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Today’s systems rely on sending all the data to the cloud and then using complex algorithms, such as Deep
Neural Networks, which require billions of parameters and many hours to train a model. In contrast, the
human brain can do much of this learning effortlessly. Hyperdimensional (HD) Computing aims to mimic the
behavior of the human brain by utilizing high-dimensional representations. This leads to various desirable
properties that other Machine Learning (ML) algorithms lack, such as robustness to noise in the system and
simple, highly parallel operations. In this article, we propose HyDREA, a HyperDimensional Computing sys-
tem that is Robust, Efficient, and Accurate. We propose a Processing-in-Memory (PIM) architecture that works
in a federated learning environment with challenging communication scenarios that cause errors in the trans-
mitted data. HyDREA adaptively changes the bitwidth of the model based on the signal-to-noise ratio (SNR)
of the incoming sample to maintain the accuracy of the HD model while achieving significant speedup and
energy efficiency. Our PIM architecture is able to achieve a speedup of 28× and 255× better energy efficiency
compared to the baseline PIM architecture for Classification and achieves 32× speed up and 289× higher
energy efficiency than the baseline architecture for Clustering. HyDREA is able to achieve this by relaxing
hardware parameters to gain energy efficiency and speedup while introducing computational errors. We show
experimentally, HD Computing is able to handle the errors without a significant drop in accuracy due to its
unique robustness property. For wireless noise, we found that HyDREA is 48×more robust to noise than other
comparable ML algorithms. Our results indicate that our proposed system loses less than 1% Classification
accuracy, even in scenarios with an SNR of 6.64. We additionally test the robustness of using HD Computing
for Clustering applications and found that our proposed system also looses less than 1% in the mutual infor-
mation score, even in scenarios with an SNR under 7 dB, which is 57× more robust to noise than K-means.
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1 INTRODUCTION

“Federated learning” [1] is a popular model for distributed model training in which a centralized
model stored on a server is “cloned” to some set of devices that all collect the same features. Each
device then updates its local copy of the model and periodically transmits weights to the server,
which are used to update the global model via an averaging operation. Intuitively, federated learn-
ing reduces communication costs by transmitting only model weights instead of raw training data.

In “Federated learning,” Hyperdimensional (HD) computing offers three benefits [2]. First, an
HD “model” is simply a collection of bitvectors, which may be less burdensome for communica-
tion than other state-of-the-art methods (especially deep neural networks) where the weights are
typically floating point values and are non-negligible in size [3, 4]. While a line of deep neural
networks research tries to reduce the parameters of these models [5], the number of parameters
are still higher than HD. Second, local training of the HD model is extremely simple and more
energy efficient than many existing ML techniques [6]. Third, transmitting faulty model weights
in classical ML algorithms may lead to slower training or convergence to a worse local optimum
compared to HD.

The third point is particularly helpful for “Federated learning.” Transmitting model parameters
to the central learning system is done mostly through wireless communication. The noise in a
wireless channel can incur bit-level errors in the transmitted signal and without error correction,
could lead to faulty models due to the noisy data. This is especially true in urban areas where
distance is not the only factor adding noise to the wireless channel but also large buildings and
multiple obstacles in the way that degrade the wireless signal.

We additionally take advantage of the simple and highly parallelizable operations in HD to
create an analog PIM accelerator with adaptable model bitwidths to achieve the best energy and
execution time, while maintaining high accuracy based on the SNR of the wireless channel. This
characteristic has made HD the target of various hardware acceleration frameworks, particularly
FPGAs [7], and PIM architectures [6, 8, 9]. Although GPUs and FPGAs provide a suitable degree
of parallelism that makes them amenable to machine learning algorithms such as deep neural net-
work [10], the complexity of their resources, e.g., floating point units or DSP blocks, is far beyond
the HD requirements, making such devices inefficient for HD. Analog PIM architectures tackle this
problem as they comprise memresistive arrays with intrinsically non-complex computational ca-
pability, which is sufficient for HD operations. Besides block-level parallelism, another remarkable
feature of PIM is eliminating the high cost data movement in the traditional von Neumann archi-
tectures as, in PIM, data resides where computation is performed. Adding a PIM accelerator for
HD computing to perform cognitive tasks provides significant speed up over utilizing the on-board
CPU and saves energy with analog computations and less data movement. Our contributions in
this article are as follows:

• We propose a PIM architecture that adaptively changes the bitwidth of the model based
on the SNR of the incoming sample to maintain the accuracy of the HD model while
achieving high speedup and energy efficiency. Our PIM architecture is able to achieve 255×
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Fig. 1. Overview of HD model training and inference.

better energy efficiency and speed up execution time by 28× compared to the baseline PIM
architecture.
• We take advantage of HD Computing’s robustness to errors and relax the precision of ADCs

in ISAAC [11], which introduces errors, but improves area and energy efficiency. Our archi-
tecture also utilizes quantized values to different bitwidths.
• We additionally evaluate utilizing our accelerator in a federated learning environment, by

utilizing a popular network simulator—ns-3 [12]—to model the communication between de-
vices and simulate wireless noise. We compared HyDREA with other light-weight ML algo-
rithms in the same noisy environment. Our results demonstrate that HyDREA is 48× more
robust to noise than other comparable ML algorithms. Our results indicate that our proposed
system loses less than 1% Classification accuracy, even in scenarios with an SNR under 7 dB.
• We additionally evaluate HD Clustering to the same wireless communication errors and

found that our proposed system also looses less than 1% in the mutual information score,
even in scenarios with an SNR under 7 dB, which is 57×more robust to noise than K-means.
• Finally, we extend our architecture to support HD Clustering and our results show that our

PIM architecture achieves 289× higher energy efficiency and 32× speed up compared to the
baseline architecture during Clustering.

2 PRELIMINARY

In this section, we first explain the procedures involved in HD algorithm and then review the
related work on HD acceleration and HD robustness to noise.

2.1 Hyperdimensional Computing Classification

Without loss of generality, we explain the steps of HD computing for Classification tasks, though
other algorithms, e.g., Clustering, follow the same procedure, as well. These steps are illustrated
by Figure 1.

(1) Encoding: There are multiple different types of encoding for HD Computing [13–15]. In
this article, we evaluate two different types. The first is Random Projection and the second is ID-
Level. Let us assume a feature vector F = { f1, f2, . . . , fn }, with n features (fi ∈ N) in original
domain. The goal of the encoding stage is to map this feature vector to a D-dimensional space
vector: H = {h1, h2, . . . , hD }.

