
Generating Accurate Assert Statements for Unit
Test Cases using Pretrained Transformers

Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Neel Sundaresan
Microsoft

Redmond, WA, USA
Email: {mitufano, dadrain, alsvyatk, neels}@microsoft.com

Abstract—Unit testing represents the foundational basis of the
software testing pyramid, beneath integration and end-to-end
testing. Automated software testing researchers have proposed a
variety of techniques to assist developers in this time-consuming
task.

In this paper we present an approach to support developers
in writing unit test cases by generating accurate and useful
assert statements. Our approach is based on a state-of-the-art
transformer model initially pretrained on an English textual
corpus. This semantically rich model is then trained in a semi-
supervised fashion on a large corpus of source code. Finally, we
finetune this model on the task of generating assert statements
for unit tests.

The resulting model is able to generate accurate assert state-
ments for a given method under test. In our empirical evaluation,
the model was able to predict the exact assert statements written
by developers in 62% of the cases in the first attempt. The results
show 80% relative improvement for top-1 accuracy over the
previous RNN-based approach in the literature. We also show the
substantial impact of the pretraining process on the performances
of our model, as well as comparing it with assert auto-completion
task. Finally, we demonstrate how our approach can be used to
augment EvoSuite test cases, with additional asserts leading to
improved test coverage.

Index Terms—Software Testing, Deep Learning, Software
Maintenance

I. INTRODUCTION

Software testing is recognized as one of the most crucial,
challenging, and expensive parts of the software lifecycle. It
comes as no surprise that the software testing research commu-
nity has invested significant effort in designing approaches that
aim at supporting or automating software testing activities. An
example of this endeavor is the work targeting the automatic
generation of unit tests [1], [2]. While these works represent
a notable achievement towards the goal of automated testing,
they come with several limitations, recently highlighted by
studies in industrial settings [3], [4].

One of the major challenges these tools aim to overcome is
the generation of accurate assert statements, which have been
found to be often incomplete or inadequate to properly test
the behavior of a software component. Generating meaningful
assert statements is one of the key challenges in automatic test
case generation [5]. Assert statements represent the basic blocks
of software testing, used by developers to check conditions or
states in a program and reason about program correctness.

Watson et al. recently proposed ATLAS [5], an RNN-based
approach which aims at learning from thousands of unit test

methods how to generate meaningful assert statements. Inspired
by this work, we improve upon it in substantial ways.

In this paper we present an approach to generate accurate
assert statements based on state-of-the-art transformer model
and relying on transfer learning to achieve best-in-class
performances, predicting the correct assert in 62% of the cases
in the very first attempt, which represents an 80% relative
improvement for top-1 accuracy over the previous work [5].

Transfer learning is a technique which first trains a model in
an unsupervised fashion on large quantities of unlabeled data,
and then finetunes on a downstream task like classification or
translation. This technique has emerged as a standard route to
achieve state-of-the-art results in natural language processing
(NLP) tasks, obtaining higher performance and requiring much
less resources than training each task from scratch [6], [7], [8].
The intuitive explanation for this success is that a model which
learns to generate text or fill in blanks will have developed
biases reflected in the data which can help it learn to perform
particular language tasks faster and with higher performance.

In this paper, we extend this idea to source code as a language
for a task of automated assert statement generation. We pretrain
a sequence-to-sequence transformer model on a large source
code and English language corpora, and finetune it on an assert
statement generation task.

In our extensive empirical evaluation we assess several
properties of our approach, such as intrinsic model metrics
as well as extrinsic metrics related to the generated asserts.
Finally, we evaluate the proposed approach in a scenario where
it is used to support automated test case generation tools, such
as EvoSuite, by augmenting the test cases with the assert
statements generated by our approach.

To summarize, this paper provides the following contribu-
tions:

• An approach that generates accurate assert statements
based on a sequence-to-sequence transformer model. Our
approach can predict the correct assert in 62% of the
cases in the very first attempt, and reaches up to 84%
correctness when allowing the model to suggest more
asserts.

• We empirically demonstrate the benefits of pretraing on
both English and source code corpora for the downstream
assert generation task, resulting in performance improve-
ment in terms of variety of intrinsic metrics such as BLEU
score, validation loss, and syntactic correctness.

ar
X

iv
:2

00
9.

05
63

4v
1

 [
cs

.S
E

]
 1

1
Se

p
20

20

English Pretraining Code Pretraining Asserts FinetuningBART Transformer

BART Scratch

BART English

Models Evaluation

BART English+Code

BART English

BART Scratch

BART Code

Fig. 1. Overview of the Model Training Process. Starting from a BART Transformer model, we perform English and Source Code pretraining, and finetune
the models on the Assert generation task. We obtain four different models based on the level of pretraining performed.

• We investigate how our proposed approach can be used
to augment existing test cases, such as those generated
by EvoSuite, with additional assert statements that lead
to test coverage improvements.

II. APPROACH

Figure 1 provides an overview of the training pipeline we
followed in building our models specialized in assert statement
generation.

We begin with the state-of-the-art BART Transformer (Sec.
II-A) which will serve as the reference architecture for our
models. We employ two pretraining stages: English Pretraining
(Sec. II-B) where we perform semi-supervised pretraining on a
large corpus of English text; Code Pretraining (Sec. II-C) where
the model is pretrained on Java source code. Next, we perform
the finetuning on the task of generating assert statements for
unit test cases (Sec. II-D), relying on a labelled dataset of test
cases and method under tests. Finally, we evaluate variants
of the models (Sec. II-E) obtained with different levels of
pretraining indicated with different arrows in Figure 1.

