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ABSTRACT
Multimedia streaming over the Internet (live and on demand) is
the cornerstone of modern Internet carrying more than 60% of all
traffic. With such high demand, delivering outstanding user expe-
rience is a crucial and challenging task. To evaluate user Quality
of Experience (QoE) many researchers deploy subjective quality
assessments where participants watch and rate videos artificially in-
fused with various temporal and spatial impairments. To aid current
efforts in bridging the gap between the mapping of objective video
QoE metrics to user experience, we developed DashReStreamer, an
open-source framework for re-creating adaptively streamed video
in real networks. DashReStreamer utilises a log created by a HTTP
adaptive streaming (HAS) algorithm run in an uncontrolled envi-
ronment (i.e., wired or wireless networks), encoding visual changes
and stall events in one video file. These videos are applicable for
subjective QoE evaluation mimicking realistic network conditions.

To supplement DashReStreamer, we re-create 234 realistic video
clips, based on video logs collected from real mobile and wireless
networks. In addition our dataset contains both video logs with
all decisions made by the HAS algorithm and network bandwidth
profile illustrating throughput distribution. We believe this dataset
and framework will permit other researchers in their pursuit for the
final frontier in understanding the impact of video QoE dynamics.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Networks
→ Public Internet;Wireless access networks.

KEYWORDS
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1 INTRODUCTION
In its early days, the Internet was conceived with the idea for fast
and reliable information sharing between many remote users. Since
then, the Internet has transformed beyond basic e-mail commu-
nication, becoming one of the key pillars of modern society with
multimedia entertainment at its heart, representing the dominant
type of traffic carried over today’s networks.

Video streaming depicts the main driver behind multimedia
entertainment, accounting for almost 60% of all Internet traffic in
2020. Furthermore, fuelled by a recent pandemic outbreak, forcing
people to stay home, video traffic grew over the last two years, with
applications such as YouTube, Netflix, Amazon Prime, Disney+ and
Apple+ dominating overall traffic share [16].

The popularity of video streaming services led to user demand
for high QoE of delivered content. By definition, QoE represents the
magnitude of annoyance or the delight of a user’s experience with
an application or service [3]. However, measuring and modelling
user QoE is challenging due to its subjective intrinsic component.
The challenge lies in modelling impairments that contribute to total
QoE score. These impairments include initial delay, stall events, av-
erage quality, switching frequency, and video duration [11]. Finding
an optimal combination of these impairments to map to QoE score
is not a trivial task. Common approach includes performing subjec-
tive studies devising weights for each of the impairments [5, 11, 13].
Many adaptive algorithms rely on these derived QoE models, using
them as an objective function in designing adaptation logic [23, 24].
On the networks side, vendors usually rely on network metrics,
such as packet loss and utilisation to map to user QoE.

The subjective evaluation of QoE represents a foundation for
better understanding and modelling user experience. Few studies
perform both subjective and objective QoE evaluation [5–7, 11, 18].
To estimate subjective experience, researchers design a few test
sequences containing video impairments. Typically, these impair-
ments are added artificially to the video sequence [11, 22]. However,
in literature there are many datasets with bandwidth traces col-
lected in various mobile environments under different wireless
technologies [10, 15]. These datasets can be used for obtaining
objective performance of adaptation algorithms including rate dis-
tribution, stall duration, and stall occurrence. Generating test video
sequences based on realistic video logs complement the current lit-
erature on QoE. To the best of our knowledge, there are no datasets
generated based on real traffic patterns available to the research
community.

Motivated by this observation, we offer a framework for creating
video sequences based on video logs collected either in real network
or based on realistic bandwidth traces. Furthermore, we provide
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234 video sequences based on video logs analysed over different
bandwidth profiles collected from various wireless networks [17].
Video logs were generated by HAS streaming algorithms under
bandwidth profiles from different networks, resulting in a realistic
snapshot of decisions algorithms made, including bitrate decisions
(giving us rate distribution) and stall events (number and duration
of stalls).

