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Figure 1: Our vision for an interactive energy-efficient bio-hybrid system–where PhytoNodes interpret natural plant electric
signals for environmental monitoring and notify closeby citizens.1

ABSTRACT
Cities worldwide are growing, putting bigger populations at risk
due to urban pollution. Environmental monitoring is essential and
requires a major paradigm shift. We need green and inexpensive
means of measuring at high sensor densities and with high user
acceptance. We propose using phytosensing: using natural living
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plants as sensors. In plant experiments, we gather electrophysio-
logical data with sensor nodes. We expose the plant Zamioculcas
zamiifolia to five different stimuli: wind, temperature, blue light,
red light, or no stimulus. Using that data, we train ten different
types of artificial neural networks to classify measured time series
according to the respective stimulus. We achieve good accuracy and
succeed in running trained classifying artificial neural networks
online on the microcontroller of our small energy-efficient sensor
node. To indicate later possible use cases, we showcase the system
by sending a notification to a smartphone application once our
continuous signal analysis detects a given stimulus.

1Images retrieved from Vecteezy.com.
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1 INTRODUCTION
The share of the human population living in cities is increasing.
Estimates are that 68 % will live in cities by 2050.2 Despite all the
advantages of urban life (logistics, stimulated cultural life, etc.),
it comes with the danger of increased exposure to pollution and
subsequent health issues [25]. While the primary goal should be
to significantly reduce urban pollution, the other important means
is to monitor the environment. State of the art in environmental
monitoring are large, resource-hungry, and expensive measurement
stations that cannot possibly scale well [17]. A paradigm change
is required to reduce resource requirements and to allow for max-
imal scalability. Ideally, we require real-time data of high spatial
sampling frequency to enable authorities to impose evidence-based
policies. In the case of a health hazard, only rapid intervention can
ensure protecting the citizens. Especially, these systems need to be
greener to avoid the dichotomy of contributing to a city’s pollu-
tion by measuring it. In our new EU-funded project ‘WatchPlant’
(2021-2024), we want to contribute to such a possible paradigm shift.
Our key idea is to use phytosensing [2, 19], which is measuring
environmental features via living natural plants. Plants planted in
a city are exposed to the same air and air pollution as the citizens.
Physiological reactions measured in natural plants may allow us
to infer the causing stimulus, such as increased ozone concentra-
tions or particulate matter. Medium-term stress reactions in the
plants may even correlate with a few statistically identified health
issues of citizens. Our goal is to miniaturize measurement stations
by using plants as the primary sensor but necessarily combined
with sensors on plants that measure their reactions. We expect
significantly decreased costs and increased energy efficiency, while
accuracy and reliability may be challenging.

Our main contributions in this paper are: (a) designed low-cost,
energy-efficient sensor nodes for phytosensing called PhytoNodes,
(b) a large set of plant experiments with different stimuli (wind,
temperature, blue light, red light, no stimulus), (c) training and
testing of ten different types of artificial neural networks (ANN) to
classify the measurements in the plants according to the respective
stimulus, (d) running a trained ANN on the microcontroller of our
sensor nodes, and (e) partially showcasing the system’s integration

2https://www.un.org/development/desa/en/news/population/2018-revision-of-
world-urbanization-prospects.html

into a city’s potential IT infrastructure by sending notifications to
a smartphone application triggered by a successful online stimulus
identification.

2 RELATEDWORK
Over millions of years, plants have been exposed to dynamic en-
vironmental changes (e.g., varying temperature ranges and light
conditions, air and soil pollution, drought, insect infestations, etc.).
They have evolved to recognize, adapt to, and limit the damage
resulting from such disturbances. Plants respond to external stim-
uli by producing chemical and electrical signals [3, 7] that can be
interpreted when coupled with electronics [19]. The use of plants
as sensors for environmental monitoring [20] is currently an attrac-
tive field of research. In WatchPlant [4, 5], we aim to contribute by
developing a self-powered, energy-efficient network of electronic
devices attached to plants for long-term detection and prediction
of environmental conditions in urban settings.