A. BART Transformer

BART [9] is a denoising autoencoder which utilizes the stan-
dard sequence-to-sequence transformer architecture from [10],
substituting ReLUs with GeLU activation functions.

We select the BART model architecture because it facil-
itates finetuning for downstream translation task of assert
statement generation, providing a more advanced set of noising
transformations, which include token masking, token deletion,
infilling and statement permutation. The model is pretrained
by corrupting documents and optimizing the cross-entropy loss
between the decoder’s output and the original input sequence.

We pretrain the BART large model architecture, having 12
layers in the encoder and decoder. The model is trained in
mixed-precision, using Adam stochastic optimization procedure
with ε = 10−6, and β1 = 0.9, β2 = 0.98 optimizer parameters;
we apply inverse square root learning rate schedule with the
base learning rate of 0.0001, a warmup period of 5000 update
steps, and the local gradient accumulation with a frequency of
4 update steps.

B. English Pretraining

In this stage we pretrain a model in a semi-supervised fashion
on a large corpus of English text, with the goal of learning
semantic and statistical properties of natural language.

1) Dataset: The pretraining is performed for 40 epochs on
160GB of English text extracted from books, Wikipedia, and
news articles [11], comprising a total of X lines of text.

2) Training Strategy: BART is trained in an unsupervised
manner. Given corrupted text, its objective is to reconstruct
the original text. The particular type of noise used in this
work involves masking 30% of all tokens, with masks covering
spans of tokens with lengths following a Poisson distribution
parameterized by λ = 3, as well as permuting all sentences.

C. Code Pretraining

In this stage we pretrain a model on source code corpus
written in Java language, with the goal of learning syntax and
properties of source code.

1) Dataset: We collect this code corpus dataset by crawling
all public, non-fork Java repositories on GitHub with at least 50
stars. We then deduplicate at the file-level using a hash function.
After filtering based for permissive licenses and filtering out
based on heuristics like the fraction of non-ascii characters,
we are left with 25GB of training data from the 26,000 repos.
For pretraining validation, we use the 239 test Java repos from
CodeSearchNet [12], which comprise 600MB.

2) Training Strategy: A similar pretraining strategy to
English pretraining is employed. The source code files are
corrupted by deleting 20% of all tokens independently and
rotating half of all documents. This pretraining is performed
for 10 epochs.

D. Asserts Finetuning

In this stage we finetune a model on the task of generating
assert statements for unit test cases. Specifically, we represent
this task as a translation task, where the source is the partially
written unit test along with the method under test, and the
target is the correct assert statement that the developer wrote
for that unit test.

1) Dataset: To perform the finetuning, we rely on the
publicly available dataset of unit test methods used to evaluate
ATLAS [5]. This dataset is comprised of Test Methods
(i.e., methods within a unit test case), Focal Methods (i.e., the
methods under test), and Asserts (i.e., the assert statements
within the Test Methods).

This dataset has been mined from more than 9 thousand
open-source GitHub projects containing unit test cases defined
with JUnit. The authors first extract methods beginning with
the @Test annotation as candidate Test Methods. From these
candidate methods the authors select those that specify a single
assert statement. Next, for each Test Method they pinpoint the
Focal Method (i.e., the method that the current Test Method
is testing) using a heuristic [13] which looks at last method
invocation before (or within) the assert statement. Finally, each
Test Method is modified by replacing the Assert statement with
a placeholder <AssertPlaceholder>.

Each data point in the dataset is referred to as a Test-
Assert Pair (TAP), and can be seen as a triplet TAPi =
{tm′i, fmi, ai} where tm′i is the Test Method where the assert
statement has been replaced with a placeholder, fmi is the
Focal Method, and ai is the assert statement. This data is
organized as a parallel corpus, a common format for machine
translation tasks, where the source sentence si = {tm′i+fmi}
is the concatenation of the Test Method and Focal Method,
while the target sentence ti = ai is the assert statement to
predict. Figure 2 provides an example of a TAP. The test method
tmi is testLength() and its corresponding focal method
fmi is length(). The test method creates two sets of bits and
check that their length is the same, using the assertEquals
statement. The source sentence is the concatenation of the test
method and focal method, where the assert statement is replaced
with a placeholder. The corresponding target output is the assert
to be predicted.

For our models, we use the raw version of the dataset –
corpus comprising the original source code tokens – rather
than the abstract version (where some tokens are replaced
with IDs), since we aim to exploit the rich semantics of all
the variable and method names. We keep the original split
of the dataset in training, validation, and testing sets (80%,
10%, 10%) for a fair comparison. Table I reports the number
of instances in the dataset.

2) Training Strategy: The finetuning process is a translation
task, where we train the model to learn the mapping si → ti
as a conditional probability P (ai|tm′i + fmi).

During training we use the cross entropy loss and the Adam
optimizer and monitor the loss on the validation set for early
stopping.

We use shared vocabulary embeddings between Encoder and
Decoder for optimizations reasons [10], [14] and because our
input and output language is the same (i.e., Java source code).