In this paper, we present DashReStreamer 1, a framework for
generating test video sequences with encoded stall and rate changes.
In addition to the framework, we provide an extensive dataset
containing video sequences created over 3G, 4G andWiFi networks.
In total, 234 video sequences were generated with a duration of 5
minutes2. The dataset contains video logs and bandwidth traces
used for the video sequence generation. These video sequences are
suitable for subjective QoE evaluation, and can aid in the better
understanding of user experience in different scenarios. To the best
of our knowledge, our QoE dataset is the first publicly available
dataset that contains video sequence, logs, and bandwidth traces.

The remainder of this paper is organised as follows. Section 2
describes related work regarding similar datasets and QoE-related
video metrics. The overview and key features of proposed frame-
work are explained in Section 3, while Section 4 provides an overview
of the dataset generated by DashReStreamer. In Section 5 we layout
future work, while Section 6 outlines our conclusion.

2 BACKGROUND AND RELATEDWORK
The main goal of HAS algorithms is maximising user perceived
QoE. This daunting task relies on accurate representation of sub-
jective impact through mapping objective Quality of Service (QoS)
metrics at client side (e.g., initial delay, average bitrate, re-buffering
events, and switching frequency) or metrics measured at the net-
work such as utilisation and packet-loss rate. Also, the majority
of proposed HAS algorithms in literature relies on QoE models
to quantitatively compare its performance to existing state-of-the
art HAS algorithms. Furthermore, QoE models expressed as linear
combination of impairments (1), represent a suitable candidate for
designing a HAS algorithm that maximises a given QoE model. A
typical approach includes modelling the QoE model as the utility
function of the optimisation problem [2, 23, 24].

A typical template equation used for deriving QoE model is [5,
11, 13]:

QoE𝑠 = 𝑤𝑜 · QoE𝑚 − (𝑤𝑡 · 𝐼𝑡 +𝑤𝑣 · 𝐼𝑣) + 𝑓 (𝐼𝑡 , 𝐼𝑣), (1)

where 𝐼𝑡 represents temporal impairment factor, and𝑤𝑡 represents
its weight. Temporal quality impairments indicate degradation due
to initial delay and stall performance (stall number and stall dura-
tion). While initial delay has a minor negative effect on QoE (up
to 16 seconds), stall events have the highest negative impact on
overall user experience [19]. 𝐼𝑣 , and 𝑤𝑣 represent visual quality
impairment factors and its weight, respectively.

Average bitrate and switching behaviour model visual quality
impairments. Similar to stall performance, bitrate quality amplitude
has a significant effect on QoE [8], unlike switching between dif-
ferent qualities while retaining the same resolution [8]. However,

1https://github.com/khodzic2/DashReStreamer
2https://shorturl.at/dtISV

switching between different resolutions can influence user experi-
ence [1]. QoE𝑚 depicts the maximum (initial) value (score) for QoE
or growth factor depending on the QoE model, and𝑤𝑜 denotes a
weight for the QoE𝑚 score. Some QoE models take into account
impairments that occur simultaneously. In these scenarios, aggre-
gate subjective effect is not a direct sum of each impairment [11].
The role of function 𝑓 (𝐼𝑡 , 𝐼𝑣) is to compensate for this effect.

However, these impairments (i.e., metrics) are mutually con-
tradictory. High bitrate increases the chance of buffer underflow
resulting in stall events, while streaming at low bitrate quality has
a severe negative impact on perceived user experience.

To capture the mapping between user perceived experience and
objective metrics, many studies use subjective evaluation. This
evaluation relies on assessing video quality by participants in a
controlled lab environment [4, 11, 13, 20]. Each participant rates
a video sequence on a 100-point scale (denoted as 𝑅, where some
studies use 5 or 10-point scale). The procedure is repeated for a
series of test sequences. Each test sequence is embellished with
one or more impairments. Finally, for each test sequence and given
score R, the impairment impact is calculated as 100-R.