Random Projection: This encoding was first proposed in Reference [14]. This encoding
first generates D dense bipolar vectors with the same dimensionality as original domain, P =

{p1, p2, . . . , pD }, where pi ∈ {−1, 1}n . The inner product of a feature vector with each randomly
generated vector gives us a single dimension of a hypervector in high-dimensional space. For
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example, we can compute the ith dimension of the encoded data as

hi = siдn(pi · F),

where siдn is a sign function that maps the result of the dot product to +1 or −1. Thus, to en-
code a feature vector into a hypervector, we perform a matrix vector multiplication between the
projection matrix and the feature vector using:

H = siдn(PF)

ID-Level: This encoding was first proposed in Reference [13]. The encoding is performed in
three steps, which we describe below. The first step is to create two sets of HVs, ID HVs and
level HVs. Both ID HVs and level HVs are D-dimensional HVs where each element is either −1
or 1. The encoding scheme assigns a unique channel ID HV to each feature position. IDs are
hypervectors that are randomly generated such that all features will have orthogonal channel
IDs, i.e., δ (IDi , ID j ) < 5,000) for D = 10,000 and i � j; where the δ measures the element-wise
similarity between the vectors. The HD computing encoder also generates a set of level HVs to
consider the impact of each feature value. To create these level hypervectors, we compute the
minimum and maximum feature values among all data points, vmin and vmax , then quantize the
range of [vmin , vmax ] into m levels. Each level is then assigned a corresponding level HV: LV =

{LV1, . . . , LVm }. To encode a feature vector, the encoder looks at each position of the feature vector
and element-wise multiplies the channel ID (IDi ) with the corresponding level hypervector (hvi ).
The following equation shows how an n-length feature vector is mapped into the HD space with
this encoding scheme:

H = [hv1 ∗ ID1 + hv2 ∗ ID2 + · · · + hvn ∗ IDn],

hvj ∈ {LV1,LV2, . . . ,LVm }, 1 � j �m,

IDi ∈ {−1, 1}D ,LVj ∈ {−1, 1}D .
(2) Training: The simplicity of HD training makes it distinguished from conventional learning

algorithms. Consider hypervector Hi as the encoded hypervector of input i with the procedure
explained above, which required the inner-product of D bit hypervectors followed by dimension-
wise addition of n 1 bit values, where n is the number of features. Each input i belongs to a class
j, so we further annotate H j

i to show the class j of input i , as well. HD training simply adds
all hypervectors of the same class to generate the final model hypervector. Therefore, the class
hypervector of label j, denoted by C j , is

C j = H j
0 +H

j
1 + · · · =

∑

k

H j . (1)

Meaning that we simply accumulate the encoded hypervectors for which their original input be-
longs to class j.

Another advantage of HD over DNNs is HD supports efficient one-pass training, i.e., visiting
each input just once and adding theHi s to create the model yields acceptable accuracy, while DNN
training requires hundreds of iterations over the whole data set to converge to the final accuracy.
HD accuracy can also be improved by retraining the model. During retraining, the encoded hyper-
vector of each input is created again, and its similarity with the existing class (model) hypervectors
is checked (see step 3). If a misprediction is observed, say that encodedH j belonging to class C j is
predicted as class Ck , then the model is updated as follows, which means the information of H j

causing (mis)-similarity to Ck is discarded:

C j = C j +H j ,

Ck = Ck −H j .
(2)
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(3) Similarity checking: The inference step as well as the retraining step need to find out the
most similar class hypervector to the encoded one. Most commonly, this is performed by cosine
similarity while other metrics (e.g., Hamming distance) could be appropriate depending on the
problem:

cos ( �H , �C j ) =
�H · �C j

‖ �H ‖ · ‖ �C j ‖
. (3)

Equation (3) shows the similarity checking of encoded hypervector H with class hypervector

C j . Since classes are constant, ‖ �C j ‖ can be pre-calculated. ‖ �H‖ can be factored out as it is
common for all candidate classes to be compared with H . Hence, cosine similarity reduces to a
simple dot-product between H and C j s. These vectors are not in binary, they are the results of
accumulating several other binary vectors.

2.2 Hyperdimensional Computing Clustering

The HD Clustering algorithm is very similar to the popular K-means algorithm [16]. The first step
of HD Clustering, like Classification is to first encode the data into high-dimensional space. In this
article, we evaluate two encodings, both covered in Section 2.1. HD Clustering then operates on
the encoded HVs as the main datatype. HD Clustering, like K-means, then selects random cen-
ters to start. HD Clustering then iterates through all of the encoded data points while comparing
them with the cluster centers using a similarity metric and assigning each point to the center it
is most similar to. In K-means, that similarity metric is the Euclidean distance. In HD, we utilize
cosine similarity for non-binary values, but Euclidean distance could also be used. However, HD
maps data into high-dimensional space, D = 10,000, so calculating cosine similarity is much more
efficient. After all the points are labeled, the new centers are chosen and the process is repeated
until convergence or the maximum number of iterations is reached. Convergence occurs when no
point is assigned to a different cluster compared to the previous iteration. The main difference is
that HD Clustering adds a pre-processing step to the Clustering algorithm that maps the data into
high-dimensional space, or hypervectors.

2.3 Related Work

HD computing is light-weight enough to run with acceptable performance on CPUs [17]. However,
utilizing a parallel architecture can significantly speed up HD execution time. Imani et al. showed
two orders of magnitude speed up when HD runs on GPU [6]. Salamat et al. proposed a framework
that facilitates fast implementation of HD algorithms on FPGA [7]. Due to the bit-level operations
in HD, which is more suitable for FPGAs than GPUs, they claimed up to 12× energy and 1.7× speed
up over GPUs. HD requires much less memory than DNNs, but the required memory capacity is
still beyond the local cache of many devices. Thus, an excessive amount of energy and time is
spent moving data between these devices and their main memory (off-chip memory in the case of
FPGAs).

To resolve this, prior work used PIM architectures, where processing occurs in memory, elimi-
nating the time and energy of data movement [18–20]. In FELIX [8], a digital PIM architecture was
proposed. However, digital PIM operations are significantly slower than equivalent analog PIM op-
erations. Prior work accelerated the inference phase of HD computing in analog PIM with an asso-
ciative memory [6]. However, the associative memory only stored the trained class hypervectors,
so the input data needed to be encoded elsewhere and then moved into the associative memory,
negating the benefit of less data movement. Also, the associative memory only supports inference
in HD. In this article, we implement HD Computing in an analog PIM ReRAM architecture based
on ISAAC [11]. This architecture allows us to fully implement HD Computing operations end-to-
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Fig. 2. Overview of the PIM architecture used by HyDREA.

end from encoding to inference unlike prior work. Our architecture differs in that we further take
advantage of HD Computing’s robustness to noise and relax the precision of the ADCs. We target
the ADCs as they are the highest energy overhead in the architecture [11, 21].

Several works claimed that HD signal representations are inherently robust to various forms
of noise [22–25]. Work in Reference [23] investigated the robustness of HD to RTL level errors
(e.g., bit-flips) during computation and found an HD-based approach tolerating an 8.8× higher
probability of bit-level errors. Similar results are reported in Reference [26].

