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ABSTRACT
In six-degrees-of-freedom light-field (LF) experiences, the viewer’s
freedom is limited by the extent to which the plenoptic function
was sampled. Existing LF datasets represent only small portions of
the plenoptic function, such that they either cover a small volume,
or they have limited field of view. Therefore, we propose a new LF
image dataset “SILVR” that allows for six-degrees-of-freedom navi-
gation in much larger volumes while maintaining full panoramic
field of view. We rendered three different virtual scenes in various
configurations, where the number of views ranges from 642 to
2226. One of these scenes (called Zen Garden) is a novel scene, and
is made publicly available. We chose to position the virtual cam-
eras closely together in large cuboid and spherical organisations
(2.2m3 to 48m3), equipped with 180° fish-eye lenses. Every view
is rendered to a color image and depth map of 2048px × 2048px.
Additionally, we present the software used to automate the multi-
view rendering process, as well as a lens-reprojection tool that
converts between images with panoramic or fish-eye projection
to a standard rectilinear (i.e., perspective) projection. Finally, we
demonstrate how the proposed dataset and software can be used to
evaluate LF coding/rendering techniques (in this case for training
NeRFs with instant-ngp). As such, we provide the first publicly-
available LF dataset for large volumes of light with full panoramic
field of view.

CCS CONCEPTS
• Information systems → Multimedia databases; • Comput-
ing methodologies → Image processing; Image-based rendering.
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1 INTRODUCTION AND MOTIVATION
In today’smultimedia landscape, photos and videos are omnipresent
and a lot of research and development activities are targeting more
immersive ways to consume content. Using technologies such as
Virtual Reality (VR), one can navigate with six-degrees-of-freedom
(6DoF) through a virtual environment. This has led to a surge in
research to methodologies for capturing and representing real-
world environments, such that these can be be streamed and/or
displayed in real time with 6DoF. Many such methodologies and
systems start from images or videos of this environment as their
source of data. The combination of many individual photographic
captures of an environment, with accurate knowledge of the used
lens and camera position for every image, is called a light field (LF)
capture.

Examples that demonstrate the potential of using LF captures
over traditional single-camera captures include Google’s “Welcome
To Light Fields” [17] and DeepView [4] and Meta’s “Manifold in
Action” [18]. These allow for high-quality, real-time rendering in
VR, but the freedom of motion of the viewer is confined by a small
sphere determined by the used capture setup. Enabling research
for immersive 6DoF experiences with less confined freedom of
movement relies on the availability of datasets that capture the
environment in an immersive way over larger volumes. Unfortu-
nately, to the best of our knowledge, no currently available dataset
has the combination of properties required for large-volume 6DoF
immersive navigation. For this reason, we propose a novel dataset
“SILVR” (Synthetic Immersive Large-Volume Ray dataset) with the
following features:

(i) Three photo-realistic synthetic scenes, renderedwith ground-
truth depth maps. The scenes contain several elements that
are known to pose challenges for many LF technologies, such
as specularities, volumetrics, reflections, and translucency.

(ii) High-resolution (2048px × 2048px) fish-eye (180° field of
view) cameras are evenly distributed (±0.1m apart) across
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the surface of a cuboid or sphere. This leads to a dense sam-
pling of the plenoptic function, and thus of the light rays
entering the cuboid or sphere.

(iii) The cuboids and spheres are large (2.2m3 to 48m3), with
cameras looking outward. This allows for 6DoF in a large
volume.

The dataset consists of static images, ground-truth depth maps,
and configuration files containing details about the intrinsics and
extrinsics of each camera. In addition to this, we make two tools
openly available: the addon that was developed to render the im-
ages with Blender, and a reprojection tool that converts between
panoramic or ultra-wide and rectilinear images. The dataset and
tools can be found on https://idlabmedia.github.io/large-lightfields-
dataset, together with more in-depth information, examples and
instructions on how to reproduce all results.

2 RELATED DATASETS
This section discusses some existing relevant LF datasets and as-
sesses their applicability to large-volume immersive 6DoF experi-
ences. Aspects such as the presence of depth maps, as well as the
presence of optical elements such as specularities, volumetrics (e.g.,
fog, water, fire, smoke), and translucency are considered. Table 1
summarizes the datasets described below. Most datasets fall in one
of three categories: inside-out light fields, outside-in light fields, mul-
tiple panoramic 360° captures. Broxton et al. introduced the term
interpolation volume (IV) [6] (or ray intersection volume in [5]) as
the volume behind the cameras that consists of the points for which
incoming light rays can be obtained by interpolating data captured
from the cameras [5, 6]. We extend this concept and introduce
immersive interpolation volume (IIV), which is the interpolation
volume limited to the points for which light rays in any direction
can be obtained by interpolation. We are interested in datasets with
a large IIV, as these enable immersive 6DoF experiences.