Subjective evaluation is an expensive, time-consuming process
performedwith a limited number of human subjects (usually around
30) restricting the statistical validity of collected results. Alterna-
tively, some studies opt for a crowd-sourcing approach, where a
large number of users rate video sequences online in an uncon-
trolled environment [5, 9, 22].

The main challenge for subjective evaluation is augmentation
of the test video sequences with particular impairments. Typically,
these impairments are artificially created and added to video clips.
However, artificially created impairments do not necessarily reflect
impairments observed in real network conditions, either their fre-
quency (e.g., number of rate switches, number of stalls), or duration
(e.g., stall duration).

There are a plethora of bandwidth datasets collected in real
networks available in literature [10, 14, 15]. These datasets reflects
real conditions observed in networks and can be leveraged for
realistic creation of temporal and visual impairments.

Motivated by the lack of video sequences with the impairments
based on real network conditions, we designed a tool for creating
video sequences with impairments collected from video sessions
collected over realistic bandwidth traces.We believe this dataset will
aid in ongoing research to better understanding factors affecting
user experience.

3 DashReStreamer OVERVIEW
DashReStreamer provides the functionality to reproduce network
impact on video player performances by creating video clips includ-
ing all resolution changes and re-buffering events. We achieve this
functionality by utilising video logs generated by the client during
the original stream of content in an uncontrolled environment (i.e.,
real production network).

Typically these logs include various information related to HAS
QoS metrics (e.g., bitrate, switches and stall information). To illus-
trate, Table 1 depicts an example of a video log.

From the DashReStreamer perspective, three features are neces-
sary for video clips generation. These features are details on:

https://github.com/khodzic2/DashReStreamer
https://shorturl.at/dtISV
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Table 1: Sample output from the video log

Type Description Unit
Seg_# Streamed segment number -
Arr_Time Arrival time ms
Del_Time Time taken to receive the segment ms
Stall_Dur Stall duration ms
Rep_Level Representation Quality kbps
Del_Rate Delivery rate kbps
Act_Rate Actual rate kbps
Byte_Size Size of segment byte
Buffer_Level Buffer level ms

• Segment number.
• Segment bitrate: we use this information to select the sub-
sets of downloaded segments during playback (currently
DashReStreamer does not support byte-range HAS content).

• Stall events: we use stall events (occurrence and duration)
to add stalls (e.g., duplicating last frame of segment) at the
end of segments affected by re-buffering events.

3.1 Framework Implementation
We use the Python programming language and FFmpeg3 library for
the implementation of DashReStreamer. FFmpeg is a cross-platform
multimedia framework for transforming (i.e., encoding, decoding,
transcoding, mux, demux, stream, and filter) a wide range of media
formats (video and image).

DashReStreamer starts by parsing video log file, where used
bitrates of video segments are identified for further processing.
Two methods are used for this process:

• read_replevels_log - takes four arguments (file path, index
column name, bitrate column name, and type of separator,
e.g., csv), parses the file and returns the output as a hash
function (dictionary) storing the bitrate for each downloaded
segment.

• read_stalls_log - takes four arguments and returns the posi-
tion and duration of each stall, where position is related to
segment when the stall happened.

The next step includes filtering a subset of streamed segments.
Segments can be stored locally or remotely on a web server. In
the latter case, an mpd file is used for downloading the streamed
segments from the server to the local machine.

Three methods are used for the manipulation of the streamed
segments (for the case when segments are already stored locally):

• copy_init_file - takes two arguments, location of init mp4
file and destination where init file will be stored for further
processing.

• copy_video_segments and copy_audio_segments - are meth-
ods for copying downloaded segments for further processing.
Similar to copy_init_file method, these methods take two ar-
guments. These methods rely on a dictionary created in the
previous step by the read_replevels_log and read_stalls_log

3https://www.ffmpeg.org/

methods for appropriate identification of streamed segments
and stall events.