Many recent research approaches follow similar ideas where nat-
ural plants and technology are combined in new ways. For example,
the EU-funded project flora robotica [6] investigated the control
of plant morphological growth (i.e., plant shaping) in response to
external stimuli provided by robotic elements for growing archi-
tectural artifacts. At the scale of individual plants, robotic controls
were developed in flora robotica that direct plant growth toward
desired targets [8, 9, 23, 24]. At the multi-plant scale, Wahby et al.
have developed a decentralized robotic system that provides light
stimuli to influence plant decision-making betweenmultiple growth
pathway options [21, 22]. The EU-funded project PLEASED [15]
is an example closer to our vision of WatchPlant and the work
we present here. In PLEASED, using plants as sensors was studied
and Chatterjee et al. [2] implemented an approach to statistically
classify external stimuli based onmeasured electrical responses. An-
other relevant and recent EU-funded project is I-Seed [13], which
draws inspiration from the morphology and dispersal ability of
plant seeds to develop self-deployable and biodegradable sensor
nodes. The project’s key idea is to use such nodes to monitor air
and topsoil. Neal Stewart et al. [18] suggested a different but still
relevant approach. They construct ‘phytosensor walls’ by equip-
ping genetically engineered houseplants with electronics to detect
harmful indoor microbiome. The engineered plants change the
color of their leaves or activate LEDs to warn humans. Lu et al. [12]
developed a flexible device that monitors plant health via both leaf
transpiration using a humidity sensor and the plant’s environment
using light and temperature sensors.

3 METHODS
Our approach is to design PhytoNodes that are low-cost, energy-
efficient phytosensing sensor nodes capable of running pre-trained
ANN models to classify stimuli. We introduce our selected plant
species, the hardware design of PhytoNodes, and our smartphone
application for interacting with nearby citizens. We show our exper-
imental setup that enables us to do a large number of data collection
experiments with different stimuli (wind, temperature, blue light,
red light, and no stimulus). With the collected data, we train ten
ANN stimulus classifiers that we finally translate and implement
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using the programming language C to execute them on the PhytoN-
odes’ microcontrollers.

3.1 Bio-hybrid living sensor
3.1.1 Plants. Our plant-electronic bio-hybrid setup integrates ex-
perimental protocols from two different scientific disciplines. The
standard engineering laboratory is not designed to grow plants, and
the standard plant biology laboratory is not designed to perform
electronic experiments. Therefore, we selected the plant species
Zamioculcas zamiifolia (family Araceae, a typical pot plant), see
Fig. 2(a), for our bio-hybrid setup that grows reliably in an engi-
neering environment, requires minimal maintenance, and exhibits
strong electropotential responses to various stimuli. During experi-
ments, we ensure uninterrupted applications of a single stimulus
while keeping other environmental variables (e.g., temperature,
light, etc.) within reasonable bounds.

(a) Zamioculcas zamiifolia (b) PhytoNode

Figure 2: Our bio-hybrid living sensor setup: (a) our plant
species of choice (Zamioculcas zamiifolia), (b) our custom-
designed PhytoNode sensor node prototype attached to the
plant. Note the 3D printed attachment case in black.

3.1.2 PhytoNodes. The electronic part of our bio-hybrid sensors is
based on the P-NUCLEO-WB55 dongle from STMicroelectronics.
The dongle is an ultra-low-power, small-sized device (dimensions
of 50 mm × 26 mm × 5 mm) that supports multi-protocol com-
munication using Bluetooth Low Energy (BLE), Zigbee, Thread,
and IEEE 802.15.4 protocols. It has a flash memory of 1 MB and a
RAM of 256 kB. The device allows eight simultaneous Bluetooth
connections, is designed for a communication range of 10 m, and
allows up to 100 m. Its temperature range is between -40 °C and
105 °C allowing for outdoor applications. The device offers eight
power supply modes that enable ultra-low power consumption
from 2 nA to 7.48 mA in a voltage range of 1.7 V to 3.6 V. STMi-
croelectronics also offers an expansion package called X-CUBE-AI
that enables automatic conversion of pre-trained Artificial Intel-
ligence (AI) models to execute them on the device. We introduce
phytosensing capabilities to the device by developing an expan-
sion board with dimensions of 31 mm × 26 mm. The expansion

board is equipped with an ADS122C04, a Texas Instruments 24-
bit, four-channel, delta-sigma analog-to-digital converter (ADC).
In this way, a PhytoNode can measure the electropotentials of a
plant via needle-based electrodes inserted into the plant’s stem and
connected to one of the ADC channels, see Fig. 2(b). Currently,
we use silver-coated copper wire electrodes, but we plan to switch
to self-adhering surface electrodes [14], which show more stable
performance in the long term.

