
Challenges in Regression Test Selection for End-to-End Testing
of Microservice-based Software Systems
Daniel Elsner

Daniel Bertagnolli
Alexander Pretschner
firstname.lastname@tum.de

Technical University of Munich
Munich, Germany

Rudi Klaus
rudi.klaus@t-systems.com
T-Systems International

Munich, Germany

ABSTRACT
Dynamic regression test selection (RTS) techniques aim to min-
imize testing efforts by selecting tests using per-test execution
traces. However, most existing RTS techniques are not applica-
ble to microservice-based, or, more generally, distributed systems,
as the dynamic program analysis is typically limited to a single
system. In this paper, we describe our distributed RTS approach,
microRTS, which targets automated and manual end-to-end testing
in microservice-based software systems. We employ microRTS in
a case study on a set of 20 manual end-to-end test cases across 12
versions of the German COVID-19 contact tracing application, a
modern microservice-based software system. The results indicate
that initially microRTS selects all manual test cases for each ver-
sion. Yet, through semi-automated filtering of test traces, we are
able to effectively reduce the testing effort by 10–50%. In contrast
with prior results on automated unit tests, we find method-level
granularity of per-test execution traces to be more suitable than
class-level for manual end-to-end testing.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging.

KEYWORDS
Software testing, regression test selection, microservice architec-
tures, end-to-end testing, manual testing

ACM Reference Format:
Daniel Elsner, Daniel Bertagnolli, Alexander Pretschner, and Rudi Klaus.
2022. Challenges in Regression Test Selection for End-to-End Testing of
Microservice-based Software Systems. In IEEE/ACM 3rd International Con-
ference on Automation of Software Test (AST ’22), May 17–18, 2022, Pittsburgh,
PA, USA.ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524481.
3527217

1 INTRODUCTION
Regression testing is a software testing activity that is regularly
performed to ascertain that changes have not inadvertently altered
previous system behavior [15]. Yet, with increasingly large test

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in IEEE/ACM 3rd
International Conference on Automation of Software Test (AST ’22), May 17–18, 2022,
Pittsburgh, PA, USA, https://doi.org/10.1145/3524481.3527217.

suites and shorter software (delivery) life-cycles, running all tests
after each change is often too costly [4, 30]. To reduce the costs of
regression testing, regression test selection (RTS) [7, 13, 21–23, 31,
33] techniques have been extensively studied since the 1970s [5].

Traditional RTS techniques identify a subset of tests by compar-
ing new code changes with per-test code dependencies. Collecting
these per-test code dependencies can either be achieved through
static or dynamic program analysis at the level of basic-blocks [11,
21], functions/methods [6, 17, 32, 33], classes/files [7, 8, 12, 13],
modules [24], or combinations thereof [25, 28, 31]. In dynamic
RTS techniques, these per-test code dependencies can also be in-
terpreted as per-test execution traces. Since most techniques are
incapable of collecting dependencies across system boundaries, they
mainly target unit testing. Yet, in microservice-based systems, or,
more generally, highly distributed systems, checking for functional
correctness is no longer limited to individual units or modules,
but especially requires anticipation of interface and interaction
bugs [16, 33]. Hence, existing RTS techniques are not directly ap-
plicable, as these systems need to be tested through integration or
end-to-end tests that operate across service or system boundaries.

While there are a few studies on RTS for web applications and
services [17, 19, 33], they have several limitations in the context of
microservices: First, existing RTS techniques targeting web applica-
tions only instrument server code for tracing tests [17, 19]. However,
excluding client code is problematic in microservice-based systems,
where (rich) web or mobile client applications often contain large
parts of the business logic and orchestrate calls to different mi-
croservices. Second, even though protocol- and language-agnostic
distributed tracing approaches are provided by observability frame-
works such as OpenTelemetry1, existing RTS techniques are imple-
mented for monolingual systems [33] and specific communication
protocols, such as Hypertext Transfer Protocol (HTTP) [17, 19].
Third, high instrumentation overhead of RTS techniques may pre-
clude their applicability in practice [2, 3, 18], but existing studies
lack analyses on the introduced instrumentation overhead during
service startup and test execution. Finally, due to the complexity of
automating end-to-end tests, these tests are often performed manu-
ally [10, 19]. Yet, no prior RTS study investigates RTS for manual
end-to-end tests in microservice-based systems.

