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We present QUANTAS: a simulator that enables quantitative performance analysis of distributed algorithms. It has a number of
attractive features. QUANTAS is an abstract simulator, therefore, the obtained results are not affected by the specifics of a particular
network or operating system architecture. QUANTAS allows distributed algorithms researchers to quickly investigate a potential
solution and collect data about its performance. QUANTAS programming is relatively straightforward and is accessible to theoretical
researchers. To demonstrate QUANTAS capabilities, we implement and compare the behavior of two representative examples from four
major classes of distributed algorithms: blockchains, distributed hash tables, consensus, and reliable data link message transmission.

1 INTRODUCTION

Theoretical work in distributed algorithms often involves establishing a possibility of solution existence, proving an
algorithm correct or determining its message or computation complexity. If the new algorithm improves on the existing
ones, this improvement is quantified in terms of these complexity metrics. These approaches may be lacking as they
do not provide sufficient insight into the realistic behavior of the algorithm. Indeed, hidden constants and system
parameters, such as message delay or relative computation power, influence the performance of most algorithms.

Alternatively, the algorithm is implemented in a real distributed architecture such as a computer cluster, a collection
of virtual machines, a cloud computing service [13], or using a general purpose network simulator such as ns-3 [25]
or OMNET++ [28]. Although such efforts demonstrate practical algorithm implementation and enable its immediate
application, the obtained results make it difficult to separate the operation of the algorithm from the influence of
the particular network and operating system used in performance evaluation. For example, it is unclear how the
interaction between virtual machines and network switches at the server farm affects the results obtained in real
network performance evaluation or whether the selection of a particular physical layer network protocol made a
difference in a network simulator.

Another obstacle for these approaches is difficulty of performing large-scale performance evaluation. Large scale
physical systems are expensive to procure for experimentation. Moreover, in a physical system, there is difficulty
instrumenting and then ascertaining conditions of interest for experimenter such as specific network delay. Network
simulators, due to extensive simulation detail, also have limited scalability.

To demonstrate the behavior of a distributed algorithm and compare it with the alternatives, abstract simulation may
be used. Abstract simulation closely follows the communication and computation model used in distributed algorithms
research. The algorithm is represented as a collection of processes and communication channels or shared variables. The
computation is modeled as series of simulation rounds where processes perform concurrent processing and exchange
messages. Such modelling of algorithms make abstract simulation attractive to distributed algorithms researchers.

However, we believe there is a lack of general purpose tools for such abstract simulation. Most papers use ad hoc
one-off implementations built for one paper [3, 7, 12, 16] or, at best, a domain specific abstract simulation that is reused
for a limited number of papers [4, 5, 22]. This duplicates effort and makes it difficult to verify obtained results, compare
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them across several publications, or make further improvements. The simulation code and obtained data are seldom
made publicly available which further exacerbates the problem.

The existing general purpose abstract simulators, that we are aware of, tend to be used for education rather than
research. However, we think that the focus of an educational simulator differs from that of a research simulator. Indeed,
the major concern of an educational simulator is to give novices an exposure to the distributed algorithm operation, and
a visual representation of the algorithm as it executes [2, 10, 19]. Therefore, simplicity and ease of use are of primary
importance. While simplicity certainly does not harm a distributed algorithm simulator, other important characteristics
such as scalability, simulation speed, versatility, and ability to obtain quantitative measures for metrics of interest
come to the fore. The closest simulation framework we could find is Neko [27], however the project seems no longer
maintained and its source code no longer available.

In this paper, we present QUANTAS: an abstract simulator specifically designed for distributed algorithms research.
Our primary research area is distributed algorithms. The development of QUANTAS arose out of our own need to do
performance evaluation. We, therefore, built QUANTAS to satisfy the needs of researchers similar to our own. We used
QUANTAS prototype in several studies [16, 24]. The QUANTAS software is publicly available [1] for other researchers
to download and use.

2 SIMULATOR DESIGN PRINCIPLES, ARCHITECTURE AND SETUP

Design principles.

• The foremost principle is simplicity, ease of use, and ability to obtain quantitative results quickly. That is, a
newcomer should be able to implement algorithms, and get simulation data in a relatively straightforward
manner. Quantas interfaces remain basic for ease of integration with analysis or input generation tools. The
simulator core is coded in C++. No further compilers, libraries, or specialized languages for distributed algorithm
specification are used. In our experience, the benefits of such constructs are limited: what is gained it simplicity
is lost in flexibility and speed. Parameter customization and experiment set up is done through simple text-based
configuration files.

• As a starting point and demonstration of the simulator capabilities, we provide a set of representative examples.
We think these examples will be used with minor modifications by a majority of QUANTAS users for their own
research experimentation.

