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Modern image classification approaches often rely on deep neural networks, which have shown pronounced weakness to

adversarial examples: images corrupted with specifically designed yet imperceptible noise that causes the network to misclassify.

In this paper, we propose a conceptually simple yet robust solution to tackle adversarial attacks on image classification. Our

defense works by first applying a JPEG compression with a random quality factor; compression artifacts are subsequently

removed by means of a generative model (AR-GAN). The process can be iterated ensuring the image is not degraded and hence

the classification not compromised. We train different AR-GANs for different compression factors, so that we can change its

parameters dynamically at each iteration depending on the current compression, making the gradient approximation difficult.

We experiment our defense against three white-box and two black-box attacks, with a particular focus on the state-of-the-art

BPDA attack. Our method does not require any adversarial training, and is independent of both the classifier and the attack.

Experiments demonstrate that dynamically changing the AR-GAN parameters is of fundamental importance to obtain significant

robustness.

CCS Concepts: • Computing methodologies→ Computer vision; Adversarial learning.
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1 INTRODUCTION

Deep Convolutional Neural Networks represent the fundamental core of most of the current state-of-the-art artificial

intelligence systems in a variety of fields. Recently, it was shown that they are highly susceptible to adversarial

examples [45]. These consist in slightly perturbed versions of the original examples that eventually trick the

networks into outputting a wrong prediction. The peculiar characteristic of adversarial examples is that they are

hardly distinguishable from their “clean” counterpart for the human eye, because they have been specifically

optimized to have the minimum possible perturbation.

The most effective and challenging attacks are those that craft adversarial examples exploiting the gradient

information; indeed, the gradient indicates how to perturb the input to falsify the network’s prediction. To combat this

class of attacks, many solutions have been proposed that aim at obfuscating the gradient information [23, 34, 48].
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Fig. 1. A simple yet effective defense mechanism: the input image is first compressed with JPEG at a random

quality factor. The latter is then restored using an ensemble of Generative Adversarial Networks (AR-GAN), each

one trained for a specific quality factor. The process is repeated N times so to add further complexity, while ensuring

the original image is not compromised. This ultimately forces strong adversarial distortions.

This goal can be achieved either by introducing non-differentiable operations [12], randomization to obtain

stochastic gradients [49], or by forcing vanishing/exploding gradients [40]. However, most of these strategies have

been proven vulnerable to methods that approximate the gradient [4].

To mitigate this performance breakdown, a different line of research focused on increasing robustness by means

of adversarial training mechanisms, i.e. including adversarial examples directly into the training data [46]. This

class of defenses represents one of the most effective against strong white-box attacks. However, one major

issue of such strategies is represented by the necessity of re-training the targeted networks, which might be a

non-negligible limitation in many cases. In addition, relying on some sort of adversarial process to improve the

network’s robustness, could lead to a poor generalization to unseen adversarial noises.

In light of the above, we propose a defense method embracing the idea of gradient obfuscation, which is

independent from both any adversarial generation process and the classification network. It can be readily applied

to any attacked models without needing to perform any re-training. Our main intuition is to process the input image

by combining the use of JPEG compression with a randomized quality factor, and a generative model to remove

compression artifacts. In the recent literature, JPEG compression has been recognized as a straightforward yet

effective enough pre-processing operation to account for adversarial attacks, which has the practical advantage of

being the standard for image compression. Given its potential, efforts have been put in developing learning-based

solutions specifically tailored for replicating and improving the JPEG to account for its vulnerabilities e.g. [12, 35].

In our work we propose a different solution that, instead of emulating the JPEG, tries to improve its performance

by adding a generative restoration module. Despite conceptually trivial, this solution has several advantages, the

most relevant ones being the following: (i) it combines a non-differentiable operator and auxiliary networks,

whose internal parameters change depending on the random compression factor; (ii) the generative model is

independent from the classification network, and can be readily used without requiring any re-training of the

attacked model; (iii) the generative model restores the quality of the compressed image, allowing us to perform

multiple compression-restoration steps without impacting on the image quality and so the classification result. This
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also makes the gradient estimation complex, and strongly enhances the robustness to the attack, while forcing

strong adversarial distortions (Fig. 1). To summarize, the main contributions of this paper are as follows:

• We developed a defense capable of tackling a variety of adversarial attacks, both white-box and black-box,

including the challenging BPDA [4].

• Differently from the majority of most effective defenses, our approach is independent from both the classifier

and the attack. It does not require adversarial training and so knowledge of the adversarial process.