Work in Reference [23] presented preliminary evidence showing that HD delivered superior
performance to conventional data representations in the presence of bit-level errors during pro-
cessing. Similarly, bit-level errors occur during data transmission as a result of channel noise and
interference from multiple users. To the best of our knowledge, there has been no systematic em-
pirical (or theoretical) evaluation of HD as an avenue for achieving robust learning when data
must be communicated over noisy channels. This article compares HD computing with a “Feder-
ated learning” approach for training other ML models and proposes a new analog PIM architecture
to accelerate the whole HD computing algorithm from training to inference.

3 HyDREA ANALOG PIM ARCHITECTURE

Combining the energy savings by eliminating data movement and a parallel architecture suitable
for dimension-wise parallelism of HD algorithms, analog PIM, with its simple arithmetic support,
appears as a promising solution for HD computing. A PIM architecture needs to support three
classes of in-memory operations; (1) dot-product for the matrix multiplication in encoding and

the similarity metric in inference, i.e., the �H · �C j part in Equation (3), in which each dimension
of H and C j is fixed-point (results of binary vector additions), (2) addition and subtraction for
training and retraining where, as explained by Equation (1), we add H j

i s to produce C j , which
denotes the final class hypervector of inputs with label j, and (3) search operation to find the
best matched class in inference, by finding the maximum of cosine similarity scores between the
encoded queryH and all class hypervectors. The baseline architecture provided by ISAAC [11] is
perfect for mapping HD Computing to an analog PIM architecture, because it supports all three of
the above operations. This can be seen in Figure 2(c).

(1) Dot Product: The top half shows how the dot product operation is implemented in our ana-
log PIM crossbar. Assume each resistive cell in the first (i.e., the shown one) column is programmed
to resistances R11 and R21 where Ri j belongs to row i and column j. VoltagesV1 andV2 are applied
to the first and second rows. The corresponding generated current flows through the column is
I1, which shows the result of dot-product. A larger I shows larger number, and since I = V/R, the
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resistance of memristive cells need to be proportional to the inverse of the value they represent.
For 2D vectors, A and B, the first set of inputs, A, is programmed into the resistances R11 and R21

having the conductances of (A11 = 1/R11 = C11 and A21 = 1/R21 = C21). Afterwards, the second set
of inputs, B, is applied as the voltages at each row (B11 = V1 and B21 = V21). As the figure shows,
by applying input values as the voltages to the rows and storing values as conductances, Ohm’s
law dictates that the current flowing through each resistor is the product of the conductance and
applied voltage. Following Kirchhoff’s law, the current accumulated at each column is equal to
the sum of all the currents flowing through resistors of the column. That is, the total current is
I1 = C11 ·V1 +C21 ·V2. For our design, we store the class hypervectors as the conductances of the
ReRam matrix and the query HV is sent as the DAC input voltages.

(2) Addition: The bottom half of Figure 2(c) shows how the addition is implemented in a cross-
bar analog PIM architecture. Addition works analogous to the dot product, except all the input
voltages are set to logical 1 (i.e., Vhiдh ). This, the aggregate current of passing through the first
column is I1 = C11 +C21.

(3) Search: Upon performing dot-product between the query hypervector with all class hyper-
vectors, the search operation needs to find the class with the maximum similarity score. In analog
PIM, search is implemented using nearest distance search, which finds the most similar value for a
given reference. However, we desire a search for the maximum value (so the reference is unknown).
But we know the maximum value of the cosine similarity metric is 1, hence we can implement our
maximum value search with the already supported nearest distance search by searching for the
value that has the highest similarity to reference 1. Hence, the returned value will be maximum
score. Note that similarity check returns the closest value (absolute difference) by prioritizing MSB
bits.

HyDREA takes advantage of HD computing’s robustness to noise to reduce computational com-
plexity without losing a significant amount of accuracy. By reducing the bitwidth of the ADCs in
analog PIM, HyDREA is able to achieve significant energy savings. However, it comes at a cost of
inaccurate computations. However, HD computing is robust to hardware failures and inaccurate
computations, making it a perfect candidate to be accelerated by our design. With our bitwidth
reduction optimization, HyDREA is able to achieve the energy efficiency of digital PIM with the
speed of analog PIM.

3.1 Architecture

Figure 2(a) shows the architecture HyDREA constituting of multiple In Situ Multiply Accumu-

late (IMA) blocks. In our implementation, HyDREA comprises 24 IMA blocks. The design choice
of using 24 IMA blocks was to ensure that our architecture can fit the largest dataset tested. This
is critical, because if all the data does not fit, data would need to be offloaded and stored off chip.
The load and store operations in our ReRAM array are very costly and would incur a significant
amount of latency to our design. IMA blocks are memory crossbars with the capability of per-
forming analog addition and dot-product operations. Each IMA block consists of 8 crossbar arrays,
each of which contains 128 rows and 128 columns of memory cells. There are 8 × 128 Digital-to-

Analog (DAC) blocks per IMA, i.e., 128 per each crossbar arrays, allocated to the rows to convert
the incoming digital signal (voltage) to analog (current) to perform computation. There is also a
shared Sample and Hold (S+H) block, and shared Analog-to-Digital (ADC) blocks in each IMA.
Figure 2(b) shows an example of a crossbar memory array. Each bitline is connected to all the
wordlines through memresistive cells, which have stored the information (e.g., values of class di-
mensions) by changing the resistance level of each cell. Each memresistive cell in our configuration
is a 2 bit MLC, i.e., it has four resistance states to be able to represent 2 bits. Storing the HD model,
i.e., the values of classes dimensions, needs to program the NVMs, which is a slow write operation.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 6, Article 78. Publication date: October 2022.



78:8 J. Morris et al.

Fig. 3. Example of inference in HyDREA.

However, it is only done one time before beginning the inference step, so the overhead is amortized
in the entire course of inference.

Figure 3 shows an example of how inference is performed in HyDREA. The first step is to encode
the input. The input is stored in the eDRAM buffer of the encoder tile. When a new input shows
up, it allows the current input to proceed with its next operation. This operation is itself pipelined
(shown in Figure 3). In the first cycle, an eDRAM read is performed to read the input. These values
are sent over the shared bus to the IMA for the encoder and recorded in the input register (IR).
After the input values have been moved, the IMA will perform the matrix multiplication during
the next 16 cycles.

In the next 16 cycles, the eDRAM is ready to receive other inputs and deal with other IMAs.
Over the next 16 cycles, the IR feeds 1 bit at a time for each of the input values to the crossbar
arrays. The first 128 bits are sent to crossbars 0 and 1, and the next 128 bits are sent to crossbars
2 and 3. At the end of each cycle, the outputs are latched in the Sample and Hold circuits. In the
next cycle, these outputs are fed to the ADC units. The results of the ADCs are then fed to the
shift-and-add units, where the results are merged with the output register (OR) in the IMA.

As shown in Figure 3, at the end of cycle 19, the OR in the IMA has its final output value. This
is sent over the shared bus to the central units in the tile. The central OR contains the final results
for encoding at the end of cycle 20. During this time, the IMA for the next input has already begun
processing to maintain utilization. Finally, in cycle 21, contents of the central OR are written to
the eDRAM that will provide the inputs for the similarity check. The similarity check is then
performed with the same pipeline as it too is a matrix multiplication.