E. Model Variants

At the end of these stages, we obtain four different variants
of the model, based on the level of pretraining performed:

Test Method {tmi}

public void testLength() {
BitSet bset = new BitSet();
ImmutableBitSet ibset = new ImmutableBitSet(bset);
Assert.assertEquals(bset.length(), ibset.length());

}

Focal Method {fmi}

public int length() {
return this.bitSet.length();

}

Source: {tm′i + fmi}

public void testLength() {
BitSet bset = new BitSet();
ImmutableBitSet ibset = new ImmutableBitSet(bset);
<AssertPlaceHolder>;

}
public int length() {

return this.bitSet.length();
}

Target: {ai}

Assert.assertEquals(bset.length(), ibset.length())

Fig. 2. Example of a Test-Assert Pair (TAP)
The source is formed by concatenating the partial test case (without assert)
and the focal method. The target is the assert statement to generate.

• BART_Scratch: A model which has not been pretrained on
any corpus but directly finetuned on the assert generation
task. This model represents the orange line in Figure 1.

• BART_English: A model which has been pretrained on the
English corpus and then finetuned for the assert generation
task. This model represents the green line in Figure 1.

• BART_Code: A model pretrained on the source code
corpus, then finetuned on the assert generation task. This
model represents the purple line in Figure 1.

• BART_English+Code: A model pretrained first on English
and further pretrained on source code corpus, then fine-
tuned on the assert generation task. This model represents
the blue line in Figure 1.

III. EXPERIMENTAL DESIGN

The goal of our empirical study is to determine if our
approach can generate accurate assert statements for unit test
cases, in one or very few attempts. We investigate whether
our approach outperforms the previous RNN-based approach
ATLAS [5]. Additionally we explore the impact of different
pretrainings on the assert generation performances as well as
the effect of incorporating the focal method in the input to the
model.

Our experiments aims at answering the research questions
described in the following paragraphs.

RQ1: How does our approach compare with ATLAS?
We compare the performances of our models against ATLAS

[5], the RNN-based approach available in the literature. Specif-
ically, to ensure fair comparison, we perform the finetuning
process of our models on the exact same training set, and

evaluate and compare the performances on the same test set. To
compare the models’ performances we use the top-k accuracy
metric, which measures the accuracy of a model with different
number of attempted predictions. In particular, if the target
assert statement ai for the i-th input in the test set, is in
the top-k predictions of the model, we count it as a correct
prediction at k. Similarly to ATLAS [5], we experiment with
k = {1, . . . , 50} with a maximum beam size of 50.

RQ2: What is the effect of the pretraining process on
the assert generation task?

We investigate whether pretraining our models on English
corpus, on source code, and both corpora has any noticeable
impact on the downstream performances of the models on
the assert generation task. In particular, we compare the
BART_Scratch model, which has not been pretrained on any
corpus, against BART_English which was pretrained on English
corpus, BART_Code which was pretrained on source code, and
BART_English+Code which was pretrained on both English
and source code. This comparison is performed considering:
• Extrinsic metrics: the top-k accuracy on the assert gener-

ation task;
• Intrinsic metrics: (i) best validation loss and the number of

training steps required to reach it (e.g., faster convergence);
(ii) BLEU4 score, a common metric for machine trans-
lation tasks, evaluated on the test set; (iii) the syntactic
correctness of the generated asserts, determined using a
Java Parser.

RQ3: What is the effect of the Focal Method on the
performance of the model?

In Section II-D we described the finetuning process, where
the input to the Encoder is the concatenation {tm′i + fmi} of
the Test Method tm′i and Focal Method fmi. In this research
question our goal is to understand the effect on performances
of the Focal Method as input to the model, when generating
the assert statements. In particular, we select our best model
obtained from RQ1 and RQ2 and compare against an equivalent
model (i.e., same preprocessing steps) but finetuned on a
parallel corpus that does not contain the focal method, trying to
learn the probability P (ai|tm′i). Specifically, this can be seen
as an auto-completion task, where the source is the partially
written test method tm′i and the expected target output is the
assert ai. We compare the performances of the models with
or without the focal method in terms of top-k accuracy on the
test set.

RQ4: What is the quality of the generated asserts?
In the last research question we investigate the quality of

the assert statements generated by the model. We manually
analyze instances of correct predictions as well as inspecting
those that do not match with the target assert statement. We
report qualitative examples and discussion.

RQ5: Can our approach be used to improve automati-
cally generated test cases?

The goal of this research question is to provide a preliminary
investigation on the potential benefits of using our approach
to improve automated test case generation tools, such as

TABLE I
DATASETS USED FOR ENGLISH AND SOURCE CODE PRETRAINING,

AND ASSERT FINETUNING

Set English Source Code Asserts

Train 160GB 25GB 150,523
Valid - 600MB 18,816
Test - - 18,815

Total 160GB 25GB 188,154

EvoSuite. Specifically, we aim at enhancing test cases generated
by EvoSuite by inserting additional asserts generated by our
approach. We evaluate the potential benefits in terms of test
coverage boost and qualitative discuss the additional asserts.

For this investigation we select a small but reproducible
testbed using defects4j. We rely on defects4j since it provides
a reliable infrastructure to generate, compile, execute, and
evaluate test cases. Specifically, we select Lang-1-f, which
represents the fixed version of the first bug in the defects4j
collection belonging to the project Apache Commons Lang.

To generate test cases with EvoSuite, we use the de-
fects4j built-in command gen_tests.pl -g evosuite
-p Lang -v 1f. This command invokes EvoSuite test gener-
ation on the first fixed revision of Lang, which will generate test
cases for the class affected by the bug (i.e., NumberUtils).
We let EvoSuite generate test cases for 500 seconds (∼ 8
minutes) and compute the test coverage using defects4j which
relies on Cobertura, singularly for each test case.