The first category of LF datasets uses cameras in an inside-out
fashion to capture the environment. Many datasets in this category
use camera setups organized on a plane [1, 8, 10, 12, 21] or curved
surface. A notable example is the camera rig by Broxton et al., where
46 video cameras are mounted on an acrylic dome, which provides
an IV which is around 80cm in width [5]. While some datasets
have a considerable IV, they all have an empty IIV, as the cameras
were all pointing towards the same region of the environment.
Pozo et al. built a 16-camera rig with cameras positioned on a
sphere pointing outward, yielding a spherical IIV with a diameter
of approximately 1m, which they use to record immersive video [18].
Broxton et al. released their Welcome to Light Fields software demo
on SteamVR along with several LF captures with a spherical IIV
with a diameter of approximately 60cm [4, 17]. However, they use
a customized closed-source VP9 video codec to compress the LF
data [17], which makes it difficult to use it for research. Additionally,
LFs captured with plenoptic cameras (e.g., Lytro Illum) like the
Kalantari dataset [11] and The Stanford Lytro Light Field Archive [13]
also belong in this category, but because they are not immersive
(i.e., no 360° light information is available) and have a tiny IV (only
a few centimeters wide), they are not included in Table 1.

The next category of LF datasets employs outside-in capturing
for object in an environment, without explicitly capturing the envi-
ronment itself. The cameras are positioned around the object and
point inward to capture this object. As such, these LF captures are
not considered immersive in the context of this paper. While the
IV is typically large as it reaches entirely around the object, the IIV
is empty. Examples of such datasets include [2, 15, 20, 22] which
we will not further discuss but are included in Table 1 instead.

The last category of LF datasets uses multiple 360°-panoramic
captures from an environment. These 360° photographs are typi-
cally taken on the same elevation from the ground and relatively
far apart (±2m), such as the work by Chang et al. [7] and Armeni
et al. [3] in which the Matterport camera is used. The Matterport
camera is put on a rotating tripod and produces 18 images to cover
the full horizontal 360° field of view. However, the poles (above and
below the camera) are missing from the field of view, and the result-
ing images are of rather low resolution (1280px × 1024px), which
likely results in noticeable aliasing in modern VR headsets. The
FTV360 dataset by Maugey et al. captures videos from 40 tripod-
mounted 360° cameras simultaneously [14]. The distance between
neighboring cameras is between 1m and 3m and camera positions
are estimated for all recorded sequences. The fact that the differ-
ent viewpoints are far apart makes such datasets unsuitable for
LF interpolation techniques, as these typically require denser sam-
pled data. We reflect this shortcoming in Table 1 by assigning an
empty IV (Ø) for such datasets, although the size of the area they
span with the camera positions is included between parenthesis
for comparison. Techniques that do use such sparse data typically
rely on accurate depth estimations, and use intermediate represen-
tations like meshes or point clouds. While these techniques deliver
immersive 6DoF experiences, they rarely use LF concepts at their
core. Additionally, when capturing an environment sparsely like
this, challenging visual elements like specularities, volumetrics, and
refraction effects are not adequately captured in the dataset.

We conclude that only the dataset from Pozo et al. [18] is truly
immersive. However, while the IIV is 1m in diameter (which is
among the largest of real-world camera setups), it consists of only
16 input views. This low number of views makes it difficult to
adequately capture specularities and other difficult elements, as
explained for themultiple-360° category. Overall, there are no public
datasets capturing an environment in an inside-out way with a
dense camera setup.