3.1.3 Phone app. A key part of WatchPlant’s philosophy is to
encourage citizen participation, both as beneficiaries of readily
available environmental data and a rapid alert system and as active
participants in collecting, processing, and distributing real-time
measurements. In addition, a large active community would help
raise awareness of the project and the need to monitor our urban
environment.

As a proof of concept, we have developed a simple mobile appli-
cation that communicates with PhytoNodes and displays their data
in real-time. We envision a scenario where a citizen approaches our
bio-hybrid sensor network, scans a QR code (or similar) to install
the app, then grants it the necessary connection and notification
permissions on the first run. With Bluetooth enabled, the app runs
in the background, periodically searching for devices with specific
Universal Unique Identifiers (UUID) defined by WatchPlant. When
one of the PhytoNodes comes into range, a notification is displayed
on the user’s phone. When the user taps on the notification, the
device connects to the sensor node and begins receiving data. The
data represents the class name of the most likely stimulus that
affected the plant in the last 10 minutes. Optionally, the user can
also receive a notification when the value changes to a certain class
of interest. For screenshots of the app in different operation phases
see Fig. 3.

3.2 ML-based classification
3.2.1 Experiment setup and data collection. As mentioned in Sec-
tion 3.1.1, the experimental setup allows for uninterrupted long-
term plant experiments. We expose the plant to either of four stim-
uli: wind, temperature, blue light, red light, or no stimulus as control.
We apply only one stimulus at a time while the other environmen-
tal variables remain stable. For example, if we want to apply wind
stimulus, we do not influence changes to other surrounding con-
ditions (e.g., light, temperature, etc.). In addition, the whole setup
exists in a grow box that eliminates uncontrolled external sources
of air streams and reduces temperature effects, see Fig. 4. The grow
box is equipped with a heating device (ROWENTA Mod.S02220F0)
placed directly next to the plant. A fan (Nidec BETAV) is placed
at a distance of 60 cm from the plant to enable the application of
a wind stimulus. Also, six 45 W ‘Erligpowht’ LED growth lamps
are placed above and around the plant to allow for applying light
of different wavelengths. An ‘Erligpowht’ LED growth lamp con-
tains 225 LEDs, 165 red and 60 blue ones, with maximum light
emission at wavelengths of 650 nm and 465 nm, respectively. The
blue LEDs are concealed in three growth lamps to emit only red
light stimulus, and the red LEDs are concealed in the remaining
three growth lamps to emit only blue light stimulus. One blue and
one red lamp are placed above the plant, while the rest are placed
on opposite sides around it. Programmable TP-Link HS 100 power
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Figure 3: Screenshots of our proof-of-concept mobile app
displaying permission requests, the connection notification,
and the classification result received from the PhytoNode.
Screenshots were taken on iPhone 11 running iOS 15.6 De-
veloper Beta operating system.

sockets control the respective devices to trigger the required stimu-
lus at predefined times. As we have developed the PhytoNode only
recently, the data was collected using our previous setup using the
CYBRES MU sensor 3 in combination with a Raspberry Pi 4 for
information processing.

An experiment lasts 130 minutes and is divided into three phases.
The first phase prepares the stimulus application (prestimulus

3CYBRES MU sensor: http://cybertronica.co/?q=products/phytosensor

  4Raspberry Pi

 Power supply

Heater

Fan

 Grow lamps

Zamioculcas
zamiifolia

Wireless
 power switch

PhytoNode

 MU sensor

Figure 4: The full experiment setup. It includes the PhytoN-
ode attached to Zamioculcas zamiifolia, grow lamps, a fan,
a heater, a wireless power switch, a Raspberry Pi 4, a CY-
BRES MU sensor, and a power supply.

phase) and lasts one hour. In the second phase, a single stimu-
lus is applied to the plant for ten minutes (stimulus phase). In the
third phase (poststimulus phase), the stimulus application is termi-
nated, and the plant is allowed to rest for another hour. The sensor
measures the plant’s electropotentials at a frequency of 1.5 Hz. In
total, we performed 1320 experiments to collect data: 544 experi-
ments of wind stimulus, 504 experiments of temperature stimulus,
134 experiments of blue light stimulus, and 138 experiments of red
light stimulus. We use 544 examples of 10-min prestimulus phases
and categorize them as ‘no stimulus.’