For the case when segments are directly downloaded from a
web server, the script uses the location of the mpd (i.e., URL) to
retrieve only the subset of segments streamed in the video logs. This
procedure is similar to the behaviour of traditional HAS client [21]
(without actual decoding of the data). We use an existing library
for parsing mpd files4. There are three main methods for preparing
the data linking in this step:

• parse_mpd - the method that parses mpd files and stores urls
of audio and video segments into a dictionary,

• download_video_segments - takes two arguments, location
of mpd file and destination folder,

• download_audio_segments - similar to the previous method,
method downloads audio segments.

DashReStreamer proceeds by combining segments with init file
(originally segments are in m4s format). For this operation we use
two methods:

• prepare_video_init - takes two arguments, location of video
segments and init file,

• prepare_audio_init - prepares audio segments similar to the
previous method.

The output of these methods are new audio and video segments
(in avi5 and mkv6 format respectively) which can be played inde-
pendently. Next, we combine the individual pairs of audio and video
segments, using the FFmpeg library. This operation is performed
by method concat_audio_video_ffmpeg which takes two arguments:
location of segments and flag indicating should segment be rescaled
to different resolution.

We create a video sequence combining segments including all
bitrate/resolution changes and stall events. First, we create stall-
induced segments. For the creation of stall-induced segments, we
take the stall duration and the segment just before stall starts. We
take the last frame of the identified segment, and add them at the
end of segment for the duration of the stall. Finally, we add gif7 as
an overlay on top of the stall-induced segments. After all segments
are prepared, we join them into a final mkv video file. The preceding
logic is implemented in method concat_audio_video_ffmpeg_final.
This method takes three arguments: location of segments, location
of gif and destination for final video.

3.2 Example of Use
There are several options available to run DashReStreamer, either
directly through the command line or using a configuration file.
For command line use, Table 2 depicts the supported options for
running the framework.
Case #1: For segment files stored locally, the command outlined in
Listing 1 produces a video file based on the video log file.

1 # python video_log_merger.py −−path_to_log video_log.log
2 −−rep_lvl_col Rep_Level
3 −−seg_index_col Chunk_Index
4 −−log_separator tab

4https://github.com/sangwonl/python-mpegdash
5Audio Video Interleave
6Matroska Multimedia Container
7Graphics Interchange Format

https://www.ffmpeg.org/
https://github.com/sangwonl/python-mpegdash
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Table 2: Options for running QoE framework

Parameter Description
path_to_log Location of video log
rep_lvl_col Column name used in video log for bitrate
seg_index_col Column name used in video log for segment

index
stall_dur_col Column name used in video log for stall dura-

tion
log_separator Separator used in video log (example: tab)
config_path Location of config file
path_video Location of video segments
path_audio Location of audio segments
gif_path Location of gif file
log_location Flag indicating location of segments (local or

remote)
dest_video Locationwhere to save intermediate files during

processing (segments)
final_path Location where final concated video is saved
parameter_type Flag indicating use of command line arguments

or config file
cleanup Flag indicating removal of intermediate files

(segments)
auto_scale Options for enabling auto-scaling of segment

resolution
scale_res Rescaling segments to predetermined resolution

(example: 1080p)

5 −−stall_dur_col Stall_Dur
6 −−path_video ./sintel/DASH_Files/full/
7 −−dest_video ./tmp_files/
8 −−path_audio ./sintel/DASH_Files/audio/full/
9 −−gif_path ./gif.gif
10 −−final_path ./final/ −−parameter_type path
11 −−cleanup True

Listing 1: Example of creating video from local segments

The depicted example in in Listing 1 utilises the open-source movie
Sintel, filters segment qualities used by adaptation algorithm out-
lined by video log file (video_log.log file), re-creates video sequence
adding stall events (with the re-buffering image) and saves the
output to the folder final. This command retains native resolution
for each segment causing a visual change in aspect ratio when
segments of the video switch from one resolution to another.