• Our method effectively combines several defense techniques i.e. input transformation, randomization, and

generative restoration, in a robust framework that can be readily applied to any pre-trained classifier.

2 BACKGROUND AND RELATED WORK

In the recent literature, a lot of effort has been put in developing both attack and defense frameworks, as they are

strictly related to each other. We revise some attack and defense strategies that are most related to our proposal.

2.1 Adversarial Attacks

Adversarial attacks are meant to make a classifier output a wrong prediction [22]. A classifier can be denoted as

a function f (x) : X → Y that maps an input image x ∈ X into a class label y ∈ Y = {1, 2, · · · ,C}, with C being

the number of classes. Let x and xa be the clean and adversarial inputs respectively, and y∗ the ground-truth label.

Adversarial attacks simply aim at causing misclassification, and the adversarial example xa should be crafted

such that it is as close as possible to its clean counterpart, that is it should satisfy ∥x − xa ∥p ≤ ϵ , where ϵ is the

perturbation error. Both the above can be conducted in the white-box and black-box settings.

In the former case, the attacker has full knowledge of the model, so it has access to the network architecture along

with its internal parameters, the gradient w.r.t the input and also to possible defense mechanisms. Therefore, white-

box attacks commonly make use of gradient-based strategies to guide the generation of adversarial perturbations.

One of the first white-box attacks is the Fast Gradient Sign Method (FGSM) [22]. This approach was further

extended by [30] and [37] by refining the generation taking small iterative gradient steps via Projected Gradient

Descent (PGD) or using approximated gradients with random starts. The DeepFool method [38] focuses on

generating the adversarial example with the minimum possible perturbation, while Carlini and Wagner [8] proposed

an approach to generate a perturbation so that the result is still a valid image but changes the classification by

taking the Lagrangian form. One of the latest and most effective attacks that was proposed is the BPDA [4], which

circumvents gradient obfuscation by estimating an approximation.

Differently, black-box attackers cannot rely on the knowledge of the architecture and internal parameters. Thus,

they need to design their attacks based on different strategies. Transfer-based approaches are those considered the

most effective, which try to generate adversarial examples on a surrogate known model using a white-box strategy,

and transfer the attacks to different architectures [16, 17, 50]. Score-based attacks instead commonly rely on the

output of the target architecture and use approximated gradients to generate possible adversarial examples based

on the loss [27, 32, 47]. Decision-based attacks use a similar principle but the scenario is more challenging as the

attacker has access only to hard-label predictions [6, 10, 18]. For a more comprehensive review, the reader can

refer to [2].

2.2 Defense Strategies

In contrast to adversarial attacks, extensive investigations have been conducted to find effective countermeasures.

By far the most effective way to protect against white-box attacks consists in performing robust adversarial training,

which inspired a large corpus of methods [22, 36, 46, 48]. A relevant drawback is that re-training or fine-tuning

is required for each attacked model. We will neglect this kind of methods in our investigation as, differently, our
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proposed method is independent from the specific attack and does not make use of corrupted images at training

time.

When dealing with gradient-based attacks, a promising direction has been identified in methods that attempt

to obfuscate the gradient. A simple way to achieve this consists in randomization, which can be applied either

to the input [34] or in the form of stochastic activation functions [13]. Other approaches manipulate the input

image x, so relying on an operator д(·) which is applied before the classification model i.e. y = f (д(x)). Many

recent works employ the JPEG compression as non-differentiable input transformation to eliminate the adversarial

perturbation [11, 19, 23]. However, simple JPEG compression showed weaknesses to slightly more complex

attacks [4]. To improve its robustness, some variants have been proposed. In [35], a deep network is employed to

specialize the JPEG quantization step in order to mitigate accuracy reduction due to the introduction of artifacts

for small quality factors. In [12], the target model is re-trained using several compressed versions of the input

image, so as to “vaccinate” the model against both the attacks and JPEG compression. All these approaches resulted

vulnerable to the BPDA attack [4].

Two defenses that make use of generative models are, respectively, Defense-GAN [43] and the work of Mustafa

et al. [39]. The former grounds on the idea of using a GAN to remove adversarial noise from a perturbed image

by finding its closest sample on the natural image manifold. This is one of the few methods partially resisting

to BPDA; yet, it was shown adversarial examples still exist in the GAN-generated manifold. Mustafa et al. [39]

instead remove the adversarial noise by using a deep network trained for super-resolution. The network is trained

on data augmented with both adversarial and super-resolved images to improve robustness. This method shares

some advantages with our solution, i.e. it does not require re-training when used with different classifiers, while at

the same time producing an enhanced version of the image. However, it is not really comparable with our approach

since the super-resolution model is trained using an ensemble of both clean and adversarial images. Another recent

approach that shares some ideas with our proposal is the the method of Jia et al. [28], named ComDefend. The latter

uses the same degradation-restoration principle, but trains an adaptive compression model to specifically apply

stronger compression to malicious features. The method is extremely robust in case the training set is augmented

with adversarial images. However, if training is performed with clean images only, as we do, performance drop to

some extent.