3.2.2 Classifier training. We aim to classify the measured electrical
signals according to the applied stimulus. The electrical activity
of plants is generally sensitive to many factors, subject to noise,
and depends on the plant’s physiological state as well as many
environmental features. Therefore, we cannot just rely on single
electrical measurements at single moments in time. Instead, we
need to perform a time series classification (TSC), allowing us to
examine changes and patterns over a longer period of time during
or after a stimulus application phase. As described in Section 3.2.1,
one experiment runs for 130 minutes with stimulus application
for ten minutes. Since we record at a frequency of 1.5 Hz, we ob-
tain a time series of 400 electrical potentials for each experiment
during stimulus application. To prepare the data sets for classifi-
cation, Z-score normalization is performed for each experiment:
xnorm = (x − µx )/σx , where µ is mean and σ is standard deviation
of the unnormalized experiment. Z-score normalization removes
any shift or scaling of the data and is required to compare different
experiments from different plants without an inherent bias [16].

Given the success of deep learning in recent years [11], we de-
cided to use a deep learning framework developed by Fawaz et
al. [10] for TSC. The framework includes ten different deep classi-
fiers: Multi-Layer Perceptron (MLP), Fully Convolutional Neural
Network (FCN), Residual Network (ResNet), Encoder, Multi-scale
Convolutional Neural Network (MCNN), Time Le-Net (t-LeNet),
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Table 1: Average accuracies for all ten classifiers in percent, first with two (wind & no stimulus), then three (+ temperature)
and finally all five (+ red & blue light) classes. Required resources on the PhytoNode including flash, RAM and complexity. In
addition, the relative loss of accuracy between the TensoFlow Lite andC-basedmodel and theminimumcompression required.

classifier two
classes [%]

three
classes [%]

five
classes [%]

flash
[kB]

ram
[kB]

complexity
·106[MACC] l2r [%]

compres-
sion
[·]

CNN 89.07 89.13 77.16 11.83 10.82 0.12 8.53 · 10−5 0.00
Encoder 94.07 93.96 86.04 - - - - -
FCN 97.88 94.67 83.02 1010.00 601.58 105.52 - 1.01

Inception 97.78 93.63 82.31 1610.00 651.58 169.21 - 1.01
MCDCNN 89.83 88.96 80.28 574.36 13.96 0.66 1.22 · 10−1 3.91
MCNN 57.20 34.17 28.70 2470.00 369.52 13.684 - 1.22
MLP 91.69 87.92 77.58 702.24 5.49 0.71 2.32 · 10−1 3.94
ResNet 98.14 95.21 82.91 1910.00 601.58 201.18 - 1.01
t-LeNet 97.52 90.88 78.15 209.20 2.52 0.07 5.11 · 10−7 0.00
TWIESN 73.14 55.17 42.06 - - - - -

Multi-Channel Deep Convolutional Neural Network (MCDCNN),
Time Convolutional Neural Network (CNN), Time Warping Invari-
ant Echo State Network (TWIESN), and Inception. We train all ten
previously mentioned classifiers in three settings, five iterations
each. In the first setting, we train two-class classifiers (wind and
no stimulus). In the second setting, we train three-class classifiers
(wind, temperature, and no stimulus). In the third one, we train
five-class classifiers (wind, temperature, red light, blue light, and
no stimulus). In all three settings, we use 70 % of the experiment
data in each class for training and the remaining 30 % for testing.
To evaluate the performance of the different classifiers, we record
four metrics: accuracy, precision, recall of classifiers, and training
time in seconds.

3.2.3 Classifiers on STM nodes. Our goal is to classify the mea-
sured electrophysiological responses of plants using the PhytoN-
odes. This allows the classification results to be sent directly to
BLE-enabled devices, such as mobile phones of passing citizens.
We use the toolchain provided by STMicroelectronics, consisting
of STM32CubeMX (v. 6.3.0) and STM32CubeIDE (v. 1.7.0) in com-
bination with the extension package X-CUBE-AI (v. 1.13.3)4 for
artificial neural network applications. The first step is to convert
the trained neural networks into TensorFlow Lite5 format to allow
further processing on the microcontroller and X-Cube-AI. Then,
the TensorFlow Lite format is converted into an ANN model based
on the programming language C to be executable on the micro-
controller. X-Cube-AI enables initial analysis and validation of the
neural networks. We analyze the networks trained on five stimuli
concerning their resource utilization, including the required RAM
and flash memory, as well as their complexity in Multiply And
Accumulate operations (MACC) (see Table 1). The MACC can be
used to estimate the required clock cycles per classification. For the
STM32 Arm® Cortex®-M4 CPU used, this corresponds to approxi-
mately 9 cycles per MACC. If the ANNs exceed the available RAM
or flash memory, a compression of fully connected layers is possible
using weight-sharing-based K-means clustering. Transforming the
4Find user information at: https://www.st.com/en/embedded-software/x-cube-ai.html
5TensorFlow Lite is a mobile library for deploying machine-learned models on mobile,
microcontrollers, and edge devices.