Next, we select the 18 unique focal methods of the class,
without considering overloaded copies of the methods, and the
corresponding test cases generated by EvoSuite. We select a
single best test case for each of the focal methods. Once we
have the mapped test case pair, we generate additional assert
statements for each of the pair using our approach. Specifically,
for each focal method we generate the top-10 predictions and
select a single assert from them, which we insert as the last
statement within the EvoSuite test case. Finally, we execute the
newly augmented test cases and recompute the test coverage
for each of them.

IV. EXPERIMENTAL RESULTS

In this section we report and discuss the results of our
empirical study.

RQ1: How does our approach compare with ATLAS?
Figure 3 reports the top-k accuracy for our four variations

of the model as well as for ATLAS. The x-axis represents the
k value, ranging from 1 to 50, while the y-axis indicates the
percentage of correct asserts in the test set. For ATLAS we
report the results as they appear in the original work [5], by
considering the best model (i.e., Abstract Model). It is worth
noting that the ATLAS line is shaped as a step-function because
the authors reports only the value of k with 5 step increment
(e.g., 1, 5, 10, . . .), while we computed the top-k accuracy at
each integer value k from 1 to 50, hence the smoother curve.

0 10 20 30 40 50
Top-K

30

40

50

60

70

80

%
 C

or
re

ct
 A

ss
er

ts

BART_English+Code
BART_English
BART_Code
BART_Scratch
ATLAS

Fig. 3. Top-K Accuracy Results.
Comparing our four BART model variants against ATLAS

The results show that our models outperform ATLAS at
any k value. In particular, BART_English+Code can correctly
predict the target assert statement (originally written by the
developer) in 62% of the cases in just the first attempt. This
represents an 80% relative improvement over the top-1 ATLAS
accuracy of 27%.

The impressive results on the top-1 accuracy are particularly
important in terms of usability and applicability of this
approach beyond research, in actual development environments.
Practically, developers would obtain accurate and relevant
assert statements in one or very few suggestions, without the
need of going through a long list while discarding incorrect
recommendations.

Summary for RQ1. Our approach outperforms ATLAS with
a relative improvement of 80% on top-1 accuracy.

RQ2: What is the effect of the pretraining process on
the assert generation task?

Extrinsic Metrics: Figure 3 shows a massive gap between the
performance of the model whiteout pretraining (BART_Scratch)
compared to the models with English (BART_English), source
code (BART_Code), and both (BART_English+Code) pretrain-
ing. Specifically, the performance gap between BART_Scratch
and the models with single pretraining phase (BART_Code
or BART_English) is 22-25%, while the gap between
BART_English and BART_English+Code is 1.54-2.25%, in
favor of the model which was pretrained on both English and
source code.

These results highlight the importance of pretraining on the
performance of downstream tasks. It is particularly striking the
effect of pretraining on natural language English text over a
downstream task involving source code. This result emphasizes
the significance of having a model which understands the
semantics of variable and method names in the code.

While additional pretraining on source code appears to have

TABLE II
ACCURATE PREDICTIONS

Top-K ATLAS BART_Scratch BART_Code BART_English BART_English+Code

1 4968 (26.40%) 7106 (37.77%) 11183 (59.44%) 11430 (60.75%) 11754 (62.47%)
5 7857 (41.76%) 9522 (50.61%) 13996 (74.39%) 14244 (75.71%) 14665 (77.94%)
10 8812 (46.83%) 10055 (53.44%) 14576 (77.47%) 14839 (78.87%) 15200 (80.79%)
15 9291 (49.38%) 10304 (54.76%) 14811 (78.72%) 15096 (80.23%) 15423 (81.97%)
20 9554 (50.78%) 10461 (55.60%) 14982 (79.63%) 15238 (80.99%) 15541 (82.60%)
25 9764 (51.89%) 10582 (56.24%) 15063 (80.06%) 15339 (81.53%) 15639 (83.12%)
30 9918 (52.71%) 10693 (56.83%) 15140 (80.47%) 15407 (81.89%) 15716 (83.53%)
35 10068 (53.51%) 10763 (57.20%) 15207 (80.82%) 15478 (82.26%) 15786 (83.90%)
40 10179 (54.10%) 10833 (57.58%) 15274 (81.18%) 15530 (82.54%) 15849 (84.24%)
45 10247 (54.46%) 10903 (57.95%) 15347 (81.57%) 15586 (82.84%) 15912 (84.57%)
50 10327 (54.89%) 10979 (58.35%) 15392 (81.81%) 15615 (82.99%) 15944 (84.74%)

a limited impact on performances, compared to pretraining only
on English, it still delivers consistent improvements, which
could potentially be higher on bigger test sets.

Intrinsic Metrics: In terms of intrinsic metrics, Figure 4
shows the cross-entropy loss on the validation set during
training for the four model variations. Similarly to what
observed with the extrinsic metric, we note a substantial
gap between the model without pretraining (BART_Scratch)
compared to the two models with English (BART_English),
source code (BART_Code) and both (BART_English+Code)
pretraining. Comparing the English only and the English+Code
models, the additional pretraining on source code has three
evident effects: (i) lower initial loss (0.21 vs 0.31); (ii) lower
best loss (0.13 vs 0.15); (iii) faster convergence (∼2500 training
steps earlier).