Alternatively, we can mandate that all segments have the same
output resolution through the option of autoscaling. We support
two types of autoscaling: scaling to the highest resolution observed
in the log file, or scaling to predetermined resolution given by
parameter scale_res. The Listing 2 example shows how to create an
output video file with a fixed 1080p resolution for all segments.
Case #2: Creating video file with same predetermined resolution
is depicted in Listing 2

1 # python video_log_merger.py −−path_to_log video_log.log

2 −−rep_lvl_col Rep_Level
3 −−seg_index_col Chunk_Index
4 −−log_separator tab
5 −−stall_dur_col Stall_Dur
6 −−path_video ./sintel/DASH_Files/full/
7 −−dest_video ./tmp_files/
8 −−path_audio ./sintel/DASH_Files/audio/full/
9 −−gif_path ./gif.gif
10 −−final_path ./final/ −−parameter_type path
11 −−scale_resolution 1080p
12 −−auto_scale 2
13 −−cleanup True

Listing 2: Example of creating video with same resolution
for all segments

Similar to Listing 1, we recreate an output video clip from the video
log file, with the difference that we scale each segment to a Full
HD resolution. This option is achieved by setting auto_scale to 2
(where we have three supported values 0,1,2), and setting scale_res
to 1080p.

The DASHReStreamer framework also supports the use of a
configuration file as input to the python script. Listing 3 illustrates
an example configuration file. Note that all the input parameters
are the same as the parameters used for the command-line input.

[parameters]

parameters = config

path_to_log = <path>

rep_lvl_column = Rep_Level

chunk_index_column = Chunk_Index

stall_dur_column = Stall_Dur

log_separator = tab

path_audio = <path to audio segments>

path_video = <path to video segments>

dest_video = <where to save/download segments>

gif_path = <path to gif file>

final_path = <where to save final video>

mpd_path = <url for mpd file>

auto_scale = 0

log_location = local

Listing 3: Example of config file

4 QOE DATASET OVERVIEW
This section gives a short overview of the dataset used for generat-
ing various video sequences in different wireless conditions. The
majority of the video sequences contain at least one re-buffering
event as those cases are the most interesting for QoE modelling.

4.1 Video Logs Generation
We use video logs generated by experiments in [17] for the creation
of the video sequences. The video logs are generated based on
bandwidth traces collected from real operational networks. Figure 1
illustrates a generalised testbed used for producing video logs.

The testbed consists of a server machine, an intermediate device,
e.g., Wireless Acess Point (WAP) and one or more wireless-capable
end devices (i.e., mobile device). The server machine performs two
roles, one as web server for video content, and second as traffic
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Video Player Web Server

Traffic Shaper: Trace Driven

Wireless Technologies

Figure 1: The data-driven generation testbed.

shaper for link between server and intermediate device. The traffic
shaping procedure includes the use of traffic shaping tools like Linux
traffic control (tc) for emulation of different bandwidth profiles from
collected bandwidth logs. The intermediate device connects to the
end device viaWiFi channel. Finally, the end device streams content
from the server via a bottleneck link creating the video log after
streaming finishes.

A 4K encoded animation clip is used as the video content stored
at the server. The clip is encoded, using the H.264/AVC codec, into
thirteen bitrates (from 235kbps to 40Mbps) across eight resolutions.

For traffic shaping, bandwidth logs were used from three dif-
ferent wireless technologies, 3G, 4G and WiFi, including various
mobility patterns (static, pedestrian, bus, car and tram). Table 3
shows summary statistics (average and standard deviation of mea-
sured bandwidth) for these logs [17].