Finally, some solutions have been proposed that use ensemble strategies to achieve model-diversity. In [34], the

prediction of different models is averaged after injecting random noise to each individual model. Pang et al. [40]

promote model diversity by adding a regularization that encourages different predictions among different models.

Similarly to these methods, we rely on an ensemble of JPEG restoration GAN models, applied in tandem with

compressions at different quality factors. Ensemble defense mechanisms have been proven vulnerable to attacks

that optimize with respect to the expected output (EOT). It was also demonstrated that ensemble defenses are not

much stronger than the strongest sub-component [4].

3 DEFENSE VIA COMPRESSION-RESTORATION

Here we first introduce the rationale behind our solution, and then provide a detailed description of the method.

3.1 Motivation

An effective attack should be able to make the classifier predict a wrong class while simultaneously making its

crafted artifacts imperceptible. Under this point of view, a defense mechanism can be considered effective whether

it can prevent wrong classifications, or can make the perturbations manifest at the point they are easily recognizable.

In a way, methods based on input transformations and those based on adversarial training are related with respect to

the above goal. When applying an input transformation in the attempt of either obfuscating the gradient, e.g. [49], or

removing adversarial artifacts, e.g. JPEG compression [23], we wish to remove or “substitute” those perturbations
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Fig. 2. Overview of the proposed pipeline. On the left, the adversarial attack process is visualized. On the right, our

proposed approach. Before classification, the image goes through a sequence of JPEG compressions and AR-GAN

restorations at random QFs to protect the classifier network from adversarial perturbations.

with some other not affecting the classifier prediction. Sticking to the JPEG example, most of the images normally

used to train a deep network are indeed JPEG compressed; hence, networks gain a certain degree of robustness

to such degradations. This is equivalent to mapping the image back into the learned natural image manifold [19].

Similarly, a certain degree of invariance to other image manipulations is usually achieved with data augmentation

techniques. Intuitively, adversarial training mechanisms point at the same result by augmenting the training corpus

with images containing adversarial artifacts. This can be viewed as the process of “enlarging” the learned manifold

to include adversarial samples. However, this implies the knowledge of some adversarial generation process, and the

generalization to different such processes is not guaranteed [48]. In both the cases though, the idea is that the effort

to make the attack successful implies corrupting the image with a non-negligible amount of noise. This conceptual

similarity suggests that gaining protection from adversarial samples without knowledge of the adversarial process

is possible [43], which would be desirable since brand new attack strategies are continuously developed. However,

input transformation based defenses have been proven vulnerable; some effective solutions that have been identified

are, for example, Expectation over Transformation (EOT) [5] or approximating the backward pass computation [4].

To counteract such strategies, strong transformations are necessary e.g. JPEG compression with very low quality

factor. Clearly, this has itself a negative impact on the classification, ultimately resulting counterproductive.

3.2 Proposed method

The above considerations motivated our solution. The main idea is that of first degrading the image with a JPEG

compression to account for adversarial perturbations, and then restoring it by means of a generative restoration

model д(x,θ ) so as to recover its original quality. From a different point of view, it can be seen as a process that

first uses JPEG as non-differentiable input transformation J (x) to map the image from the adversarial manifold

A to that J of compressed images i.e. J (x) : A → J ; then, maps the compressed image back the natural image

manifold I using the generative model д(x,θ ) that is specifically trained for that goal i.e. д(x,θ ) : J → I.

One major advantage of this solution is that we can train several, specialized, restoration models for different

quality factors, each having a different set of learned parameters θq . The advantage is two-fold: first, the probability

of correctly classifying compressed and restored (non attacked) images is higher even for lower quality factors,

because each model д(x,θq ) is trained specifically for that factor. Second, we can randomly choose the quality

factor, and select the most proper д(x,θq ) on-the-fly. In addition, operating this way it is possible to iterate the
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compression-restoration steps, adding a further level of complexity for the attacker. Fig. 2 shows our defense

strategy.