In this paper, we propose microRTS, a distributed RTS technique
suitable formanual or automated end-to-end testing inmicroservice-
based software systems. microRTS is implemented on top of well-
established distributed tracing infrastructure and Java bytecode

1OpenTelemetry: https://opentelemetry.io/

https://doi.org/10.1145/3524481.3527217
https://doi.org/10.1145/3524481.3527217
https://doi.org/10.1145/3524481.3527217
https://opentelemetry.io/


AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Elsner, et al.

manipulation libraries, to enable automated instrumentation of ar-
bitrary Java microservices at runtime. We evaluate the influence of
several implementation aspects on the instrumentation overhead in
the open-source microservice benchmark application TeaStore [29].

We further present a case study that was conducted together
with our industry partner T-Systems2 on a subset of the manual
end-to-end test suite on 12 software versions of the German COVID-
19 contact tracing application, Corona-Warn-App (CWA), a mod-
ern microservice-based software system. Since the CWA accesses
backend microservices through a rich mobile client (we only con-
sider Android), we design microRTS to collect per-test execution
traces from mobile clients as well as microservices, leading to more
complete traces. In contrast with prior results on automated unit
tests [7, 12], we find class-level granularity of test traces to be too
coarse grained for RTS of manual end-to-end tests in this context,
essentially leading to retest-all. With traces at method-level gran-
ularity, microRTS initially still selects all test cases across the 12
studied versions. However, after closer inspection of the reasons
behind a test being selected, we find that the manual tests are com-
monly imprecisely specified. For instance, while all manual tests
cover the CWA start screen, most of them do not test any start
screen functionality. Consequently, by semi-automatically filtering
out irrelevant parts of the test traces, microRTS can exclude 10–50%
of tests.

To foster more research on RTS for integration or end-to-end test-
ing in microservice-based systems, we discuss challenges and elab-
orate on experiences when implementing and applying microRTS
in a real-world context.

2 RELATEDWORK & STATE-OF-PRACTICE
Among the many existing RTS studies already referenced, we con-
sider the following to be most relevant for the context of this work:

Nakagawa et al. [19] propose a method-level RTS technique for
manual end-to-end tests for Java web applications. By sending
a custom header with each HTTP request to the server, a tester’s
browser can bemapped to accessedmethods, assuming a one-to-one
mapping of HTTP requests and Java Virtual Machine (JVM) threads.
The results of the industrial case study on two web applications
indicate that it is likely that all tests need to be executed for large
modifications or changes to common code parts. As the proposed
RTS technique is not able to trace more than one web server, it is
yet unsuitable in a microservice context.

Long et al. [17] propose the RTS tool WebRTS, which supports col-
lecting file-level per-test execution traces across multiple instances
of a web server. It is designed for Java web applications with server-
side page rendering and is limited to communication using the
HTTP protocol which confines the applicability to a small subset
of microservice-based systems. Unfortunately, although publicly
available, WebRTS lacks an adequate user documentation and further
relies on JVM bytecode instrumentation from an external library
that lacks English documentation3. For this reason, we were neither
able to fully comprehend, nor to apply their tool in preliminary
experiments on Java microservices.

2T-Systems is one of the largest European information technology service providers:
https://www.t-systems.com/
3JVM-SANDBOX: https://github.com/alibaba/jvm-sandbox

Zhong et al. [33] propose the RTS technique TestSage that tar-
gets web service testing at Google. TestSage supports C++ services
and performs function-level instrumentation using XRay4. While
TestSage reduces the testing time by 34%, it does not support par-
allel test tracing and is limited to homogeneous C++ web services.

In summary, we are not aware of any prior work that investigates
the potential and challenges of RTS in the context of manual end-
to-end testing for microservice-based systems.

3 DISTRIBUTED TEST SELECTION
When a microservice-based software system is tested in an end-to-
end fashion, restarting the system under test (SUT) between each
test case is not always feasible. This is because such systems often
involve tens or even hundreds of services. Hence the startup process
is expensive and time-consuming [33]. Consequently, when col-
lecting per-test execution traces, we need to take into account that
multiple tests are executed on the same deployed service instance,
either sequentially or in parallel. We thus require segmentation
of collected traces according to the tests’ execution time frame
and link covered code parts to the test that executed them [17].
In the following, we describe how microRTS collects precise dis-
tributed per-test execution traces for end-to-end tests and performs
change-based test selection.