Table III reports the intrinsic metrics computed for the four
model variations. Specifically, BART_English+Code obtains
the best BLEU4 and validation loss. Regarding the syntactic
correctness, the model pretrained on both English and source
code obtains the best value for the top single prediction,
however when computing the correctness considering the top
25, and 50 generated asserts for each input in the test set,
the model pretrained exclusively on source code achieves the
highest correctness score. This result is somewhat predictable,
since BART_Code has been pretrained and finetuned exclusively
on source code, thus it should have the most consistent results
in terms of syntax.

Overall, we observe a significant positive effect of pretraining
on English and source code for both extrinsic and intrinsic
metrics. While additional pretraining on source code appears
to have a smaller impact than English pretraining alone, it is
worth noting that we observe consistent improvements across
all the analyzed metrics, corroborating the beneficial effect of
the source code pretraining. Additionally, the small gap could
be due to the nature of the downstream task, where the output
is a single-line assert statement, which could closely resemble
a natural language sentence.

Summary for RQ2. Pretraining has a significant positive
effect on the downstream performances. Pretrainig on English
text boosts the performances of 23-25%, while further
pretraining on source code can yield additional ∼2% im-
provement.

2500 5000 7500 10000 12500 15000 17500 20000
Training Step

100

Va
lid

at
io

n
Lo

ss
 (l

og
 sc

al
e)

BART_Scratch
BART_English
BART_Code
BART_English+Code

Fig. 4. Validation Loss obtained during Assert finetuning for our four BART
model variants

TABLE III
INTRINSIC EVALUATION METRICS

Metric BART_Scratch BART_Code BART_English BART_English+Code

BLEU4 72.40 84.24 84.13 85.35

Validation Loss 0.67 0.17 0.15 0.13

Syntax Top-1 99.54% 99.56% 99.57% 99.58%
Syntax Top-25 92.97% 94.05% 93.01% 93.96%
Syntax Top-50 85.05% 88.12% 87.07% 87.26%

RQ3: What is the effect of the Focal Method on the
performances of the model?

To answer this research question, we compared the model
that achieves the best performances in RQ1 and RQ2 –
BART_English+Code – against a similar model (i.e., same
pretraining phases) but with different finetuning. Specifically,
we selected the same model checkpoint after the source code
pretraining, and fintuned the model on a modified dataset
without the Focal Method as input. Figure 5 shows the top-k
accuracy of the models with (solid line) and without (dashed
line) the Focal Method. The results show that the model which
takes as input the Focal Method is more accurate in generating
assert statements in ∼10% of the cases. That is, there are
certain assert statement that are not covered by the model w/o
Focal Method, even when 50 different predictions are generated.
This result highlight the essential information provided by the
Focal Method to inform the model on generating specific assert
statements.

Summary for RQ3. The Focal Method provides essential
information which allows the model to generate ∼10%
more accurate asserts compared to a generic auto-completion
model.

RQ4: What is the quality of the generated asserts? To
answer this research question we analyze and discuss examples
of generated assert statements. Figure 6 provides examples of

0 10 20 30 40 50
Top-K

55

60

65

70

75

80

85

%
 C

or
re

ct
 A

ss
er

ts

w/ Focal Method
w/o Focal Method

Fig. 5. Top-K Accuracy - Comparing our model trained with or without the
Focal Method as input

common, complex, and equivalent assert statements generated
by our best model BART_English+Code. The list of common
asserts comprises statements that are correctly predicted by the
mode (i.e., match the original assert) which are often found
in test cases in different contexts. For example, these asserts
usually check that the result is equal to the expected
value, or that a given list contains an element that was
previously added. These types of asserts are usually predicted
in the very first attempts of the model. While these represent
simple assert statements, they still require the model to detect
the variables used within the test/focal method and their
relationship.

The list of complex assert statements showcase some of the
challenging asserts correctly predicted by the model. These
asserts involve multiple method calls, parameters, attributes,
and variables that are less common.

The list of equivalent assert statements show generated
asserts that do not exactly match with the target assert
(i.e., these are not counted as correct asserts in the top-k
accuracy), but they are equivalent to the developer’s assert. For
example, the model suggests to get the class literal directly
with AbstractService.class, while the developer uses
the method getClass() which, in turn, uses the same class
literal. In another instance, the developer checks that status
== 0 is true, while the model suggests an equivalent check
with assertEquals(0, status). Similarly, the model
suggests to use assertSame on two objects, rather than the
== equivalence. Note that for all these cases, the model was
eventually able to predict the correct assert (i.e., perfect match)
in the subsequent attempts.

Finally, Figure 7 reports two complete examples with source
and target, correctly predicted by the model. In the first example,
the generated assert checks that the event object created
with the eventFactory is of the correct class instance. In
the second example, the model generates a complex assert
statement involving numerical literals and variables previously
used to set-up the testing environment. Additionally, the

Common Assert Statements

assertEquals(expected, result)
assertSame(rows, actual)
assertNotNull(client)
assertTrue(list.contains(element))
assertArrayEquals(expected, values)
assertEquals(1, result.getSize())

Complex Assert Statements

assertEquals(0, zero.getPartialDerivative(n), epsilon [n])
assertThat(emptySession.getEnd(), CoreMatchers.equalTo(date))
assertEquals(container.getSoundEffects().read(0), Sound.ENTITY_CAT_HISS)

Equivalent Assert Statements

target: assertNull(sm.get(serviceStub.getClass()))
predicted: assertNull(sm.get(AbstractService.class))

target: assertTrue(status == 0)
predicted: assertEquals(0, status)

target: assertEquals(user.getSNetVisibility(), visibility)
predicted: assertEquals(visibility, user.getSNetVisibility())

target: assertTrue(ps1 == ps2)
predicted: assertSame(ps1, ps2)

Fig. 6. Examples of generated asserts
Common assert statements found in different contexts
Complex assert statement involving multiple method calls and parameters
Equivalent assert statements to the original target statement

example in Figure 2 described in Sec. II-D was also correctly
predicted by the model in the very first attempt.