3.2.1 Restoration GAN. While JPEG compression is a standard image pre-processing operation, there exist

several approaches to restore a compressed image [9, 14, 44] that rely on architectures based on convolutions and

skip connections, thus learning layers of feature representations and propagating informations from the initial layers

to the final output. In this work, we make use of the GAN-based network first proposed by Galteri et al. in [20]

(AR-GAN) and extended in [21], that is specifically tailored for removing JPEG compression artifacts as it brings

remarkable results in term of perceptual quality. Differently from other solutions, this approach tries to estimate a

distribution that approximates the real distribution of data and consists of two different parts, a generator network

and a discriminator one. In this scenario, the networks are trained in an alternate fashion, where the objective of

the generator is to produce a restored output as close as possible to the target distribution, and the discriminator is

trained to recognize reconstructed images from the real ones.

The architecture of the generator is based on [24], a very common structure that comprises a sequence of residual

blocks and convolutional layers. In this work, we train the generator to reconstruct the residual image rather than

the whole image, that is we add a simple skip connection between the JPEG image in input and the output of the

last convolutional layer. This mechanism makes the training more stable and significantly faster.

We train several AR-GANs with different JPEG quality factors, as we can observe that when we vary this

parameter, different kind of artifacts appear inside the images. For each setting we train the model with batches

of 16 256 × 256 patches randomly drawn from the training images of DIV2K dataset [1] with some standard data

augmentation techniques, such as image flipping and random rotation. We use Adam [29] optimizer with the

standard learning rate 10−4 and momentum 0.9. Every 5 epochs we halve the learning rate and we train for a total

of 20 epochs.

3.2.2 Defense Mechanism. We designed our defense to deal with a specific attack, that is the BPDA white-box

attack [4]. BPDA is capable of effectively breaking defenses that either shatter the gradients with non-differentiable

transforms, use randomization or encourage vanishing/exploding gradients by performing optimization loops.

Whereas BPDA can circumvent those mechanisms separately, using them jointly can help in preventing the attack.

Compressed Image Restoration. The first step of our pipeline consists in compressing the image with a JPEG

operator. For each image, we perform compression using a random quality factor (QF). However, the AR-GAN

proved effective when trained to restore specific quality factors. Despite this could seem a limitation, it swings in

our favor; in fact, in this way we can change the parameters of the AR-GAN at different quality factors at inference

time. The AR-GANs for each QF have been trained independently, so they can be readily plugged in as needed.

This is incidentally the key novel component of our approach, and has several advantages. We can change the

quality factor significantly, making the approximation of the JPEG gradient more difficult while maintaining an

almost unchanged classification accuracy on clean images. If the model parameters are known to the attacker as

in white-box settings, it will try to use them to forge the attack. However, the parameters change continuously

according to the quality factor. So, the gradient that is used at one iteration of the attack, either approximated or

exact, is likely to be invalid for the subsequent iterations.

Multiple Iterations. The AR-GAN, which is applied after JPEG compressions, allows removing artifacts and

restoring the original image quality. Thus, it is possible to perform an arbitrary numberT of subsequent compression

and restoriation steps without degrading the final image. Simultaneously, it simulates a complex, very deep network.

Using a different quality factor for each image has the additional effect of changing the AR-GAN input, so that the

gradient that is backpropagated changes at each iteration.

This strategy is not going to make the BPDA attack completely ineffective though; this because the image that is

restored will still lie on the GAN manifold, where it was shown adversarial samples still exist [4]. However, we
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Fig. 3. Accuracy of ResNet50 under the generalized BPDA attack defending with JPEG compression at different

QFs (left), performing multiple compression steps (QF=40) (middle), and adding randomization (right). N indicates

the number of compression-restoration steps.

force the attack to heavily corrupt the image in order to drive the network towards either predicting the desired

class or making the attacked model misclassify.

4 EXPERIMENTAL RESULTS

In the following we report results of an extensive set of experimental validations. First, we conduct an ablation

study to investigate the effects of each component of our defense, that are evaluated under the generalized BPDA

attack. Then, we provide a comprehensive view by reporting results on three different white-box attacks, that is

DeepFool [38], Carlini and Wagner (CW) [8], and a modified version of BPDA equipped with EOT, that we refer to

as EOT-BPDA [4]. The latter is specifically tailored to address all aspects of our defense; in particular, we use BPDA

to approximate the non-differentiable JPEG operator, in conjunction with Expectation Over Transformation (EOT)

to tackle the randomization applied on the quality factors. We finally explore two strong black-box attacks, namely

Nattack [32] and SquareAttack [3]. We performed the evaluation using ResNet50 [24] pre-trained on ImageNet.