3 DATASET GENERATION AND
DESCRIPTION

To address the absence of dense immersive light field datasets, this
paper proposes a new dataset with a large interpolation volume
covered by many cameras in an immersive configuration. To this
end, three virtual scenes were rendered with Blender’s ray-tracing
engine Cycles. Section 3.1 discusses the scenes content-wise, and
Section 3.2 describes the selected camera configurations, and the
rendering process.

https://idlabmedia.github.io/large-lightfields-dataset
https://idlabmedia.github.io/large-lightfields-dataset
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Stanford LF Archive [12] N ✓ various (±1MP) tiny 289 (=17×17) (1)
OrangeKitchen [1] S ✓ ✓ ✓ 1920 × 1080 tiny ✓ 25
NokiaChess [1] S ✓ ✓ 2048 × 2048 small ✓ ✓ 10
Technicolor LF Dataset [21] N ✓ 2048 × 1088 small 16 (=4×4)
Google Spaces [8] N ✓ ✓ 2048 × 1229 small 16
Pozo et al. 6DoF Video Camera [18] N ✓ 3160 × 2160 medium ✓ 16 (2)
Hu et al. 4DLFVD [10] N ✓ ✓ ✓ 1920 × 1056 small 100
Broxton et al. [5] N ✓ ✓ ✓ 2560 × 1920 medium 46 (3)

O
ut
sid

e-
in

LF
s Meta CO3D [20] N ✓ ✓ various - various

Google RealEstate10K [22] N ✓ ✓ various - various (4)
DTU Multi View Stereo [2] N ✓ 1600 × 1200 - 49 or 64
NeRF (llff) data [15] N ✓ ✓ 4032 × 3024 - 20 to 62

M
ul
ti
36
0° ClassroomVideo [1] S ✓ 4096 × 2048 Ø (medium) ✓ ✓ 15

Matterport3D [7] N ✓ ✓ 1280 × 1024 Ø (medium) ✓ ✓ 18𝑛 (5)
Armeni et al. 2D-3D-semantic [3] N ✓ ✓ 1280 × 1024 Ø (medium) ✓ ✓ 18𝑛 (5)
Maugey et al. FTV360 [14] N ✓ 3840 × 1920 Ø (large) ✓ 40

O
u
rs

Barbershop S ✓ ✓ 2048 × 2048 large ✓ ✓ 642 or 1400
Lone Monk S ✓ 2048 × 2048 large ✓ ✓ 642 or 2226
Zen Garden S ✓ ✓ 2048 × 2048 large ✓ ✓ 642 or 1806

Table 1: Overview of existing scenes and datasets related to LF or immersive media. Notes: (1) Tarot Cards has interesting light
refraction through a glass ball. (2) 16 Fisheye lenses on a sphere with diameter 1m, yielding an IIV of approximately 0.52m3.
(3) 46 Fisheye lenses on a dome. (4) YouTube videos solved for camera intrinsics and extrinsics, meaningmostly 1-dimensional
camera traces. (5) For one panoramic image, 18 pictures are taken by a rotating camera on a tripod. The dataset consists of
10800 panoramas for Matterport3D and 1413 for 2D-3D semantic.

3.1 Virtual Scenes
Virtual scenes created in Blender were chosen over real-world en-
vironments. This decision was made for several reasons. First, ren-
dering software enables a flexible configuration of camera setups
and artistic choices, while still being able to produce photo-realistic
results. Second, software lenses are perfect, do not require calibra-
tion, and do not require the camera positions and orientations to be
known. Third, rendering can be done on existing general-purpose
computer hardware. Finally, rendering is relatively inexpensive1.

Two of the scenes we selected are openly-available demo files
from the Blender website2: “Agent 327: Barbershop” (CC-BY, Blender
Foundation [9]) and “Lone Monk” (CC-BY, by Carlo Bergonzini from
Monorender). Both scenes have enough geometry and decorations
to make for an interesting immersive experience. This is in contrast
to artists that only focus on the area that is visible by their chosen
camera viewpoint. The Barbershop scene features the interior of a
barbershop with many small props, fine detail, and a mirror. Not a
single patch in this room looks not decorated. Lone Monk features

1With a total rendering time of around 12 days on a Linux system with two NVIDIA
Quadro P5000 GPUs, consuming an average 500W (based on the on-device display),
total energy usage is estimated to be around 144kWh. Associated electricity costs are
estimated to be around 46 euro.
2https://www.blender.org/download/demo-files/

a courtyard of a cloister with a water well in the center. Small
adjustments were made to make the scene slightly more immersive,
as one side of the courtyard had some issues with the roof (these
issues were not visible from the original camera). Additionally, a
solidify modifier was added to the roof tiles to give them some
thickness.