These results highlight the need for additional metrics beyond
simple accuracy. In particular, metrics that can recognize and
discern cases where the generated assert statement is different
yet equivalent to the one created by human developers, as well
as non-equivalent asserts that are also correct in that context.
Additionally, there could be many locations in the code where
the developers did not introduce assert statements but the
model could suggest reasonable ones, which are currently not
uncovered in the quantitative metrics. The main goal of this
research question was precisely to fill this gap with a qualitative
and manual analysis.

Summary for RQ4. Our models can generate common assert
statements as well as complex ones involving method calls,
parameters, and unusual variables. In several cases, the model
generates equivalent assert statements to the developer’s
assert.

RQ5: Can our approach be used to improve automati-
cally generated test cases? Table IV reports the absolute (and
percentage) line and condition coverage at class-level, for each
of the 18 public methods considered in the experiment. The
table shows the results for the original EvoSuite test cases, those
augmented by our model, as well as the delta improvement in
the last column.

For 13 out of 18 methods, our approach generated asserts that
improved the line and/or condition coverage between 1-3 more
lines and 1-4 additional condition coverage. For 4 methods our
approach generated correct asserts which did not improve the
coverage, while for one method (i.e., createBigDecimal)
our approach did not generate any correct assert within the

Source: {tm′i + fmi}

public void createBeginNwhinInvocation() {
Event event = eventFactory.createBeginNwhinInvocation();
<AssertPlaceHolder>;

}
public BeginNwhinInvocationEvent createBeginNwhinInvocation() {

return new BeginNwhinInvocationEvent();
}

Target: {ai}

Assert.assertTrue(event instanceof BeginNwhinInvocationEvent)

Source: {tm′i + fmi}

public void simpleInsertTest() {
LRU lru = LRU(5, true);
for(int i = 0; i < 5; i ++) {

addAndExpectNoEviction(lru,(100 + i));
}

for(int i = 5; i < 10; i ++) {
addAndExpectEviction(lru,(100 + i),((100 + i) - 5));

}
for(int i = 5; i < 10; i ++) {

<AssertPlaceHolder>;
}

}
public boolean exists(long) { return m_lruMap.containsKey(id); }

Target: {ai}

Assert.assertTrue(lru.exists(100 + i))

Fig. 7. Two Complete Examples of perfect predictions

top-10 predictions.
Figure 8 shows all the generated asserts which have been

used to augment the EvoSuite test cases, in the same order as the
methods reported in table IV. We can notice that the first three
asserts invoke the focal method with an actual numerical value,
which results in additional test coverage, since the original
EvoSuite test case tested the same focal methods with a null or
empty string, resulting in the execution of a different branch.
The fifth assert, related to the focal method toDouble invokes
the focal method using a non-numerical string "foo", and
covering three additional lines and one more condition in the
focal method, w.r.t. the EvoSuite test case.

Let us now focus on the four assert statements that did not
improve the coverage, corresponding to the focal methods
min and max, shown as the sixth to the third from the
bottom of figure 8. Three of these asserts simply perform
additional checks on the return variables used by EvoSuite,
namely long0, float0, byte0. These asserts do not
invoke the focal method, thus not resulting in additional
coverage, but instead focus on testing additional properties
of the retun values. Finally, the assert assertEquals(4,
NumberUtils.min(4, 5, 7)) correctly invokes the fo-
cal method and asserts the correct behavior, but executes lines
and branches already tested by the original test case (with
different values).

Overall, these results show that our approach can be helpful
in augmenting existing or automatically generated test cases
with additional accurate assert statements. In most of the cases
reported in our experiment, we found the asserts to slightly
improve the test coverage.

TABLE IV
TEST COVERAGE ANALYSIS

AUGMENTING EVOSUITE’S TEST CASES WITH ASSERTS GENERATED BY OUR APPROACH

Focal Method EvoSuite EvoSuite + Our Approach Delta Improvement
Lines Conditions Lines Conditions Lines Conditions

toInt(String) 21 (5.6%) 1 (0.3%) 22 (5.9%) 2 (0.6%) +1 +1
toLong(String, long) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
toFloat(String, float) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
toDouble(String, double) 20 (5.3%) 1 (0.3%) 23 (6.1%) 2 (0.6%) +3 +1
toByte(String, byte) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
toShort(String, short) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
createFloat(String) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
createDouble(String) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
createInteger(String) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
createLong(String) 20 (5.3%) 1 (0.3%) 21 (5.6%) 2 (0.6%) +1 +1
createBigInteger(String) 28 (7.5%) 8 (2.4%) 28 (7.5%) 9 (2.7%) - +1
createBigDecimal(String) 22 (5.9%) 3 (0.9%) - - - -
min(long[]) 27 (7.2%) 6 (1.8%) 27 (7.2%) 6 (1.8%) - -
min(int, int, int) 22 (5.9%) 2 (0.6%) 22 (5.9%) 2 (0.6%) - -
max(float[]) 28 (7.5%) 7 (2.1%) 28 (7.5%) 7 (2.1%) - -
max(byte, byte, byte) 23 (6.1%) 2 (0.6%) 23 (6.1%) 2 (0.6%) - -
isDigits(String) 20 (5.3%) 1 (0.3%) 23 (6.1%) 5 (1.5%) +3 +4
isNumber(String) 44 (11.7%) 29 (8.6%) 45 (12.0%) 31 (9.2%) +1 +2

Summary for RQ5. Our approach can be used to augment
existing test cases, such as those generated by EvoSuite, with
additional assert statements. Our experiments show that these
asserts can lead to improved test coverage.