trained ANN to a C-based model and its compression can result in
a decrease in classification accuracy. For this reason, the relative
loss of accuracy (l2r) between the TensorFlow Lite and the C-based
models is calculated. The l2r is only determined for the classifier
with five stimuli that do not exceed the available memory. The
classification results of the two models are compared and checked
for equality. We evaluate the best classifier of the five independent
iterations and analyze them on the lowest possible compression
(see next section).

In addition, we have created a BLE GATT-based profile that
allows data exchange between PhytoNodes and any other device
that uses BLE. The electrical activity of a natural plant is measured
once the device is connected to a power supply. With each new
reading, a Z-score normalization is performed over the previous
400 readings. The modified array of 400 entries serves as input to
the inserted ANN, as described in Section 3.2.2. The PhytoNode
continuously scans for incoming connection requests from other
BLE devices to establish a connection. The classification results are
sent to the remote peer once a successful connection occurs.

4 RESULTS
Our obtained classifier accuracies as functions of class numbers
representing the different stimuli, as described in Section 3.2.2,
are summarized in Table 1. The highest accuracies are achieved
in TSC with two classes. ResNet outperforms the classifiers with
an accuracy of 98.14 %, while all classifiers achieve an average
accuracy of 88.63 %. The more classes, the lower the accuracy as
expected. For three classes, the average accuracy drops to 82.37 %.
ResNet still achieves the highest accuracy, but only at 95.21 %. The
lowest average accuracy of all classifiers with 71.82 % is achieved
for five classes. Here, the Encoder achieves the highest accuracy
with 86.04 %. MCNN achieves lowest accuracy in all runs.

Only four out of ten classifiers can operate on the PhytoNode.
Both the Encoder and TWIESN cannot be converted to a TensorFlow
Lite format due to incompatible data formats, preventing further
analysis. FCN, Inception, MCNN, and ResNet exceed the available
RAM and flash with maximal compression factors of 1.01 and 1.22.
Only CNN and t-LeNet are supported without compression, while
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Figure 5: Two consecutive 120 min experiments with wind as stimulus. The dashed vertical line indicates the end of the post-
stimulus of the first application and the beginning of the prestimulus interval of the second application. The black line shows
the measured electropotential while the gray areas represent the application of a wind stimulus for 10 min. The green line
illustrates the classification probability of wind at each time step as a function of the last 400 measured potentials. The red
arrows indicate the first time step at which the probability rises above 90 % (i.e., wind stimulus detection event).

MCDCNN and MLP require compression factors of at least 3.91 and
3.94, respectively. The lowest complexity of PhytoNode-compatible
neural networks is achieved by t-LeNet with 0.07 ·106 MACC, while
MLP has the highest complexity with 0.71 ·106 MACC. The network
complexities of these networks are significantly lower than FCN,
Inception, MCNN and ResNet, which require excessive memory.
Despite transformation and compression, a maximal relative accu-
racy loss of 0.23 % (MLP) was observed, indicating that roughly the
same classification results can be expected.