The third scene “Zen Garden” was built from scratch by the
authors, using CC-0 models and textures. We integrated elements
which are known to be challenging for LF technologies. More specif-
ically, the statue and floor stones have reflective materials causing
complex specularities. Additionally, there is a small mirror next to
the statue. There is also a fire, several candles, and lanterns with a
translucent case, all of which produce ambiguous depths. There is
fog visible in front of the distant mountains and, finally, there are
lots of small details such as tree branches, grass, and bamboo.

The three rendered scenes are shown in Fig. 1.

3.2 Camera Setup and Image Generation
In order to maximize the IIV for a given camera setup, (equidistant)
fish-eye lenses with a 180° field of view are used. We chose to pro-
vide two camera-positioning setups per scene: one cuboid and one
spherical, as demonstrated in Fig. 2. The spherical setup is an ele-
gant way to capture lots light rays from many directions entering

https://www.blender.org/download/demo-files/
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Figure 1: Overview of the Barbershop, Lone Monk, and Zen Garden scenes.

the volume. The cuboid option is added to allow for cameras in six
planar setups, which can yield even larger IIVs, as cuboids usually
fit easier in closed areas, compared to a sphere. The specifics of
these setups can be found in Table 2. In the table, it can be seen
that the IIV is indeed significantly larger than any of the discussed
datasets in Section 2, and that the number of views is high to main-
tain dense spatial sampling. Additionally, we rendered two extra
evaluation configurations: a spherical setup with fewer cameras
using perspective lenses, and another setup with 8 equirectangu-
lar panoramic renders as seen from the corners of a cube. These
additional renders are provided to serve as ground truth data to
evaluate view synthesis algorithms, as they do not coincide with
any of the views in the other configurations. However, the fact
that the viewpoints in the base configurations are so numerous
and densely positioned enables researchers to subdivide them into
input (e.g., training) and evaluation sets if necessary. If a uniform
division is desirable, we suggest to use the views with odd sequence
numbers for evaluation.

In order to configure these camera setups easily and render all of
the respective views, a novel Blender addon was developed. This ad-
don is available online at https://github.com/IDLabMedia/blender-
lightfield-addon. All resulting image files have a resolution of
2048px × 2048px with a circular projection and are stored loss-
lessly in the OpenEXR file format, using 16-bit floating points for
all color channels and the depth. Depth is measured in meters from
the camera projection plane (meaning Z-depth, and not Euclidean
distance). For each setup, all camera intrinsics and extrinsics are
recorded in a JSON file.

Figure 2: The placement of the cuboid and sphere camera
setups in Zen Garden. The small black arrows indicate the
direction each camera is facing. For the cuboid, all cameras
belonging to the same face have the same rotation.

.

4 REPROJECTING TO DIFFERENT LENS
TYPES

As this dataset provides rendered views with fish-eye projections,
these views are not directly suited to for applications requiring
perspective projection views. To address this, we have developed an
additional software tool that can convert images between different
projections, assuming perfect lenses. This tool reads the EXR files,
reprojects them according to the specified desired lens type and
lens parameters, and writes the result back to EXR or PNG format.
It should be noted that only EXR output format will also reproject
the depth map, since PNG has no support for accurately storing
floating point data required for depth values. Additionally, when
using this tool, one should consider the artifacts of the reprojection
process, such as aliasing and upsampling. Aliasing can be desirable
in certain situations, but can be prevented by using multi-sampled
reprojection (which can be configured through the command line
argument --samples). Perspective projections stretch out the edges
of the field of view enormouslywhen using a large field of view. This
can cause upsampling (i.e., significantly more pixels cover a patch
of the field of view in the perspective-projected image than were
available in the fish-eye source data). We therefore suggest to either
work with the fish-eye source data directly whenever possible, or
consider using smaller field of views (which significantly shrinks the
IIV). Alternatively, to avoid upsamplingwith large field of views, the
result can be downsampled by using the command line argument
--scale with an argument smaller than 1, which we recommend to
combine with multi sampling to avoid aliasing in the center.