V. DISCUSSION & FUTURE WORK

Our experimental analysis showed promising results of our
approach in generating accurate assert statements for unit test
cases. For our future work, we envision two possible scenarios
where we can deploy our model with the goal of improving
automation in software testing activities.

A. Supporting Developers in writing Test Cases

Our approach could be used to support developers in writing
test cases more efficiently, by suggesting assert statements while
defining the test case. In this scenario, we plan to implement our
approach as plugin for an IDE, which is then used by developers
while writing code as a code completion tool. Our approach
could work side-by-side existing code completion approaches,
such as Pythia [15]. The results of RQ3 clearly shows that
our approach is more accurate than standard code completion,
leading us to suggest a hybrid approach. In this hybrid approach,
a standard code completion tool would perform inference on
our model when the developer is writing test cases.

B. Improving Automated Test Case Generation Tools

The results of RQ5 show that our approach can be used to
augment test cases generated by automated test case generation
tools, such as EvoSuite, Randoop, and Agitar. In this scenario,
our approach could be integrated within an automated test case
generation tool, or used as an external tool which augment and
revises assert statements in the newly generated test cases.

Generated Assert

assertEquals(5, NumberUtils.toInt("5"))
assertEquals(1, NumberUtils.toLong("1", 1))
assertEquals(6, NumberUtils.toFloat("6", 6), 0);
assertNotNull(NumberUtils.toDouble("foo", 1.0));
assertEquals(1, NumberUtils.toByte("1",((byte)(1))));
assertEquals(15, NumberUtils.toShort("15",((short)(15))));
assertNotNull(NumberUtils.createFloat("1"))
assertNotNull(NumberUtils.createDouble("1"));
assertNotNull(NumberUtils.createInteger("1"));
assertNotNull(NumberUtils.createLong("1"));
assertEquals(BigInteger.valueOf(1), NumberUtils.createBigInteger("1"));
-
assertNotNull(long0);
assertEquals(4, NumberUtils.min(4, 5, 7));
assertTrue((float0 == 0.0F));
assertTrue((byte0 == 5));
assertTrue(NumberUtils.isDigits("1"));
assertTrue(NumberUtils.isNumber("1"))

Fig. 8. Assert statements generated by our approach for Lang-1-f
These asserts are used to augment existing EvoSuite’s test cases leading to
coverage improvement

VI. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation and are mainly related to the
measurements we performed. In this context, data leakage
could represent a threat to the validity of our study. Data
leakage refers to the unintentional and accidental sharing of
data between the training and test sets. In our case, the threat
arises during the pretraining stage on large amount of source
code, where the model may have observed similar code to
what found in the finetuning test set. We mitigated this threat
by constructing the finetuning process differently from the
pretraining, where the code is organized in a dissimilar fashion.
Specifically, during the pretraining the test method did not
contain the placeholder, and was not adjacent to the focal
method. We empirically validated the mitigation of the threat
by evaluating the pretrained model (without finetuning) on
the test set, in order to observe its performances. The results

show that the model was not able to generate correct assert
statements, thus confirming the our hypothesis. It is also worth
to note that data leakage is avoided within the finetuning dataset
(i.e., training, validation, test sets)

Internal validity threats concern factors internal to our
study that could influence our results. The performance of
our approach depends on the hyperparameter configuration
and pretraining process. We did not perform hyperparameter
search since these large models require substantial training time,
however, we reuse configurations suggested in the literature.
We experiment with different pretraining stages and report the
results of our experiments.

Threats to external validity concern the generalization of our
findings. In our context, the threat arises when comparing our
BART Transformer model (with 400M trainable parameters)
against the RNN-based model (with 4M trainable parameters)
having different capacity and number of parameters. While we
note that comparing models with the same number of param-
eters could yield different results, the authors of ATLAS [5]
did not observe improvements when increasing the number of
layers and units of the Encoder-Decoder architecture. Moreover,
we rely on the existing literature comparing Transformer and
RNN architectures.

VII. RELATED WORK

Our work is related to several existing approaches in the
area of automated software testing. In particular, there is a
class of approaches that aims at generating tests methods and
synthesizing assert statements, such as Evosuite [1], Randoop
[2], and Agitar [16]. Among these, Evosuite is one of the most
popular tools for test generation in Java. It relies on mutation
testing in order to generate appropriate assert statements.
Specifically, it first introduce mutants within the method under
test, then it attempts to generate asserts with the goal of killing
the aforementioned mutants. During this process, Evosuite
optimizes towards maximizing the number of killed mutants
while generating as few asserts as possible. Randoop generates
assert statements by relying on user-specified contracts. These
statements are then refined using random testing and analyzing
execution traces of the statement it creates.