3.2 Challenges

To perform the computation in analog, PIM needs to convert the signals into analog domain. For
this, it requires to employ DAC and ADC converters at the inputs and outputs, respectively. As
shown in previous work, these signal domain converters contribute to a significant overhead in the
residing architecture [11, 21], which reaches up to 89% of the system power consumption. However,
the overhead of these converters can be significantly alleviated as it is exponentially tied in the
precision of converters. This, obviously, increases the error as the signal levels are quantized. For-
tunately, it is less problematic in the context of HD computing thanks to its remarkable tolerance
to error, as information is spread over all the independent and identically distributed dimensions
of vectors, so failing the computation on a certain portion of dimensions (bits) should not affect
the overall result noticeably.
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Fig. 4. Area savings (a) and energy consumption savings (b) as the bitwidth of the ADC is dropped.

Furthermore, the addition of ADCs for conversion is the largest overhead of using analog PIM for
computation. The ADCs take up a huge amount of area as with each bit of resolution added, their
area doubles. Prior work tried to alleviate this by sharing the large ADC across multiple blocks [11].
This approach can slow down computation. However, in this article, we significantly reduce this
overhead by using extremely low precision ADCs (as low as 2-bits), which our application, HD
Computing, can handle.

3.3 HyDREA: Analog PIM Architecture Optimiztions

ADC Reduction: As in Section 3.2, the energy overhead of conversion from the digital domain to
the analog domain and back dominates the energy usage of analog PIM, and this is handled by the
ADC blocks. Thus, our task to improve the energy efficiency of analog PIM focuses on improving
the energy efficiency of the ADC blocks. We achieve this by reducing the precision of the ADC
blocks. Figure 4 shows the expected energy and area savings of reducing the bitwidth of an ADC.
The results from the energy breakdown of ISAAC shows 89% of energy is used on ADC conversion.
Then, knowing that each bit we drop from the ADC reduces ADC energy by approximately half, we
can extrapolate the expected savings. As the figure shows, for each reduction in the bitwidth of an
ADC, we expect the area and energy consumption to halve. This is because to add support for each
additional bit, the amount of circuit area doubles and therefore, the energy usage approximately
doubles. Instead of using 8-bit ADC blocks in analog PIM that achieve full precision conversion to
the digital domain, if we reduce the bitwidth of the ADCs, then we can reduce the energy usage
by half for every bit of the ADC we drop. This will save a significant amount of energy during the
analog to digital conversion step in analog PIM. However, as mentioned, our computations will
lose accuracy, and as we drop more bits, our computations will become more inaccurate as we
sacrifice precision for energy efficiency.

We can reduce our ADC blocks from 8 bits to n bits. By doing this, we will convert the first n
most significant bits and omit the 8 − n least significant bits. For example, if we use a 6 bit ADC
block to convert 167, then we would lose the last two bits and output 164 instead. This leads to good
approximate conversions with large numbers but very poor approximation with smaller numbers.
If we use a 6 bit ADC block to convert 7, then we would get 4, which is almost 50% off. Furthermore,
we do not produce inaccurate conversions every time. If we convert 172 with a 6 bit ADC block,
then we wold get 172, because the last two bits of 172 are both 0. Therefore, we produce exact
computations when the bits we would drop are all zero. Our ADC block conversions fall into three
categories: exact conversions, slightly inaccurate conversions, and highly inaccurate conversions.
Since HD computing utilizes dot product as the similarity check, the larger computations dominate
the dot product operation and therefore, the highly inaccurate conversions of smaller operations
do not effect the accuracy of the HD model. Therefore, we are able to take advantage of reducing
the bitwidth of ADCs to create an analog PIM architecture for accelerating HD computing that
does not incur a significant loss in accuracy.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 6, Article 78. Publication date: October 2022.



78:10 J. Morris et al.

Fig. 5. Impact of HyDREA using a 4 bit model on training compared to training a naive bitwidth reduction

4 bit model and training a 8 bit model.

DAC Reduction: We additionally reduce the energy and execution time overhead of analog
PIM by reducing the number of DACs and IMA blocks needed. We achieve this by reducing the
precision of the HD model bitwidth.

Due to HD computing’s robustness to noise, we could simply reduce the bitwidth of the HD
model and achieve efficiency gains without a significant drop in accuracy. When reducing the
bitwidth further, training the HD model becomes unstable and the accuracy does not converge.
Figure 5 compares training an HD model with 4 bits of precision and training the same model
with a full 8 bits of precision. The details of the setup and software used to obtain these results
can be found in Section 5. The top line shows that training an 8 bit model is much smoother and
clearly improves in each iteration compared to training with reduced bitwidth. This is because,
as HVs are added up and adjusted with retraining, some dimensions may saturate the available
bitwidth. Any additional change to dimensions with saturated bitwidths that attempt to change
the dimension in the direction of the bitwidth saturation does not improve the model further. For
instance, when using a bitwidth of 4, the maximum positive value a dimension can represent is 7.
If during retraining the dimension would be increased further, then it would instead stay at 7. In
contrast, if the dimension is adjusted with subtraction, then it would decrease normally despite
any previous attempts to increase the dimension further. This causes over-adjustments in the HD
model during retraining when an abnormal change is applied. This is why the accuracy does not
converge during retraining with greatly reduced bitwidths. HyDREA is able to improve upon the
naive design of simply reducing the bitwidths by additionally modifying the HD algorithm to
complement the bitwidth reduction.

As explained in Section 2, the HD model is initially trained by adding up all of encoded data
points into one class HV for each class. When reducing the bitwidth of the HD model from 8
bits to 4 bits, 4 bits may not provide enough precision for model convergence during retraining,
preventing the HD model from performing effectively at lower bitwidths. To subvert this problem,
we propose to analyze the initial HD model to identify key dimensions that need to utilize the
full bitwidth available. HyDREA then locks these dimensions to either the maximum or minimum
value to ensure the the HD model does not drastically change during retraining.

We propose that the largest dimensions in both the positive and negative directions that saturate
the desired bitwidth are key dimensions, as dot product is used as the similarity metric. Hence, the
largest dimensions in both positive or negative direction contribute the most to the resulting dot
product. Dimensions with the largest values in either direction show that most data points from
that class agree in that dimension, i.e., a class HV that represents the class well should ensure these
dimensions are not over-adjusted.
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To support bitwidth reduction, we propose to modify the initial training algorithm of HD. To
identify key dimensions in the HD model to lock, our design first performs the initial training
with a full 8 bit representation. HyDREA copies the initial class HV and takes the absolute value
of all the dimensions in the class HV and finds the indices of the largest α dimensions that would
saturate the desired bitwidth. They are set to the maximum (minimum) value if they saturated in
the positive (negative) direction. The other dimensions are scaled down to the desired bitwidth.
This is done for all k class HVs. The initial model is then loaded into our PIM architecture. The
dimensions that were previously set to the maximum or minimum value are locked from changes
during retraining to prevent the HD model from over adjustments. HyDREA only locks dimensions
that would saturate the desired bitwidth. If the dimensions do not saturate the desired bitwidth,
then the bitwidth is sufficient and no change is needed. This lock is achieved by not enabling the
write bits at locked dimensions.