5 EXAMPLE USE CASE: NERF
In this Section, we describe the process of preparing the dataset for
use in an example application, in this case NVLabs’ Instant Neural
Graphics Primitives (instant-ngp) implementation for training Neu-
ral Radiance Fields (NerF) [16]. While not fundamental to NeRFs
themselves, instant-ngp expects images to use a perspective projec-
tion. As such, in the following example command, we convert the
spherical camera setup of Lone Monk to a rectilinear lens (i.e., lens
with perspective projection) with focal length of 18mm, recorded
on an image sensor of size 36mm × 36mm, stored as PNG files:
./ reproject --parallel 4 --rectilinear 18,36 --scale 0.125 \

--png --exposure -1 --reinhard 5 \

--input -dir lone_monk/LFSphere_e220cm_d400cm/exr \

--input -cfg lone_monk/LFSphere_e220cm_d400cm/lightfield.json \

--output -dir lone_monk_perspective \

--output -cfg lone_monk_perspective/lightfield.json

https://github.com/IDLabMedia/blender-lightfield-addon
https://github.com/IDLabMedia/blender-lightfield-addon
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Number of views Dimensions Mean distance
between camerasin total along (X, Y, Z)

Barbershop cuboid 1400 (10, 30, 10) 1m × 3m × 1m 11cm
sphere 642 - 1.45m diameter 9cm

Lone Monk cuboid 2226 (21, 21, 16) 4m × 4m × 3m 20cm
sphere 642 - 4.0m diameter 31cm

Zen Garden cuboid 1806 (21, 21, 11) 2m × 2m × 1m 10cm
sphere 642 - 1.7m diameter 13cm

Table 2: A summary of the camera setups used in the proposed dataset. For the dimensions of the cuboids, the third value
indicates the vertical axis. The mean distance is calculated to each camera’s nearest (non-overlapping) neighbour.

In the command, the lens type and specifics are extracted from
the lightfield.json input configuration file. Note that the dimen-
sions of the image are reduced to 1/8th (i.e., 256px × 256px) and
no anti-aliasing measures are taken (i.e., there is no --samples 8

flag). This exploits the fact that instant-ngp can train the NeRF by
only generating rays from the pixel centers and that we have a lot
of different views available. Combining many aliased views still
yields good results as the aliasing per view is high but the alias-
ing in the light field in its entirety is relatively low. Additionally,
the EXR files store HDR content, and the Lone Monk scene is too
bright to convert to PNG (which does not have HDR support) with-
out adjusting exposure. As such, the exposure is reduced by one
stop (--exposure -1) and Reinhard tone mapping with maximum
brightness 5 (--reinhard 5) is applied [19].

Next, the configuration format for instant-ngp is different and
uses a different coordinate system. In the following example com-
mand, the generated configuration file from the previous step (that
describes the reprojected dataset) is converted to the format of
instant-ngp:
python3 generate_NERF_transforms.py \

--scene lone_monk \

--dataset -config lone_monk_perspective/lightfield.json \

--output -transforms lone_monk_perspective/transforms.json

The used Python script is also available on our GitHub repository.
Note that the ‘--scene lone_monk’ flag is used to use reasonable
default values for the scaling and positioning of the scene within the
NeRF bounding volume. After executing the two provided example
commands, the generated ‘lone_monk_perspective’ folder is ready
to be opened by instant-ngp3.

6 CONCLUSION
In this paper, we presented a new light field dataset designed for
six-degrees-of-freedom navigation with full panoramic vision in a
large volume. Due to the large volume, objects can be visible, then
occluded, and then visible again when moving linearly through the
volume, as the viewpoint can fully traverse past an occluder, which
is less common in previous datasets. Additionally, the digital scenes
(with all used camera setups) and software tools we developed
are made public. More specifically, three scenes (Blender’s “Agent
327 Barbershop”, “Lone Monk”, and our own novel “Zen Garden”)
were rendered using a novel Blender plugin, using both a cuboid-

3A few animated results can be found at https://idlabmedia.github.io/large-lightfields-
dataset.

and sphere-shaped camera setup. This resulted in the presented
dataset of multi-view images and associated depth maps. Lastly, we
presented software that converts images from fish-eye projection
to rectilinear projection and vice versa, to broaden applicability of
the dataset.

Although the camera setups used in this paper are large com-
pared to the related work, the Barbershop, Lone Monk and Zen
Garden scenes allow for even larger and unconventionally shaped
setups. Zen Garden contains dynamic elements, such as the wa-
ter and fire, so capturing videos instead of static images is possi-
ble. The dataset stems from virtual environments, which allows
researchers to test their approaches with ground truth depth infor-
mation available (when not ambiguous due to translucency). Future
work includes extending the presented tools and software pipeline
towards light field videos, which entails handling even more data
and finding or creating interesting animated scenes.
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