We use the MCDCNN trained on two classes (wind and no stim-
ulus) to test our concept. Although MLP and t-LeNet have higher
accuracy in the two-class case, MCDCNN shows less loss of accu-
racy with increased class number. MCDCNN has higher accuracy
in the five-class case and is the most promising classifier for the
case of multiple stimuli. For our evaluation, we use a dataset that
was neither included in the test set nor the training set to emulate a
realistic use case. The evaluation has a duration of about 4.3 hours
and includes two applications of the wind stimulus after 1 h and
3.2 h. In Fig. 5 we give the measured electropotential (black line)
and the output of the MCDCNN that indicates the probability of
currently observing a wind stimulus. The two wind applications
(marked in gray) are recorded at the same intervals as in the train-
ing data. We have two consecutive sequences of the three phases
as described earlier: 1-h prestimulus phase, 10-min stimulus phase,
and 1-h poststimulus phase. The electropotential readings show an
evident change during the two applications of the wind stimulus.
At the same time, the output of the MCDCNN increases to values
consistently above 50 %. An initial local maximum of about 80 %
is reached 3 minutes into the wind application. Since the neural
network classifies a time series covering the last 10 min, the out-
put wind classification probability of over 90 % is detected only
after the end of the application. Sending a notification for possi-
ble stimulus detection to the citizens’ mobile devices should only
take place when a high classification probability is obtained. Our
trained classifiers output a probability per class (i.e., a stimulus
likelihood), therefore, we only allow a wind notification if the like-
lihood probability is greater than 90 %. The wind causes a potential
drop from ≈ −1mV to ≈ −2.5mV , see Fig. 5. This drop is again
restored during the poststimulus phase. Given that probabilities of
more than 90 % are still found even 20 minutes after application.
This interestingly indicates that portions of poststimulus data were
still highly relevant for the classifier. Similar behavior is observed

for the second application. The first maximum of 84.45 % is reached
3.75 min after the start of the application. Probabilities of more than
90 % are obtained again after the application and persist for up to
22 min.

All collected datasets and trained classifiers as well as the code
for the experiment and data collection setup, the code for STM-
based PhytoNodes and for the phone app are available online [1].

5 CONCLUSION AND FUTUREWORK
By developing a BLE and AI-enabled PhytoNode, we have laid
the foundation for an interactive plant-electronic bio-hybrid net-
work. We created a dataset of electrophysiological responses of
Zamioculcas zamiifolia to five different stimuli. Using this dataset,
we successfully trained ten different deep learning networks to
classify time series, achieving accuracies of up to 98.14 %. Four of
the ANNs can operate on the PhytoNode’s microcontroller with
accuracy losses of less than 1 %. Due to the BLE capability of the
PhytoNode, we can communicate directly with nearby civilians via
mobile phones. In this way, the civilian is informed about the cur-
rent environmental conditions based on the plant’s biopotentials.
We have enabled this by developing a mobile application that allows
exchanging data with PhytoNodes via BLE. However, during our
tests for online classification on-board the PhytoNode, we realized
that the classification accuracy is not as high as achieved on the
test dataset. We believe this is because the data collection occurred
in a different season, during different environmental conditions
leading to different electrophysiological responses. A possible solu-
tion to this issue would be collecting enough data to include the
plant’s electrophysiological responses throughout all seasons and
growth stages. One more aspect we can improve is the balance of
the training dataset. We performed fewer data collection experi-
ments for the blue and red light stimuli than those for the other
three stimuli. This can lead to the well-known biasing issue in the
trained classifiers. Despite the two issues mentioned above, we
provide a complete framework that enables training classifiers of
high accuracy, which can run on our lightweight, energy-efficient
sensor nodes. Wewould like to utilize the maximum potential of our
newly developed bio-hybrid sensors. Therefore, in the future, we
plan to train classifiers for different plant species and also expand
our classification classes to include further stimuli. Currently, we
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have only studied the temporal pattern of the signals, but some of
them are transmitted throughout the plant. Spatial analysis of the
signal distributed over the plant (e.g., adding more electrodes at
different branches and stem positions) may lead to further insights
that can provide information about the plant and thus about the
stimulus. We have designed a sensor node based on hardware that
allows us to keep the required energy to a minimum. The energy
needed depends on the scenario, the classification task, and the
chosen duty cycling of the sensor node. For example, if a lot of
data needs to be collected, one of the requirements is to achieve
the highest possible data throughput with minimal power con-
sumption. In another scenario, where only rarely occurring events
need to be detected, we may need to guarantee a long network
lifetime and possibly switch between different modes to commu-
nicate an event through the network. In future work, we will also
investigate possibilities of energy harvesting on the PhytoNode, for
example, via solar cells. PhytoNodes are not limited to monitoring
only the electrical activity of plants using electrodes. By adding
more phytosensing nodes, we can create heterogeneous networks
of multi-modal PhytoNodes that will lead to a better understanding
of plant physiology, the plants’ environment, our own environment,
living spaces, urban pollution, and ultimately our future growing
cities.
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