While microRTS currently supports microservices written in lan-
guages that target the JVM (e.g., Java, Kotlin) and instrumentation
of Android mobile clients, the concepts are agnostic to the actually
used programming language or platform. We chose Java as our case
study subject is written in Java and Kotlin (see Sec. 5).

3.1 Distributed Tracing
The core principle behind distributed tracing is context propagation:
A context contains (at least) a unique identifier that identifies a trace
and is transferred in and across services in a distributed system [27].
The trace thereby encapsulates all requests related to an individual
transaction. To enable context propagation, clients and services
are instrumented to be able to create, transfer, and access context
information embedded into requests. Consider Fig. 1 that depicts an
instrumented service, where context information is extracted from
inbound requests and injected into outbound requests. Furthermore,
trace points can be inserted into the instrumented service that define
actions such as attaching metadata to the context.

Figure 1: Context propagation in an instrumented service
(inspired by Shkuro [26])

The implementation of the required code instrumentation for
the middleware (e.g., HTTP client libraries) can be performed us-
ing well-established, polyglot distributed tracing and observability
4LLVM XRay: https://llvm.org/docs/XRay.html

Preprint — do not distribute.

https://www.t-systems.com/
https://github.com/alibaba/jvm-sandbox
https://llvm.org/docs/XRay.html


Challenges in Regression Test Selection for End-to-End Testing of Microservice-based Software Systems AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

frameworks, such as OpenTracing5 or OpenTelemetry. microRTS
uses OpenTelemetry to automatically instrument Java microser-
vices by attaching a Java Agent [1] that performs Java bytecode
instrumentation at runtime. Thereby, the instrumented microser-
vice will extract the context from inbound requests and we can link
the context with custom code instrumentation as described next.

3.2 Code Instrumentation
We have described why the SUT typically cannot be restarted after
each test in microservice-based systems. Therefore, if several tests
are executed one after another, we need a code instrumentation
that also takes into account already created objects from previ-
ously executed tests [17]. Thus, similar to pre-existing RTS tech-
niques [19, 33], microRTS instruments microservices (and clients)
at method-level granularity rather than class-level, as only instru-
menting JVM class loading or object creation would miss if tests
call methods of already existing objects. However, since we aim
to investigate benefits of test trace granularity more closely (see
Sec. 5), microRTS offers to control if test traces are stored (and aggre-
gated) at method- or class-level granularity. Furthermore, existing
approaches for collecting test traces differ regarding the strategy
to export information about covered methods (i.e., coverage probes)
during runtime [14, 20]. microRTS offers to export coverage probes
directly after they fire or in batches, and supports writing cover-
age probes into a file or sending them via Transmission Control
Protocol (TCP) sockets to a central trace collector.

We implement the method-level code instrumentation using
a Java Agent and the ByteBuddy bytecode manipulation library6.
Thereby, whenever a method is entered, the instrumentation stores
a coverage probe in the coverage tracer. A coverage probe contains
the method’s signature, the name of the surrounding class, and the
current context’s trace identifier. Depending on how microRTS is
configured, the coverage probes are written into a file or sent via
TCP to the trace collector, either one-by-one or in batches. Fig. 2
illustrates how coverage information is collected from instrumented
microservices. Additionally, the client is connected to a test listener
that is responsible for maintaining the context for test cases in
test logs, to later on link coverage probes to test cases. In Sec. 5,
we describe how we implemented a test listener for the Android
client of the CWA. microRTS further implements compile-time
instrumentation of Android mobile clients using the AndroidBuddy
library7, as in contrast to the JVM, Android does not allow runtime
instrumentation.

Figure 2: Overview of the microRTS test tracing architecture

5OpenTracing: https://opentracing.io/
6ByteBuddy: https://bytebuddy.net/
7AndroidBuddy: https://github.com/LikeTheSalad/android-buddy

3.3 Test Selection
For change-based test selection, microRTS uses the changeset since
the last time a test suite was executed from the version control sys-
tem (VCS), together with the collected method-level test traces from
the last test execution. microRTS then parses the .java and .kt
files from the changeset and computes (1) the set of changed classes
and (2) the set of changed methods by comparing checksums of
each method’s source code, similar to existing RTS techniques [31].
Using these two sets and the test traces, microRTS then determines
affected tests through class- or method-level selection. In Sec. 5, we
describe the effects of using class- and method-level selection in a
manual end-to-end testing context.