• Once the basic behavior of a distributed algorithm is ascertained, the researchers usually want to observe its
behavior at scale: large system size, extensive simulated time or resource usage. To support this, we implemented
QUANTAS in C++ with minimum overhead. C++ threading is used to implement concurrent simulation of
multiple procsses. Potentially, the simulated network size is limited by the host computer processor and memory
resources.

• The major simulation goal is to obtain data for analysis and presentation. QUANTAS is configured to output
simulation data in JSON format for ease of further processing. One can then use various available interactive or
automated tools to analyze and plot the data.

• QUANTAS combines all these features in a relatively compact, modular codebase which is easily extensible and
modifiable. QUANTAS contains approximately 4, 000 lines of C++ code.

Terms and operation. A simulated distributed algorithm operates on a list of nodes connected via unicast channels.
Each channel connects a single sender and a single receiver. Every node has a unique identifier. Each computation of
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Node Network Interface
channel head/tail, message sending and 
delivery, implementing message delay, 
handles sending and receiving of packets 
(messages) between nodes.

Abstract Node
node computation (command) interface  

Packet
packet header: source, destination, packet 
delay

 

Concrete Node
algorithms-specific commands and variables, 
libraries

User-Defined Message
message payload 

Network
determines network topology: connects 
nodes and channels, sets up channel delays 

Simulation
configures simulation, sets up logs, initializes 
network topology and state, runs simulation

 

Configuration
processing config files: topology, delay, size, 
simulation length, etc. 

«user-provided»

Fig. 1. QUANTAS architecture.

the distributed algorithm is a sequence of receive-compute-send rounds. Each round has three phases: receive messages,
perform local computation, and send newly formed messages. A computation length is its number of rounds. A message
takes at least one round to pass between nodes that are directly connected through a channel. A message can be delayed.
Delay length is configured. The delay is also configured to be either deterministic, uniformly random, or following a
Poisson distribution. Communication channels are FIFO by default. Other message propagation delay disciplines may be
added by the user. A transmitted message may be configured to be lost with a certain probability. A message may be sent
to an individual process or broadcast to the entire network. A single run of the QUANTAS simulator executes several
algorithm computations with the same parameters. This allows QUANTAS to execute multiple individual experiments
for a single data point.

Architecture. QUANTAS architecture is shown in Figure 1. The components represent the larger C++ templates and
classes. The components are in two categories: user-provided and the simulator proper. The user-provided components
encode the algorithm to be simulated. The simulator proper components carry out the simulation. The run-time
operation of the simulator is controlled by configuration files.

The Simulation Component configures and initializes the simulation run. It then carries out the receive-compute-
send computation rounds of individual computations of the run. The Simulation Component uses the Configuration
Component for processing user-supplied configuration file containing network topology and size, parameters of the run,
message delay discipline and parameters, computation length, etc. The network topology is specified as adjacency list
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struct HelloMessage {

std:: string messageText;

};

...

void performComputation () {

HelloMessage msg;

msg.messageText = "Hello From " + std:: to_string(id()); // send "hello" to all processes

broadcast(msg);

// service all received messages

while (! inStreamEmpty ()) {

Packet <HelloMessage > newMsg = popInStream ();

// logger is a Singleton , "Greetings" is a tag

// getRound () returns simulated computation round

LogWriter :: instance()->

data["Greetings"]. push_back(newMsg.getMessage (). messageText + "at round: " + getRound ())

}

}

Fig. 2. Example QUANTAS code for a local computation phase: each process broadcasts a single message and receives messages from
its neighbors.

and can be generated by hand or by a separate tool. This component maintains a thread pool to concurrently execute
rounds of multiple simulated processes.

The Network Component configures distributed algorithm topology, sets up communication channels and executes
receive- compute- and send- phases of the round. The Abstract Node Component is a C++ abstract class that lists the
interfaces to be implemented by a user-provided Concrete Node component. The main part of this interface is the code
to be executed in local computation phase of the round.

The Node Network Interface Component executes receive and send phases of the round. In the receive phase, The Node
Network Interface Component examines all the channels, and determines if any of the messages currently in transit are
ready to be received. The ready-to-receive messages are made available for the computation phase. If the computation
phase generates messages to be transmitted, the Node Network Interface Component collects them and puts them in the
appropriate destination channels.

A message is enclosed in a packet. The packet contains the source, destination, and the delay for this particular
message. The Packet Component provides this header and the Node Network Interface Component uses this header for
message routing. The actual message format and its payload are provided by the User-Defined Message Component.

