2TRec Performance on Category Recommendation

Table 3: The performance ofM2TRec on all sessions (All) and sessionswith tail items (Sparse) compared to variants ofM2TRec.
Dataset Diginetica THD

Method HIT@20 Recall@20 MRR@20 HIT@20 Recall@20 MRR@20 Model
SizeAll Sparse All Sparse All Sparse All Sparse All Sparse All Sparse

TRec𝑖𝑑 30.24 16.93 46.96 29.45 8.55 4.35 32.90 11.58 39.40 15.22 15.31 4.90 110.3M
MuTRec𝑖𝑑 32.69 21.10 50.13 35.18 9.50 5.71 33.73 13.93 40.35 17.92 15.43 5.90 111.1M
TRec𝑡𝑖𝑡𝑙𝑒 32.17 20.41 49.40 34.64 8.70 5.22 32.29 16.48 38.64 21.19 14.25 6.32 56.1M
MeTRec 34.78 24.99 52.50 40.43 9.33 6.22 33.54 17.10 40.04 21.97 15.17 6.42 86.5M
M2TRec 35.47 25.51 53.70 41.01 9.75 6.63 34.78 19.05 41.51 24.86 15.65 7.38 89.5M

Ablation Study of M2TRec: To investigate the contribution of
each component of M2TRec, we developed the following variants:
(1) TRec𝑡𝑖𝑡𝑙𝑒 : A variant of M2TRec which uses item title as the only
input feature without any additional meta-data. It leverages the
same architecture in Figure 1, but has one prediction head only to
predict next item-ID, (2)MeTRec: Metadata-aware variant which
utilizes all metadata as input features. This variant also has one
prediction head to predict next item-ID, (3) TRec𝑖𝑑 : A variant of
M2TRec which uses item-IDs as the only input feature without any
additional meta-data attributes. It leverages the same architecture
in Figure 1 but has only one prediction head to predict next item-
ID, and (4) MuTRec𝑖𝑑 : Multi-task variant of TRec𝑖𝑑 . The model is
trained on the same tasks as M2TRec, but uses only item-IDs as the
input features (i.e., it does not use other metadata features).

The performance of M2TRec and its variants on all and sparse
sessions is shown in Table 3, where model size indicates the num-
ber of model parameters. M2TRec outperforms all other variants
significantly, especially on sparse sessions where the performance
gains on Diginetica dataset are in the range of 1%∼9% in terms
of HIT@20 and 1%∼12% in terms of Recall@20. On THD dataset,
performance gains are in the range of 2%∼7% and 3%∼10% in terms
of HIT@20 and Recall@20 respectively. As we include all metadata
in MeTRec, the performance on sparse sessions outpaces all other
variants. Moreover, the performance on all sessions improves signif-
icantly and outpaces TRec𝑖𝑑 and its multi-task version (MuTRec𝑖𝑑 )
on Diginetica, while it is on par with MuTRec𝑖𝑑 on THD dataset.
This demonstrates the usefulness of metadata-awareness and its
sufficiency in providing competitive performance to classical item-
ID based SBRSs. As we can notice, M2Trec and MeTRec are about
19%-22% less in size than the item-ID based variants. Besides, all
the metadata-aware variants are more scalable to the increase in
item catalog size compared to the item-ID based variants.

5 CONCLUSION
This work provides a scalable and practical solution for leveraging
metadata to learn from cold-start items in the recommendation
process. The key is using an item-ID free approach for recommen-
dations. By using a metadata-based representation of items, the
M2TRec model learns the representation for items with zero or few
interactions. Through experiments on two datasets, we show that
M2TRec outperforms several state-of-the-art session-based recom-
mendation models. Multi-task learning contributes to the model’s
predictive performance. Importantly, M2TRec’s core ideas help in
generating fast and accurate recommendations for cold start-items,
sessions with tail items, and for the task of category prediction.
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