4 EFFICIENCY EVALUATION
In order to analyze the efficiency of microRTS’s instrumentation,
we conduct experiments on the TeaStore microservice benchmark
application. We thereby strive to answer the following research
questions (RQs):

• RQ1: How much instrumentation overhead does microRTS
introduce at system startup and during testing?

• RQ2: How does the granularity of coverage probes and their
export strategy affect instrumentation overhead?

4.1 Experimental Setup
TeaStore is an open-source microservice reference application used
by researchers to analyze and test novel techniques formicroservice-
based systems [9, 29]. We conduct our experiments on version
v1.4.0 of the TeaStore, consisting of 6 Java microservices that we
orchestrate using Docker-Compose. Since TeaStore currently only
contains unit tests, we implemented a set of 23 automated end-
to-end tests using the testing framework Cypress. Our test suite
covers each feature of the application by at least one test case and
was merged by the project’s maintainers into the main code base8.

To execute our experiments, we instrument each microservice
and the Cypress test runner with microRTS and run all 23 test cases
with different (1) coverage probe collection granularity (method- or
class-level) and (2) coverage probe export strategies (in-memory, file,
or socket export). We repeat the experiments 30 times to account
for variations in the runtimes and measure the average system
startup and testing runtime for all configurations of microRTS and
compare them to executions without any instrumentation (NoInst).

4.2 Discussion of Results
RQ1: Startup and Runtime Instrumentation Overhead. The results of
the comparative analysis between microRTS and NoInst show that
the performance impact of microRTS is more significant during
services’ startup (+67.5%) than during testing (+18%). By re-running
the tests using only OpenTelemetry’s instrumentation, we see that
most of the overhead stems from OpenTelemetry, which already
adds 40% to the startup and 10.5% to the testing runtime.

We further observe that the overhead caused by microRTS is
significantly higher during the first test compared to the mean over-
head. The reason is inherent to dynamic bytecode instrumentation,

8TeaStore Pull Request: https://github.com/DescartesResearch/TeaStore/pull/203

Preprint — do not distribute.

https://opentracing.io/
https://bytebuddy.net/
https://github.com/LikeTheSalad/android-buddy
https://github.com/DescartesResearch/TeaStore/pull/203


AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Elsner, et al.

which transforms Java bytecode files on the fly when they are first
loaded by the JVM ClassLoader.

RQ2: Granularity and Export Strategies of Coverage Probes. The
granularity at which microRTS is configured to export coverage
probes does not significantly affect the instrumentation overhead:
method-level granularity adds roughly 1.2% overhead compared
to class-level granularity in total test suite execution time. The
reason why storing and exporting coarser-grained class-level cov-
erage probes is not far more efficient is that microRTS still needs
to instrument all methods as explained in Sec. 3.2.

Regarding the chosen coverage probe export strategy, we find
that in-memory is the fastest strategy because it does not export
probes until service shutdown. Perhaps surprisingly, the file export
strategy only adds around 1% of runtime overhead when compared
to in-memory, despite the I/O overhead. Finally, although used in
prior studies [20, 33], the socket strategy has a comparatively high
runtime overhead of 6.7% compared to in-memory.

5 CASE STUDY: CORONA-WARN-APP
To evaluate microRTS in a real-world microservice-based system,
we conduct a case study on the manual end-to-end test suite of the
Corona-Warn-App (CWA) to answer RQ3: How much manual end-
to-end testing effort reduction can be achieved using microRTS?

5.1 Experimental Setup
The CWA is the official German Covid-19 contact tracing appli-
cation, based on a decentralized, microservices architecture. The
source code of the microservices and mobile clients is open-sourced
and available on Github9, easing reproducibility and extension of
our case study. Service providers such as our industry partner T-
Systems are responsible for end-to-end regression testing of new
versions and releases of the CWA. Therefore, they use a manual
regression test suite that is not publicly available. As currently the
test cases for release testing are selected manually, automated and
systematic tool-support through microRTS can be beneficial.

For our experiments with microRTS, we prepare a suitable test-
ing environment: We (1) instrument seven CWA microservices, (2)
instrument the mobile client (only Android), (3) patch or mock
requests to external services such as Google’s Exposure Notifica-
tion System, as they can exclusively be used by authorized official
health agencies, and (4) orchestrate all instrumented services with
Docker-Compose, as neither the staging, nor the production envi-
ronment configuration are publicly available. We then execute 20
manual end-to-end test cases provided by T-Systems for version
2.5.1 of the CWA. These tests are still executable without limita-
tions in our experimental setup and we only instrument the seven
services required for the provided test cases. We implement a small
Android sidecar application, where we can start and stop a manual
test case, which internally initializes and closes a tracing context.