Figure 5 compares training an HD model with the naive approach of simply reducing the
bitwidth to 4 and training the same model with HyDREA using the same bitwidth. The graph
shows how HyDREA improves upon the naive design, as during retraining the model is clearly
improving and increasing in accuracy like the full 8 bit model. Meanwhile, the naive design’s ac-
curacy fluctuates greatly and does not converge.

3.4 HyDREA: Supporting HD Clustering

Here, we discuss how we can use HyDREA to support HD Clustering. As described in Section 2,
the HD Clustering algorithm is very similar to the K-means algorithm with a different similarity
metric. For HD Clustering, instead of using Euclidean distance, we use cosine similarity to measure
the distance between the samples and the cluster centers. This makes mapping HD Clustering onto
our existing architecture relatively simple as for Classification, HyDREA already accelerates the
similarity checking part of HD inference. Additionally, we use the same encodings for Clustering
and Classification, so that accelerator can be reused as well. Therefore, to map HD Clustering to
HyDREA, we feed the samples in the original feature domain into our encoding block. Then, to
update the distances between the samples and the cluster centers, we feed the cluster centers into
the inference accelerator as the class HVs and the samples as the query HVs. This then gives us
both the distance in cosine similarity between each sample and all the cluster centers as well as the
cluster that each sample is most similar to. The next step of the HD Clustering algorithm, which
is to chose the next cluster centers is too complex to accelerate in PIM. However, 98% of the time
is spent on encoding and similarity checking. Therefore, offloading updating the cluster centers to
the host CPU does not incur a significant amount of overhead.

4 NETWORK SIMULATION

Figure 6 shows an overview of our federated learning framework and how devices communicate.
There are two kinds of devices in our network edge devices and the central node. Edge devices are
where local samples are generated. During training, they use a cut down version of our accelerator
for HyDREA that just implements encoding to map the data into HD space. The sample is then
sent to the central node, where on its way there, the encoded sample is subject to wireless com-
munication noise. The central node’s purpose is to collect all encoded samples from all of the edge
nodes, train a global model, and perform inference. It too uses our accelerator, except it has full
training and inference functionality. Once the global model is sufficiently trained, it can be used
for inference. Upon inference, the edge device again encodes the input sample to HD space. The
sample is then sent to the central node wirelessly incurring a varying degree of noise. The central
node then performs inference on the trained HD model and sends the resulting label back to the
edge device.
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Fig. 6. An Overview of our framework for communicating in the federated learning environment.

We evaluate the feasibility of HyDREA in a “Federated learning” environment, by utilizing a
popular network simulator—ns-3 [12]—to model the communication between devices and simulate
wireless noise. In the Results section, we compare HyDREA with other ML algorithms in the same
noisy environment. The ns-3 physical layer model calculates bit error rates (BER) taking into
account the Forward Error Correction (FEC) present in WiFi standards such as IEEE 802.11a/g/n.
The model first calculates the received signal-to-noise ratio (SNR) based on parameters used
in the simulation model and then calculates a packet error rate (PER) based on the mode of
operation (e.g., modulation, coding rate) to determine the probability of successfully receiving a
frame (packet success rate (PSR)). The received signal SNR depends on the following parameters:

• Transmission powers of devices: Since noise power is usually constant, increasing the trans-
mission power results in a higher SNR, thus lower BER. However, since energy efficiency is
crucial in many applications, IoT devices usually operate in low power modes, resulting in
low SNR.
• Distance between communicating nodes: As two communicating nodes get further away,

the received signal strength decreases, resulting in low SNR.
• Propagation loss: The loss in the communication channel is different for different topolo-

gies. For example, if two devices are in the line-of-sight of each other, this scenario would
incur much less loss compared to them communicating in a dense downtown with buildings
blocking the view.
• Interference: When many devices communicate at the same time, each other’s signals act

as an interfering signal, which degrades the demodulation and decoding performance at the
receiving end. In this case, we have to calculate signal-to-interference-plus-noise ratio

(SINR).

We study how HD Classification and Clustering performance changes with varying transmis-
sion power levels, distance, different propagation loss scenarios, and under different number of
interfering devices. Additionally, the error rate depends on the modulation, coding and error cor-
rection mechanism adopted by the WiFi technology. Ns-3 allows us to study the error rates for
modulation schemes such as BPSK, QPSK, 16–1024 QAM, under binary convolutional coding for
rates 1

2 , 2
3 , 3

4 , and 5
6 . We can both enable or disable forward error correction (FEC) in all of these
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Fig. 7. SNR/BER vs. distance for BPSK modulation with Friis prop. loss.

Fig. 8. Model of a downtown topology represented in ns-3, where buildings have higher signal attenuation

compared to open-air and they block the line-of-sight when they are placed between the transmitters (blue)

and the receiver (green).

cases. Our experiments use the WiFi protocol stack (802.11n), which is the most matured commu-
nication standard implementation in ns-3. There are efforts on modeling low-rate and low-power
standards for IoT, but they are not fully developed yet. Hence, we modify the 802.11 PHY and
MAC layer parameters and scale data rate and power values to imitate communication in an IoT
environment. The modulation techniques and coding schemes of 802.11n, namely, BPSK, M-ary
QAM, and Direct-Sequence Spread Spectrum (DSSS), are common with many low-power wire-
less protocols [27]. Different techniques have different SNR versus BER (Bit error rates) curves,
but these curves are the same across protocols [28–30]. Since we adjust the parameters of 802.11n,
we can simulate the characteristics of low power IoT protocols by operating at the low SNR re-
gions of the SNR-BER curve. We vary the distance between the transmitter and the receiver to
collect data at various SNRs. We evaluate with the Friis propagation loss model. Figure 7 shows
the BER versus distance curve between transmitter and receiver. We additionally test error rates
from other sources of noise. Such as a downtown scenario with buildings in between the nodes
shown in Figure 8 or a highly congested network. We use the hybrid building propagation loss
model consisting of Okumura-Hata [31], ITU-R 1411 and ITU-R 1238 [32] loss models. The model
includes the multi-path fading loss through building walls for both line-of-sight (LoS) and no
LoS cases. There are also random communication attempts between other nodes in the network
resulting in dynamic BER and packet losses.
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Table 1. Dataset Information