Let us discuss QUANTAS data output capabilities. QUANTAS provides a global logging facility, so that each component
may output to the log file. All simulator components may output data about their particular operation. For example,
the Node Network Interface Component may output sender and receiver identifiers for each individual message. The
user-provided components may output arbitrary data, which enables user-specific metrics to be easily implemented.
User-provided components have access to the computation round number maintained by the simulator. This round
number can be included in the output for analysis. To simplify later processing, logger allows attach an arbitrary tag to
output lines. QUANTAS example code is shown in Figure 2.
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Fig. 3. Blockchain throughput during a computation.

3 EXAMPLES

In this section, we demonstrate how QUANTAS may be adapted to fit diverse experimentation needs of distributed
algorithms researchers. We chose four domains and a pair of previously published well-known algorithms in each. We
then implemented the algorithms in QUANTAS and compared their performance. While the results themselves are not
surprising, they demonstrate how QUANTAS may be used for performance evaluation of a variety of algorithms.

Blockchains. Blockchain is a secure distributed ledger maintained by a network of peers that compete to add blocks of
transactions to the tail of the chain. We simulate simplified versions of the two most widely used blockchain algorithms:
Bitcoin [23] and Ethereum [29]. The peer-to-peer system has 20 peers. Each peer maintains its own copy of the
blockchain. A transaction is submitted to a random peer with probability 5% per peer per round, i.e. on average, it is
one transaction per round. The peer receiving the transaction broadcasts it to the rest of the network. In Bitcoin, each
peer mines one of the received transactions attempting to link it to the longest chain. The mining probability for each
peer is 2.5%. In Ethereum, each block links to all previously unlinked blocks. The single computation was executed for
100 rounds. Each simulator run had 10 experiments.

The results are shown in Figure 3. We estimate the number of confirmed blocks by considering the longest chain for
each peer and determining the shortest among those. For each blockchain algorithm, we executed a computation for
100 rounds and calculated the average number of blocks per round. Figure 3 shows a moving average of this value with
a window of 5 rounds. The results shown for message delays 1 through 10. The results indicate that our implementation
of Ethereum has better throughput than Bitcoin since Ethereum, unlike Bitcoin, may confirm multiple competing blocks
concurrently.

Robust Consensus. In robust consensus, a network of nodes attempts to agree on a single input value. We simulated
two resilient consensus algorithms: PBFT [11] and Raft [17]. Both algorithms process a sequence of consensus requests.
PBFT is resilient to Byzantine faults [20]. In our implementation of PBFT, there is a fixed leader process 𝑙 . The leader
𝑙 has a sequence of values to commit. For the confirmation, 𝑙 consults the rest of the processes. For each individual
value, 𝑙 executes PBFT. Specifically, 𝑙 broadcasts pre-prepare message to all processes with the value to be committed.
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Fig. 4. Consensus. Latency of achieving a single decision vs mes-
sage delay.

Fig. 5. Reliable Data Link. Message utility depending on message
loss.

Once a processes receive sufficiently many prepare messages with the same value, it commits the value and sends
commit message informing everyone of this. After receiving sufficiently many commits, 𝑙 considers this PBFT instance
terminated and moves on to committing the next value. The leader change is not implemented.

Raft [17] is resilient to crashes and churn but not to Byzantine faults. In Raft, the leader 𝑙 broadcasts requests to all
nodes in the system and waits for majority of responses. After receiving this majority, 𝑙 moves to the next value to be
committed.

The commitment latency is the number of rounds it takes the algorithm from the moment the initial message is
transmitted by the leader until the last required commit message is received by the leader. We used 20 processes, we
executed a computation for 1, 000 rounds. Each simulator run had 10 computations. We average commitment latency
across the run. We varied message delay and recorded the latency of RAFT and PBFT. The results are shown in Figure 4.
RAFT has significantly lower commitment latency than PBFT as there are fewer rounds of message exchanges. This
speed is obtained at the expense of resiliency to Byzantine faults.

Reliable Data Link. In a data link algorithm, the sender process attempts to transmit data to the receiver process
despite message loss in the communication channel. A self-stabilizing algorithm [14] is resilient to global state corruption.
We implemented two self-stabilizing data link algorithms: alternating-bit protocol (ABP) [18] and stabilizing-data link
algorithm (SDL) [15]. ABP requires FIFO channels. SDL operates correctly even in non-FIFO channels. In ABP, the
sender transmits a single data message and waits for acknowledgement from the receiver. If either the data message or
the acknowledgement is lost, the sender times out and retransmits the message. In SDL, to enable the receiver to get
messages in correct order in a non-FIFO channel, the sender transmits the same message multiple times. The number of
transmissions is determined by maximum channel size.