To evaluate the potential of microRTS, we determine the set of
selected tests on all (12) CWA release candidate versions between
2.5.1 and 2.6.1. We include these release candidates to gain insights
on how shorter testing cycles affect RTS results. Furthermore, we

9Corona-Warn-App (CWA): https://github.com/corona-warn-app

compare class- and method-level RTS as their effectiveness is not
unequivocal in existing RTS literature [7, 17, 19].

5.2 Discussion of Results
RQ3: Test Effort Reduction. The initial results show that RTS at
method- and class-level already selects all 20 tests for the first ver-
sion, namely between 2.5.1 and 2.6.0-RC0. As a result, RTS between
2.5.1 and all other subsequent versions has the same outcome.

To understand the underlying reasons, we investigate the causes
for selection: First, 100% of the test selections for all versions have
been caused by changes in the Android client, both using class- and
method-level RTS. This highlights the importance of instrumenting
client code as well. Second, all test cases include various shared
covered methods, which originate primarily from the home screen
where all tests start or end according to the test case specifications.
Yet, surprisingly, only 9 out of the 20 test cases effectively verify
functionality of the home screen. To determine if the other 11
test cases would have been selected even if their traces started on
their respective sub-page, we proceed by refining the test traces.
During this refinement step, we remove all coveredmethods that are
associated to the home screen for the 11 test cases. Using class-level
RTS nothing changes: all tests are selected. However, when using
method-level RTS the selected tests for 2.6.0-RC0 are reduced by
50%, only 10 out of 20 tests are selected; for the subsequent versions
and the next release 2.6.1, up to 18 out of 20 tests are selected (90%).

Hence, we can conclude that the effectiveness of our RTS ap-
proach for manual end-to-end testing is highly dependent on the
precision of test specifications. Through semi-automated pruning
of test traces using domain knowledge, we are able to exclude up to
50% of tests, but only when using fine-grained method-level RTS.
Our results confirm findings from prior RTS research on manual
testing, where RTS effectiveness was limited with shared covered
code parts in test traces or with large changesets [19].

6 CONCLUSION
In this paper, we introduce microRTS, a dynamic RTS technique for
microservice-based systems. By combining established distributed
tracing infrastructure with code instrumentation, microRTS collects
per-test execution traces at method- or class-level across services
and clients, thereby enabling test selection for automated or manual
end-to-end tests. We further present a case study on RTS for man-
ual end-to-end tests in the CWA, a real-world microservice-based
system. Our initial results show that if manual tests are specified
rather coarse-grained, microRTS can not provide any benefits over
retest-all. However, when pruning per-test execution traces us-
ing domain knowledge, we are able to exclude up to 50% of tests.
These findings confirm prior research on manual testing and show
that manual end-to-end testing of microservice-based systems is
particularly intricate to optimize.

ACKNOWLEDGMENTS
This work was funded by the German Federal Ministry of Education
and Research (BMBF), grant SOFIE 01IS18012B. The responsibility
for this article lies with the authors.

Preprint — do not distribute.

https://github.com/corona-warn-app


Challenges in Regression Test Selection for End-to-End Testing of Microservice-based Software Systems AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

REFERENCES
[1] 2017. Java Agent API. https://docs.oracle.com/javase/9/docs/api/java/lang/

instrument/package-summary.html
[2] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for im-

proving regression testing in continuous integration development environments.
In Proceedings of the International Symposium on the Foundations of Software
Engineering. 235–245. https://doi.org/10.1145/2635868.2635910

[3] Daniel Elsner, FlorianHauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In Proceedings of the International Symposium on
Software Testing and Analysis. 491–504. https://doi.org/10.1145/3460319.3464834

[4] Kurt Fischer, Farzad Raji, and Andrew Chruscicki. 1981. A Methodology for
Retesting Modified Software. In Proceedings of the National Telecommunications
Conference. 1–6.

[5] Kurt F. Fischer. 1977. A test case selection method for the validation of software
maintenance modifications. In Proceedings of International Computer Software
and Applications Conference. 421–426.