Dataset Type # Classes # Train Data # Test Data # Features

UCIHAR [34] Classification 6 6,213 1,554 561

CARDIO [35] Classification 2 1,913 213 21

FACE [36] Classification 2 22,441 2,494 608

ISOLET [37] Classification and Clustering 26 6,238 1,559 617

Hepta [38] Clustering 7 N/A 212 3

Tetra [38] Clustering 4 N/A 400 3

Two Diamonds [38] Clustering 2 N/A 800 2

Wingnut [38] Clustering 2 N/A 1,016 2

Iris [38] Clustering 3 N/A 135 3

We compare HD with two baseline approaches. In the first, we assume that corrupted data pack-
ets are discarded and must be re-transmitted. This ensures the accuracy of the resulting model, but
increases latency and energy consumption—especially in congested networks. Second, we train on
the corrupted data. This eliminates the need to re-transmit packets but may slow model conver-
gence or cause the model to converge to a worse local optimum (recall that Neural Networks are
a non-convex optimization problem). Due to the robustness of HD Computing to noise, the HD
model is able to learn more effectively from corrupted packets than other ML models, eliminat-
ing the need to re-transmit data while ensuring a high-quality result. Low-power networks such
as LoRaWAN and LPWAN usually operate at very low SNRs [33], which can result in error rates
ranging from 10−5 to 10−1. Many applications require perfect data reconstruction at the receiver,
so it is often aimed for networks by design to have an error rate at upper levels of this range. We
show that HD is very resilient to errors, such that one can deliberately use very low-power for
communication and operate at extremely low SNRs, going beyond the error rates that of standard
network configurations, while still getting acceptable accuracy for the learning tasks. This comes
with large energy savings that is crucial for resource-constrained IoT devices. We additionally com-
pare HD Computing robustness to Error Correction Codes (ECC) in wireless communication
in Section 5.10.

5 EVALUATION

5.1 Experimental Setup

We verified the functionality of HyDREA using both software and hardware implementations. In
software, we implemented HD Classification and Clustering on an Intel Core i7 7600 CPU using an
optimized C++ implementation. For the hardware implementation, we used an analog-based PIM
architecture proposed in Reference [11]. We modify the ISAAC architecture to more efficiently
run for HD Computing by relaxing the bitwidth resolution of the ADCs. Our PIM design works at
1.2 GHz and uses n bit ADCs, 1 bit DACs, and 128×128 arrays, where each memresistor cell stores
2 bits. To estimate the energy consumption and execution time of HyDREA, we utilize the detailed
energy and execution time breakdown of an ISAAC tile found in the original ISAAC paper [11]. We
then calculate the estimated execution time and energy by summing up the required operations
for HD Computing. We tested our approach for HD Classification on four practical Classification
applications and for HD Clustering on six datasets from the Fundamental Clustering Problem
Suite [38], shown in Table 1.

5.2 HyDREA and Dimensionality

To test the impact of dimensionality on HD Classification and Clustering robustness, we utilized
the 6.64 SNR test with all datasets. Table 2 summarizes the results, where each entry in the table is
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Table 2. Impact of Dimensionality and Data

Representation on the Robustness of HD Computing

Classification and Clustering Accuracy

Dimensionality 10,000 8,000 6,000 4,000 2,000

RP Binary (Classification) 0.58% 0.82% 1.44% 1.89% 2.39%

ID-Level Binary (Classification) 0.56% 0.79% 1.52% 1.78% 2.42%

RP (Clustering) 0.58% 2.31% 2.65% 2.86% 3.24%

ID-Level Binary (Clustering) 0.66% 2.48% 2.52% 2.79% 3.13%

ID-Level Int (Clustering) 44.89% 46.60% 64.71% 72.82% 72.13%

ID-Level Float (Clustering) 85.17% 85.19% 85.23% 85.43% 85.55%

Fig. 9. Impact of bitwidth reduction on accuracy of HyDREA.

the average accuracy for all datasets at that dimensionality. There is a clear relationship between
HD robustness to errors and dimensionality. One may think that we can achieve faster execution
and lower energy consumption with lower dimensionality; but due to our PIM’s highly parallel
nature, as long as the HD model fits into the PIM arrays, execution time and energy does not
change. Since our design requires a highly robust HD model, the rest of our tests utilize a dimen-
sionality of D = 10,000. Additionally, the table shows that the data representation highly impacts
the robustness of HD. Binary values are the most robust, because each individual bit flip impact the
correctness of the end result the same. However, with other representations such as floating point,
depending on the bit flipped, the error can increase significantly. For instance, if an exponent bit is
flipped, that would incur significantly more error than if a mantissa bit was flipped. For the most
robust models, one should transmit binary encoded HVs.

5.3 HyDREA and the Impact of our Analog PIM Architecture on HD Classification

Figure 9 shows the impact of ADC bitwidth reduction on HD model accuracy for four practical ap-
plications. The accuracy of each model reduces as the bitwidth drops, but not significantly. When
the ADC bitwidth is 4, the average accuracy drop across all applications is 1.5%. This is because
our ADC blocks provide highly accurate approximations for high value conversions, and the high
value numbers dominate the dot product output. Thus, the resulting dot product closely approxi-
mates the exact version. Also, the resulting dot product does not need to be exact, owing to HD’s
robustness to hardware inaccuracies. Despite inaccurate results, the classes are separated enough
that slight variations still result in the HD model selecting the same output class. Overall, HyDREA

reduces bitwidth to 2 while only losing 1.8% in accuracy.
Figure 10 shows the impact of our analog PIM architecture with 2 bit ADCs and varying model

bitwidths on energy consumption and execution time. Our proposed architectural changes drasti-
cally improve the energy efficiency and execution time of HD. Our proposed architecture uses 2 bit
ADCs and 1 bit models, and achieves 32× (29×) speed up and 232× (267×) higher energy efficiency
than the baseline architecture during inference (retraining). Also, in high SNR cases, these models
achieve comparable accuracy to full precision models.
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Fig. 10. Energy consumption and execution time of HyDREA using different model bitwidths during training

and inference with an ADC bitwidth of 2.

Table 3. Speedup of HyDREA Over a Digital PIM

Implementation with the Same Bitwidth as

HyDREA with the Same Area

Dataset ISOLET UCIHAR CARDIO FACE

Retraining 110.4× 111.8× 105.6× 115.2×
Inference Same Bit Digital 128.9× 137.3× 139.9× 136.1×

5.4 HyDREA Versus Processing in Storage and Digital Processing in Memory

Figure 11 compares HyDREA execution time during the training process to THRIFTY [39]. The
results show that due to the slower digital operations in THRIFTY, as well as the higher latency of
computing near flash storage, HyDREA is on average 180× faster during training than in storage
computing. Furthermore, Figure 11 also compares the impact of high bandwidth memory, or specif-
ically NVME storage, on HD Computing latency. We perform this test on the same machine where
the only difference is for HDD, we store all data on a slow spinning hard drive and for NVME, we
use a PCIe generation 4.0 NVME storage drive. The results clearly show that the higher bandwidth
does not impact the overall latency of HD Computing. Therefore, in storage computing solutions
such as THRIFTY do not have much to gain from utilizing NVME technologies. Thus, analog pro-
cessing in memory architectures such as HyDREA are more capable of delivering faster execution
times than digital processing in memory architectures.