To compare the two algorithms, we used channels of size one. For SDL, this channel size means that the sender
sends the same message 5 times. In our simulation, we used 2 processes: the sender and the receiver. We executed
the computation for 100 rounds. Each simulator run was 10 computations. We computed message utility — the ratio
of successfully received message over transmitted. We varied message loss rate and recorded the utility of the two
algorithms.
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Fig. 6. Distributed Hash Table query speed. Fig. 7. Distributed Hash Table simulation speedup.

The results are shown in Figure 5. In our simulation, as message loss increased, both algorithms had to submit more
messages to get the data across. This means that the utility decreased for both algorithms. However, SDL effectively
submitted about five times as many messages as ABP. This is the overhead needed by the SDL to enforce sequential
message delivery in a non-FIFO channel.

Distributed Hash Tables. In a distributed hash table (DHT), a peer-to-peer system provides query service for key to
data items spread throughout the network. The algorithm is optimized to minimize the number of lookups per query.
Some of the most widely used DHTs are Chord [26] and Kademlia [21].

In our Chord implementation, the peer identifiers form a ring. Shortcut links are not implemented. A query for an
identifier chosen uniformly at random is generated by another random node. The query is routed to the destination
node in the shortest direction.

In Kademlia, on top of this basic Chord implementation, we also build shortcut links as follows. Peer identifiers
are treated as bit fields. A prefix peer group for a particular peer 𝑝 is a set of peers whose identifiers share a prefix of
particular length 𝑙 with 𝑝 and differ from 𝑝 at length 𝑙 + 1. For example, if the prefix is one bit less than the complete id
length, then, there is a single member in this peer group. A peer group for a prefix that is two bits shorter than id length,
contains two members. A peer group three bit shorter than id length contains 4 members and so on. For each group,
a peer selects a random member and creates a shortcut link to it. The query routing is as follows. The peer selects a
member with the closest prefix to the destination and routes the query there.

The results are shown in Figure 6. The results indicate that our implementation of Kademlia outperforms Chord
because Kademlia query routes are logarithmic with respect to the network size.

To test QUANTAS parallel performance, we varied the number of threads in the simulator thread pool and measured
the runtime of the simulation. We simulated 500 peers. Each computation was 100 rounds. We run 10 computations
per data point. The simulator used approximately 40 GB of RAM and ran on a virtual machine with a host machine
having 2 Intel Xeon Gold 6132 CPUs running at 2.60 GHz. The virtual machine had 12 cores. The results are shown in
Figure 7. The results indicate that the simulation speed increases as more threads are added to the simulator thread
pool. This speed increase ends as all available host processor cores are used for the concurrent simulation.
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4 FUTUREWORK

We anticipate further enhancements of QUANTAS capabilities. Besides already implemented message loss, we would
like to add more sophisticated fault injection. In particular, we plan to add support for self-stabilizing algorithms
evaluation. Even though a self-stabilizing algorithm is proven to recover from an arbitrary global state, evaluating the
algorithm’s performance starting from a state generated uniformly at random is not realistic as not all such states are
equally likely to appear. A more sophisticated approach was developed by Adamek et al [6]: an achievable state of a
self-stabilizing algorithm is selectively perturbed. We would like to implement this kind of fault-injection in QUANTAS.
Adding crash faults would be a simple and useful addition. A more challenging task is adding Byzantine faults since
Byzantine processes are expected to behave so as to inflict the most damage to the algorithm. Hence, despite extensive
studies of Byzantine fault tolerance, few of them have performance evaluation. We believe adding Byzantine fault
injection [8] would be helpful to the research community.

We would like to add random topology generation that QUANTAS so that the processes and channels are configured
randomly according to the topology graph parameters provided in the configuration file, for example a random graph
with the specified node number and edge probability. Another feature we find useful is facilitation of application level
separation. This would allow the simulator to evaluate levels of multi-level algorithms separately, for example, evaluate
the same consensus algorithm over different broadcast algorithms.

Another important issue is scalability increase, be it related to the number of simulated nodes [9] or the number
of simulations per data point to obtain quantitative results. To improve the performance of QUANTAS at scale, we
plan to pursue multithreading inside the simulator more aggressively. For example, by using parallel algorithms in the
Standard Template Library of C++. In the future, we would like to explore distributed multi-computer simulation.

In this paper, we presented QUANTAS, a general abstract simulator dedicated to distributed algorithms quantitative
evaluation. While we provided a number of case studies, we welcome contributions from the Distributed Computing
community, to build a library of ready-to-use templates for most algorithmic paradigms, that enables fair comparison
with previous work when designing new solutions. We believe that QUANTAS fulfils the need for an abstract simulator
among researchers of distributed algorithms and we hope it proves to be useful and convenient.
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