[6] Ben Fu, Sasa Misailovic, and Milos Gligoric. 2019. Resurgence of Regression
Test Selection for C++. In Proceedings of the International Conference on Software
Testing, Verification and Validation. 323–334. https://doi.org/10.1109/ICST.2019.
00039

[7] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
Test Selection. In Proceedings of the International Conference on Software Engi-
neering. 713–716. https://doi.org/10.1109/icse.2015.230

[8] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression
Test Selection with Dynamic File Dependencies. In Proceedings of the International
Symposium on Software Testing and Analysis. 211–222. https://doi.org/10.1145/
2771783.2771784

[9] Johannes Grohmann, Martin Straesser, Avi Chalbani, Simon Eismann, Yair Arian,
Nikolas Herbst, Noam Peretz, and Samuel Kounev. 2021. SuanMing: Explain-
able Prediction of Performance Degradations in Microservice Applications. In
Proceedings of the International Conference on Performance Engineering. 165–176.
https://doi.org/10.1145/3427921.3450248

[10] Roman Haas, Daniel Elsner, Elmar Juergens, Alexander Pretschner, and Sven
Apel. 2021. How can manual testing processes be optimized? Developer survey,
optimization guidelines, and case studies. In Proceedings of the Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1281–1291. https://doi.org/10.1145/3468264.3473922

[11] Mary Jean Harrold, Alessandro Orso, James A. Jones, Tongyu Li, Maikel Pennings,
Saurabh Sinha, Ashish Gujarathi, Donglin Liang, and S. Alexander Spoon. 2001.
Regression test selection for Java software. ACM SIGPLAN Notices 36, 11 (2001),
312–326. https://doi.org/10.1145/504311.504305

[12] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and
Darko Marinov. 2016. An Extensive Study of Static Regression Test Selection in
Modern Software Evolution. In Proceedings of the International Symposium on
Foundations of Software Engineering. 583–594. https://doi.org/10.1145/2950290.
2950361

[13] Owolabi Legunsen, August Shi, and DarkoMarinov. 2017. STARTS: STAtic regres-
sion test selection. In Proceedings of the International Conference on Automated
Software Engineering. 949–954. https://doi.org/10.1109/ase.2017.8115710

[14] Claire Leong, Abhayendra Singh, Mike Papadakis, Yves Le Traon, and John
Micco. 2019. Assessing Transition-Based Test Selection Algorithms at Google.
In Proceedings of the International Conference on Software Engineering: Software
Engineering in Practice. 101–110. https://doi.org/10.1109/icse-seip.2019.00019

[15] Hareton K.N. Leung and Lee White. 1989. Insights into regression testing. In
Proceedings of the International Conference on Software Maintenance. 60–69.

[16] Hareton K.N. Leung and Lee White. 1990. A study of integration testing and
software regression at the integration level. In Proceedings of the International
Conference on Software Maintenance. IEEE Computer Press, Silver Spring, MD,
290–301. https://doi.org/10.1109/icsm.1990.131377

[17] Zhenyue Long, Zeliu Ao, GuoquanWu, Wei Chen, and JunWei. 2020. WebRTS: A
Dynamic Regression Test Selection Tool for JavaWeb Applications. In Proceedings
of the International Conference on Software Maintenance and Evolution. 822–825.
https://doi.org/10.1109/ICSME46990.2020.00102

[18] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.
Predictive Test Selection. In Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice. 91–100. https://doi.org/10.1109/
ICSE-SEIP.2019.00018

[19] Takao Nakagawa, Kazuki Munakata, and Koji Yamamoto. 2019. Applying modi-
fied code entity-based regression test selection for manual end-To-end testing of
commercial web applications. In Proceedings of the International Symposium on
Software Reliability Engineering Workshops. 1–6. https://doi.org/10.1109/ISSREW.
2019.00033

[20] Raphael Noemmer and Roman Haas. 2020. An Evaluation of Test Suite Minimiza-
tion Techniques. In Software Quality: Quality Intelligence in Software and Systems
Engineering, D Winkler, S Biffl, D Mendez, and J Bergsmann (Eds.). Vol. 371.
Springer„ 51–66. https://doi.org/10.1007/978-3-030-35510-4_4

[21] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression
testing to large software systems. In Proceedings of the International Symposium
on Foundations of Software Engineering. 241–251. https://doi.org/10.1145/1029894.
1029928

[22] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and Methodology
6, 2 (1997), 173–210. https://doi.org/10.1145/248233.248262

[23] Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia. 2000. Regression
test selection for C++ software. Software Testing, Verification and Reliability
10, 2 (2000), 77–109. https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-
STVR197>3.0.CO;2-E