In Table 3, we also compare HyDREA with a FELIX [8] digital PIM-based implementation of
HD Computing. We compare using the same model bitwidths and memory area. Our results show
that HyDREA is 111× faster than the digital PIM design during retraining and 136× faster than the
digital PIM design during inference on average, because the individual operations in analog PIM
are much faster than they are in digital PIM. HyDREA achieves better speed up during inference
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Fig. 11. Execution time comparison of HyDREA with THRIFTY, a processing in storage architecture for HD

Computing and the impact of higher bandwidth memories such as NVME on HD Computing.

Fig. 12. Accuracy of Design as the SNR varies with an ADC bitwidth of 2 and varying model bitwidth.

than retraining when compared to digital PIM, because inference only involves the dot product
operation while retraining includes addition operations to adjust the HD model. Due to relying
on nor-based operations in digital PIM, execution time scales quadratically for multiplications.
Therefore, because analog PIM directly implements multiply and accumulate, HyDREA achieves
better speed up during inference and retraining.

5.5 HyDREA and the Impact of SNR on HD Classification

Figure 12 shows the impact of SNR on model accuracy in our analog PIM architecture. We can load
in low bitwidth models when the channel has a high SNR to achieve the best energy consump-
tion and execution time. However, during high network traffic, longer communication distance,
or other factors that incur a high amount of noise on the wireless channel, we need to load in
the higher bitwidth models to maintain accuracy. This is because our highly quantized models are
taking advantage of HD’s robustness to noise by effectively adding more noise to the computation.
Therefore, if the environment, in this case wireless communication, is also adding noise, the robust
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Fig. 13. Accuracy of HD Classification as the SNR varies with different encodings and data representations.

property of HD does not hold up. However, if we adaptively switch which model is loaded based
on the SNR, then we can maintain high accuracy and achieve significant energy and execution
time savings when possible.

Figure 13 shows the impact of SNR on model accuracy for two different encodings as well as
different datatype representations. Results from all datasets show a similar pattern with increasing
bit error rate. HD using integer and binary hypervectors is much more robust to noise as compared
to floating-point representations. Since floating-point numbers are represented with mantissa and
exponent, if the exponent bits are flipped because of an error, then the number itself changes sig-
nificantly. We additionally compare to a DNN for the ISOLET dataset [40]. The DNN model uses
a 16bit floating point representation for its weights, so we can observe the same problem with ro-
bustness in DNNs. The data also demonstrates that the random projection (RP) encoding offers
similar robustness to noise as the ID-level encoding with binary values. This is likely because our
implementation of random projection also encodes hypervectors to binary values (through a final
sign function), so both the random projection and quantized ID-level encodings lead to similarly
robust binary hypervectors. Last, random projection achieves on average, the same accuracy as
ID-level, but beats ID-level in some datasets, such as ISOLET, while loses in accuracy to others,
such as CARDIO and EMG, as both of them are time-series signals, which random projection does
not classify well.

5.6 HD Versus Other Classifiers

We also compared HD to state-of-the-art classifiers (Linear Regression (LR), MultiLayer Per-

ceptron (MLP), Perceptron, Support Vector Classification (SVC)) and evaluated its robustness
to noise on our four datasets. Figure 14 shows the results for (1) data with no noise, and (2) data
corrupted with SNR of 2.21. We choose an SNR or 2.21, because it is the worst practical scenario in
our ns-3 setup. All classifiers have comparable accuracy with no noise. While HD stays robust with
a significant amount of noise, the other classifiers become very inaccurate. The high-dimensional
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Fig. 14. Comparison of the robustness of HD to other classifiers.

Table 4. Comparison of HyDREA with the

State-of-the-Art DNN PIM Accelerator Q-PIM [41]

Design Exact Accuracy 2.21 SNR Accuracy Latency(s) Energy(J)

HyDREA 93.4% 92.1% 9.98 × 10−6s 8.02 × 10−7 J

Q-PIM [41] 98.5% 10% 4.1 × 10−3s 4 × 10−4 J

nature of the hypervectors used in HD leads to significant redundancy in representation, which
improves its robustness to noise by 48× compared to other classifiers at 2.21 SNR. In other words,
HD loses 48× less accuracy compared to the other classifiers. This gives us a metric where noise
robustness is defined by how well the model maintains accuracy with the added wireless noise.

5.7 HyDREA Versus State-of-the-Art PIM DNN Accelerator

In Table 4, we compare HyDREA with a State-of-the-Art DNN PIM accelerator Q-PIM [41]. The
results show that State-of-the-Art DNNs are able to achieve higher accuracy on more complex
datasets such as MNIST. However, in the presence of wireless communication errors, HD Com-
puting is able to maintain its accuracy, while traditional DNNs become unreliable and return ran-
dom classification results. Furthermore, due to HD Computing’s light weight operation, HyDREA

achieves a 411× speedup and 498× energy efficiency improvement over Q-PIM.

5.8 HyDREA Architecture Impact on Clustering Energy Consumption

and Execution Time

Figure 15 shows the impact of our analog PIM architecture with 2 bit ADCs and varying model
bitwidths on energy consumption and execution time for HD Clustering. Our proposed architec-
tural changes drastically improve the energy efficiency and execution time of HD Clustering. Our
proposed architecture uses 2 bit ADCs and 1 bit models, and achieves 32× speed up and 289×
higher energy efficiency than the baseline architecture during Clustering. Also, in high SNR cases,
just like for Classification, these models achieve comparable accuracy to full precision models.

5.9 HD Clustering Accuracy and Robustness Versus K-means

We also compared HD to a state of the art Clustering algorithm, K-means, and evaluated its ro-
bustness to noise. As can be seen from Figure 16, K-means has a comparable accuracy to HD when
there are no bit errors in the dataset. To measure Clustering accuracy, we use a metric based on
the mutual information between the cluster assignments returned by our algorithm and ground
truth cluster labels. The metric is one when the predicted labels are perfectly correlated with the
ground truth and zero when they are totally uncorrelated. Although accuracy is similar without
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Fig. 15. Energy consumption and execution time of HyDREA for one Clustering iteration using different

model bitwidths with an ADC bitwidth of 2.

Fig. 16. Comparison of HD clustering with K-means accuracy with no bit errors.

errors, when we introduce errors HD Clustering is significantly more robust. Our proposed system
also looses less than 1% in the mutual information score, even in scenarios with an SNR under 7 dB,
which is 57× more robust to noise than K-means.

Figure 17 compares HD Clustering vs K-means Robustness to bit error rates. K-means has
similar robustness to bit error rates as HD using integer and floating point representations, until
a breaking point around 10−3 bit error rate for most datasets. This is especially clear with the
Isolet dataset, which is the biggest dataset we use. HD Clustering is able to maintain accuracy for
much larger bit error rates than K-means when running Isolet. HD gains this additional robust
property from the high-dimensional nature of the hypervectors used in HD computing leading to
significant redundancy in the representation, which improves robustness to noise similar to our
Classification results.