Table 3: Throughput Statistics for collected bandwidth logs

Technology Average (Mbps) Standard Deviation (Mbps)
3G 1.26 0.97
4G 11.32 13.17
WiFi 18.71 17.73

4.2 Video Sequences Generation
We utilise video logs explained in the previous section and our pro-
posed tool (see Section 3) to generate 234 video impaired clips. For
video content, we select three open-source clips from [12]. These
clips are Big Buck Bunny (BBB)8, Sintel9, and Tears of Steel (TOS)10.
Big Buck Bunny is an animation clip with a duration of 10 minutes
and 34 seconds. The content is composed of animated characters
with a non intricate background, encoded with a maximum 4K res-
olution of 3840x2160, at 60fps. Similarly, Sintel is an animation clip
with a duration of 14 minutes and 48 seconds. The content is com-
posed of complex animated characters and scenery, encoded with
a maximum 4K resolution of 3840x2160, at 24fps. Finally, Tears of
Steel is a movie-alike clip enhanced with digital visual effects of 12
minutes and 14 seconds duration. The content is composed of real
actors and superimposed digital effects, encoded with maximum
4K resolution of 3840x2160, at 24fps.

All clips are encoded in thirteen bitrates and eight different
resolutions as depicted in Table 4 and sourced from [12]. Also, all
clips are encoded with the sound of five minutes plus total stall
8https://peach.blender.org/
9https://durian.blender.org/about/
10https://mango.blender.org/about/

duration. We select 27, 25, and 26 video logs generated from 3G, 4G,
and WiFi network traces, respectively. Table 5 depicts video QoS
metric statistics for the selected logs.

Table 4: Ladder for the average encoding rate, and resolution
for the used dataset

No. Bitrate Resolution
13 40Mbps 3840x2160
12 25Mbps 3840x2160
11 15Mbps 3840x2160
10 4.3Mbps 1920x1080
9 3.85Mbps 1920x1080
8 3Mbps 1280x582
7 2.35Mbps 1280x582
6 1.75Mbps 720x328
5 1.05Mbps 640x292
4 750kbps 512x234
3 560kbps 512x234
2 375kbps 384x174
1 235kbps 320x146

Video logs from 3G network traces have the highest number of
stalls and stall duration followed by 4G and WiFi network traces.
This result is intuitive as indicated by throughput statistics in Ta-
ble 3. Also, WiFi network traces are mostly collected in a static
environment thus having the highest average throughput.

5 FUTUREWORK
While our framework currently offers a mechanism to generate an
adaptive video dataset, which can be used in subjective testing or
similar research settings, typically using a five-point MOS scale,
future work will include the calculation of Video Quality Metrics
such as PSNR, SSIM, VMAF and P.1203 [13] for each generated clip.
Creating additional KPIs through which video QoE and Network
QoS can be determined.

Furthermore DashReStreamer currently only supports the full
profile of the DASH standard. Future work includes adding support
for remaining mpd profiles (i.e., main, live, onDemand, and byte
range) and other HAS datasets available in the literature. We also
plan on adding realistic video clips for different HAS segment dura-
tions to our Dataset, including segment durations of between 2 and
10 seconds, allowing for a much richer and diversified QoE video
dataset.

6 CONCLUSIONS
In this paper, we present DashReStreamer, an open-source cross-
platform framework for reproducing adaptively streamed video
from real operational networks. DashReStreamer allows re-creating
video clips with all bitrate/quality changes and stall events. Gen-
erated video clips mimic decisions made by HAS adaptation algo-
rithms, and the selected bitrates chosen under realistic time-varying
conditions observed in the network. The framework utilises video
logs produced by HAS adaptation algorithm to re-create video clips.
Furthermore we generate 234 video clips mimicking the behaviour

https://peach.blender.org/
https://durian.blender.org/about/
https://mango.blender.org/about/
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Table 5: Average QoS metrics for selected video logs

Network Bitrate (Mbps) Num. Switches Num. Stalls Stall Dur. (s)
3G 1.6 19.6 3.4 53.9
4G 5.8 18.8 0.96 14.3
WiFi 6.3 12.5 0.77 1.95

of various HAS adaptation algorithms under three different wire-
less technologies (i.e., 3G, 4G, and WiFi), producing a dataset with
realistic bitrate changes and stall events. We believe this dataset
will help researchers in better understanding factors affecting user
experience for HAS multimedia technologies, aiding its use in both
objective and subjective QoE evaluation.
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