The major difference between these works and our approach
is the learning component. Specifically, the aforementioned
works rely on handcrafted rules or heuristics to generate assert
statements, for example via predefined mutations. Instead,
we aim to learn from developers’ code what are the assert
statements that are more effective for the particular context
(i.e., test case and focal method).

Additionally, recent works have shed light on the importance
of generating accurate and complex assert statements to detect
real faults in the system [3], [4]. In particular, Almasi et al. [3]
shows that, while Evosuite and Randoop were able to uncover
several faults in real programs, nearly half of the undetected
faults could have been detected with a more appropriate assert
statement [3], [5].

These limitations motivated the work from Watson et al. [5],
where the authors proposed an RNN-based approach ATLAS

which aims at generating meaningful assert statements by
learning from developers’ code. Inspired by this work, we
improve upon it in several substantial ways. First, we employ
a different and more advanced deep learning architecture based
on transformer models. Second, differently from ATLAS, we
take advantage of English and source code semi-supervised
pretraining to significantly boost the performances of the
models on the assert generation task. Lastly, we investigate
qualitative cases and intrinsic metrics as well as the effect of
the focal method, which provides additional beneficial context
to the model. These contributions culminated into an approach
that significantly outperforms the previous work [5], with an
80% relative improvement in top-1 accuracy.

Our work is related to a broad set of literature on transfer
learning [17], unsupervised language model pretraining [18],
[6], and denoising pretraining [7], [19], [9]. In this paper, we
extend these ideas to source code as a language, combining
English and source code pretraining modes, fine-tuning on
a downstream translation task from the automated software
engineering domain.

VIII. CONCLUSION

In this paper we presented an approach for generating
accurate assert statements for unit test cases. The core of our
approach is based on a state state-of-the-art transformer model
which has been pretrained, in a semi-supervised fashion, on
both English and source code corpora. This pretraning process
allows to learn the semantics of the natural language and its
words as well as the syntax of the source code. The model
was then finetuned on the assert generation task, which we
represent as a translation task, where the input is the focal
method along with the partially generated test case, and the
output is the desired assert statement.

The resulting model is able to generate accurate assert
statements, with a 62% top-1 accuracy, matching the exact
assert statement originally wrote by the developer. This
represents an 80% relative improvement over the previous
RNN-based approach [5].

In our empirical evaluation, we experimented with different
pretraining levels, showing the beneficial impact of pretraining
on both English and source code in terms of extrinsic and
intrinsic metrics. We qualitatively analyzed the assert statements
predicted by our model, and identified both common and
complex asserts. Interestingly, we found many cases in which
the predicted assert statement did not syntactically match the
original statement, yet was semantically equivalent and correct.
Finally, we empirically demonstrate how our proposed approach
can be used to augment existing test cases, such as those
generated by EvoSuite, with additional assert statements that
lead to test coverage improvements.

We believe that these results are particularly important in
terms of the usability and applicability of this approach beyond
research, in actual development environments. Practically,
developers would obtain accurate and relevant assert statements
in one or very few suggestions, allowing them to write complete
and robust test cases.

REFERENCES

[1] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, 2011, pp. 416–419.

[2] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing
for java,” in Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion, 2007, pp.
815–816.

[3] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults in a
financial application,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP). IEEE, 2017, pp. 263–272.

[4] S. Shamshiri, “Automated unit test generation for evolving software,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 1038–1041.

[5] C. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” arXiv preprint
arXiv:2002.05800, 2020.

[6] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.
04805

[8] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” CoRR, vol. abs/1906.08237, 2019. [Online]. Available:
http://arxiv.org/abs/1906.08237

[9] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” 2019.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all
you need,” CoRR, vol. abs/1706.03762, 2017. [Online]. Available:
http://arxiv.org/abs/1706.03762

[11] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[12] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[13] A. Qusef, R. Oliveto, and A. De Lucia, “Recovering traceability links
between unit tests and classes under test: An improved method,” in 2010
IEEE International Conference on Software Maintenance. IEEE, 2010,
pp. 1–10.

[14] O. Press and L. Wolf, “Using the output embedding to improve
language models,” CoRR, vol. abs/1608.05859, 2016. [Online]. Available:
http://arxiv.org/abs/1608.05859

[15] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan, “Pythia: ai-assisted
code completion system,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 2727–2735.

[16] Agitar, “Utilizing Fast Testing to Transform Java Development into an
Agile, Quick Release, Low Risk Process,” http://www.agitar.com/, 2020.

[17] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a
unified text-to-text transformer,” 2019.

[18] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2018. [Online].
Available: https://d4mucfpksywv.cloudfront.net/better-language-models/
language-models.pdf

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized BERT
pretraining approach,” CoRR, vol. abs/1907.11692, 2019. [Online].
Available: http://arxiv.org/abs/1907.11692

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1608.05859
http://www.agitar.com/
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1907.11692

	I Introduction
	II Approach
	II-A BART Transformer
	II-B English Pretraining
	II-B1 Dataset
	II-B2 Training Strategy

	II-C Code Pretraining
	II-C1 Dataset
	II-C2 Training Strategy

	II-D Asserts Finetuning
	II-D1 Dataset
	II-D2 Training Strategy

	II-E Model Variants

	III Experimental Design
	IV Experimental Results
	V Discussion & Future Work
	V-A Supporting Developers in writing Test Cases
	V-B Improving Automated Test Case Generation Tools

	VI Threats to Validity
	VII Related Work
	VIII Conclusion
	References