[24] August Shi, Suresh Thummalapenta, Shuvendu K. Lahiri, Nikolaj Bjorner, and
Jacek Czerwonka. 2017. Optimizing Test Placement for Module-Level Regression
Testing. In Proceedings of the International Conference on Software Engineering.
689–699. https://doi.org/10.1109/ICSE.2017.69

[25] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-
proving Regression Test Selection in Continuous Integration. In Proceedings
of the International Symposium on Software Reliability Engineering. 228–238.
https://doi.org/10.1109/issre.2019.00031

[26] Yuri Shkuro. 2019. Mastering Distributed Tracing: Analyzing performance in
microservices and complex systems. Packt Publishing Ltd.

[27] Benjamin H Sigelman, Luiz Andr, Mike Burrows, Pat Stephenson, Manoj Plakal,
Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure. Technical Report. https://doi.org/
dapper-2010-1

[28] Marko Vasic, Zuhair Parvez, Aleksandar Milicevic, and Milos Gligoric. 2017.
File-level vs. module-level regression test selection for .NET. In Proceedings of
the Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 848–853. https://doi.org/10.1145/
3106237.3117763

[29] Joakim Von Kistowski, Simon Eismann, Norbert Schmitt, Andre Bauer, Johannes
Grohmann, and Samuel Kounev. 2018. TeaStore: A micro-service reference
application for benchmarking, modeling and resource management research. In
Proceedings of the International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems. 223–236. https://doi.org/10.1109/
MASCOTS.2018.00030

[30] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: A survey. Software Testing Verification and Reliability 22, 2
(2012), 67–120. https://doi.org/10.1002/stv.430

[31] Lingming Zhang. 2018. Hybrid regression test selection. In Proceedings of the
International Conference on Software Engineering. 199–209. https://doi.org/10.
1145/3180155.3180198

[32] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2013. FaultTracer: A
spectrum-based approach to localizing failure-inducing program edits. Journal
of Software: Evolution and Process 25, 12 (2013), 1357–1383. https://doi.org/10.
1002/smr.1634

[33] Hua Zhong, Lingming Zhang, and Sarfraz Khurshid. 2019. TestSage: Regression
test selection for large-scale web service testing. In Proceedings of the International
Conference on Software Testing, Verification and Validation. 430–440. https:
//doi.org/10.1109/icst.2019.00052

Preprint — do not distribute.

https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1145/3460319.3464834
https://doi.org/10.1109/ICST.2019.00039
https://doi.org/10.1109/ICST.2019.00039
https://doi.org/10.1109/icse.2015.230
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1145/3427921.3450248
https://doi.org/10.1145/3468264.3473922
https://doi.org/10.1145/504311.504305
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1145/2950290.2950361
https://doi.org/10.1109/ase.2017.8115710
https://doi.org/10.1109/icse-seip.2019.00019
https://doi.org/10.1109/icsm.1990.131377
https://doi.org/10.1109/ICSME46990.2020.00102
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/ISSREW.2019.00033
https://doi.org/10.1109/ISSREW.2019.00033
https://doi.org/10.1007/978-3-030-35510-4_4
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1145/1029894.1029928
https://doi.org/10.1145/248233.248262
https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-STVR197>3.0.CO;2-E
https://doi.org/10.1002/1099-1689(200006)10:2<77::AID-STVR197>3.0.CO;2-E
https://doi.org/10.1109/ICSE.2017.69
https://doi.org/10.1109/issre.2019.00031
https://doi.org/dapper-2010-1
https://doi.org/dapper-2010-1
https://doi.org/10.1145/3106237.3117763
https://doi.org/10.1145/3106237.3117763
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1109/MASCOTS.2018.00030
https://doi.org/10.1002/stv.430
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1145/3180155.3180198
https://doi.org/10.1002/smr.1634
https://doi.org/10.1002/smr.1634
https://doi.org/10.1109/icst.2019.00052
https://doi.org/10.1109/icst.2019.00052

	Abstract
	1 Introduction
	2 Related Work & State-of-Practice
	3 Distributed Test Selection
	3.1 Distributed Tracing
	3.2 Code Instrumentation
	3.3 Test Selection

	4 Efficiency Evaluation
	4.1 Experimental Setup
	4.2 Discussion of Results

	5 Case Study: Corona-Warn-App
	5.1 Experimental Setup
	5.2 Discussion of Results

	6 Conclusion
	Acknowledgments
	References