Additionally, similar to our Classification results, the results from all datasets show a similar pat-
tern where HD using integer and binary hypervectors is much more robust to noise as compared
to floating-point. Since floating-point numbers are represented with mantissa bits and exponent
bits, if the exponent bits are flipped because of an error, the number itself changes significantly,
thus incurring more noise. Integer representation performs closer to binary. Random projection
provides similar accuracy to binarized ID-Level as random projection encodes hypervectors to bi-
nary values as well. Binary representation is the most robust as each individual bit flip incurs the
same proportion of noise.
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Fig. 17. Accuracy of HD clustering as the SNR varies with different encodings and data representations vs.

K-means.

5.10 Impact of Bit Error Rates on Decoding

Some HD Computing encoding methods have the property where the encoded HV can be decoded
back into the original feature vector. For instance, with access to the ID and LV HV banks used
to encode the HV in ID-Level, one can decode the encoded HV to get back the original feature
vector with some errors [42]. In Figure 18, we show the impact of dimensionality on the quality
of the recovered feature vector using the ID-Level encoding. The y-axis shows the mean-squared-
error of the original feature vector with the decoded one. We test against a range of bit error rates
that could be seen in wireless communication as well as across different dimensions. The results
indicate that with higher dimensionality, we are able to recover a better quality sample in the
original feature space. Additionally, as the bit error rate increases, our decoding quality decreases.
The decoded feature vectors become drastically different after bit error rates of around 0.001 for
both 5,000 and 10,000 dimensions.

5.11 HD Computing Versus Error Correcting Codes (ECC)

In conventional systems, the transmitter performs three steps to generate the wireless signal
from data: source coding, channel coding, and modulation. First, a source encoder removes the
redundancies and compresses the data. Then, to protect the compressed bitstream against the

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 6, Article 78. Publication date: October 2022.



78:22 J. Morris et al.

Fig. 18. Impact of dimensionality on decoding quality.

impairments introduced by the channel, a channel code is applied. The coded bitstream is finally
modulated with a modulation scheme that maps the bits to complex-valued samples (symbols),
transmitted over the communication link. The receiver inverts the above operations, but in
the reverse order. A demodulator first maps the received complex-valued channel output to a
sequence of bits. This bitstream is then decoded with a channel decoder to obtain the original
compressed data; however, it might be possibly corrupted due to the channel impairments. Last,
the source decoder provides a (usually inexact) reconstruction of the transmitted data by applying
a decompression algorithm.

In this work, we deal with robust learning over unreliable communication channels, so we focus
only on the channel coding techniques from this pipeline for our comparison. Error correcting

codes (ECC) are used in channel coding for controlling errors in data over unreliable and noisy
communication channels. The central idea is the sender encodes the message with redundant infor-
mation in the form of an ECC. This redundancy allows the receiver to detect a limited number of
errors that may occur anywhere in the message, and often to correct these errors without retrans-
mission. We implement the setups depicted in Figure 19 and compare channel codes to our method.
We refer to the framework shown in Figure 6 with the evaluation setup described in Section 4, and
evaluate the inference robustness of the different communcation systems. For all experiments, we
have an Additive White Gaussian Noise (AWGN) channel, over a range of SNR values, and the
modulation type is QAM. In the first setup, there is no channel coding and raw data samples are
transmitted over the channel. The HD classifier at the receiver side uses these raw data samples
corrupted by bit errors to do inference. In the second setup, we add channel coding to the con-
figuration. In the third setup, we apply HD encoding to data at the transmitter side and transmit
hypervectors. In this case, we do not need to do encoding at the receiver, only a simple similarity
check for HD Inference on the corrupted hypervectors suffices. In the fourth setup, we add channel
coding on top of HD encoded hypervectors to further add redundancy.

In Figure 20(a), we compare a rate 1
2 convolutional channel code with HD encoding. Viterbi

decoder is used to decode the transmitted bitstreams at the centralized receiver. Both channel
codes and HD encoding are applied directly to raw data samples, as illustrated in second and third
communication setups, respectively. The results show that HD encoding has better performance
at similar coding rates than convolutional codes. At 35% BER, HD still has around 90% accuracy
with 10k dimension hypervectors whereas convolutional code quickly loses accuracy then com-
pletely fails. In Figure 20(b), we compare HD encoding with high-dimension hypervectors to using

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 6, Article 78. Publication date: October 2022.



HyDREA 78:23

Fig. 19. Simulated communication setups.

Fig. 20. (a) Comparison of HD encoding to channel coding (setup 1, 2, and 3), (b) combined HD encoding and

channel coding (setup 3 and 4), (c) channel coding performance at low SNRs, exact (dashed) and approximate

(solid) decoding algorithms.

channel codes combined with lower dimension hypervectors. HD encoding alone performs better
at the same overall coding rate, meaning that channel codes do not provide extra protection to the
hypervectors. The above results can be explained by Figure 20(c), for which we refer to Reference
[43]. All the plotted coding methods are rate 1

2 as the convolutional code used in the previous
experiments. We show the SNR versus BER curves for both the exact (dashed) and approximate
(solid) decoding algorithms of the considered methods. As implied by the plots, channel coding
gains are significant at moderate to high SNRs. However, BER performance of channel coding con-
verges to that of uncoded communication at low SNRs, for which we perform our experiments. In
such cases, particularly where BER is greater than 10%, HD encoding is more robust. Moreover,
channel codes aim at correcting the errors and reconstructing the original data. Since we are only
interested in using the received data for classification or clustering, the exact reconstructions are
not necessarily needed. HD encodings are more suitable for this purpose, as the holographic rep-
resentation property allows to maintain as much information as possible when part of the data is
lost.

6 CONCLUSION

In this article, we proposed HyDREA, an HD computing system that is Robust, Efficient, and Ac-
curate. We proposed a PIM architecture that adaptively changes the bitwidth of the model based
on the SNR of the incoming sample to maintain the robustness of the HD model while achieving
high accuracy and energy efficiency. Our results indicate that our proposed system loses less than
1% Classification accuracy even in scenarios with an SNR under 7 dB. Our PIM architecture is
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also able to achieve 255× better energy efficiency and speed up execution time by 28× compared
to the baseline PIM architecture. We evaluated the feasibility of HyDREA in a “Federated learn-
ing” environment, by utilizing a popular network simulator, ns-3, to model the communication
between devices and simulate wireless noise. We compared HyDREA with other light-weight ML
algorithms in the same noisy environment. Our results demonstrated that HyDREA is 48× more
robust to noise than other comparable ML algorithms. We additionally tested the robustness of
HD Clustering in the same network simulation scenarios and found that our proposed system also
looses less than 1% in the mutual information score, even in scenarios with an SNR under 7 dB,
which is 57×more robust to noise than K-means. Finally, we extended our PIM architecture to sup-
port Clustering and our results show that we are able to achieves 289× higher energy efficiency
and 32× speed up compared to the baseline architecture during Clustering.
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