For BPDA and EOT-BPDA, in oder to showcase the versatility of our defense, we also evaluate DenseNet [26] and

MobileNet [25]. To perform the attacks, we used the implementations of the DeepRobust PyTorch library [31],

except for DeepFool and SquareAttack, for which we used the original codes.

All the experiments are conducted under the most difficult possible setting. For white-box attacks i.e. BPDA,

C&W, DeepFool, the attacks have full access to all the network parameters and gradients, including the classification

module and the AR-GAN (for each QF). Black-box attacks instead do not exploit gradients; however, we provide

the attacker with the model including the defense.

4.1 Dataset and common evaluation metrics

We evaluate our defense strategy on the ILSVRC validation set [42]. Following the protocol of previous works

e.g. [32, 39], we randomly choose a subset of 1000 images (one image per class) from the validation set such that

the respective classifier achieves rank-1 100% accuracy on clean, non-attacked images. As noted in [39], it would

be pointless to use already misclassified images to evaluate the defense, since an attack on a misclassified image is

successful by definition.

To asses the effectiveness of our approach, we evaluate it using various, standard metrics. First, we evaluate the

degradation, that is the impact of our defense strategy on the classification accuracy when applied to clean images.

To obtain a comprehensive view of the attacks and defense performance, when possible we follow the evaluation

criteria suggested in the recent works of Dong et al. [15] and Carlini et al. [7]: for white box attacks, we let the

attack run until a fixed perturbation budget is reached, and report results in terms of accuracy vs perturbation

budget. For black-box attacks, we fix the perturbation budget and let the attack run until a predefined amount of

queries is reached.

ACM Trans. Multimedia Comput. Commun. Appl.



8 • C. Ferrari et al.

Fig. 4. Classification accuracy of ResNet50 under the generalized BPDA attack defending with JPEG followed by

AR-GAN restoration for different QF (left), with multiple JPEG+AR-GAN iterations (middle), and our full defense

including random quality factors (right). N indicates the number of compression-restoration steps.

In order to show that our defense works properly for both the widely used ℓ2 and ℓ∞ metrics, we use both

depending on the attack. Following the standard convention e.g. [4, 15], we use the ℓ2 norm normalized by the

total number of pixels. The standard thresholds used for such metrics are, ℓ2 = 0.005 and ℓ∞ = 0.031 = 8/255. To

demonstrate the robustness of our defense, we consider a less strict constraint for the attacks, and use also ℓ2 = 0.01

and ℓ∞ = 0.062 = 16/255. The detailed configurations of each attack are clarified in the following.

4.2 Ablation Study

In this section we analyze each module of our defense separately considering the BPDA attack as reference. BPDA

is a powerful attack that estimates obfuscated gradients by approximation. These are then used to craft adversarial

images in a gradient descent fashion. Even though it can be extended with Expectation Over Transformation (EOT)

in case of randomized defenses, here we chose to use the generalized BPDA attack. In fact, the goal of this ablation

study is showing that the BPDA attack is strong enough to break the JPEG compression defense in all the cases, and

the JPEG followed by the AR-GAN restoration module as well. In order to make our contribution explicit, we will

show that changing the AR-GAN parameters randomly depending on the current quality factor is of fundamental

importance to make the defense robust.

We evaluate the robustness of our solution by applying the defense and classifying adversarial images generated

at different perturbation thresholds to provide a more thorough analysis. We set the maximum perturbation to be

ℓ∞ = 0.062 = 16/255. In particular, we let the attack run until the budget or the maximum number of iterations

(200) is reached, using a step size of 10−3. We collect the results of the defense at each iteration of the attack. These

experiments have been conducted using ResNet50 on a subset of 200 random correctly classified images of the

ILSVRC validation set. In all the cases, the gradient of the JPEG is approximated by implementing the backward

pass as the identity function, as done in the original paper [4].

4.2.1 JPEG Compression. First, we analyze the effect of different quality factors when using the sole JPEG

compression as defense. As discussed, BPDA approximates the backward pass of the JPEG operator with the

identity function. This trick is effective whenever, for a non-differentiable operator h(), we have h(x) ≈ x. So, for

breaking this attack one must ensure that h(x) deviates largely from x. One can achieve this by applying a strong

compression (e.g. QF=5); however, as reported in Fig. 3 (left), in this case the accuracy on clean images drops

dramatically. Overall, this verified that BPDA can circumvent JPEG, and that approximating the backward pass

with the identity function is indeed effective.1

Multiple Compression Steps: Before analyzing the effect of introducing AR-GAN, we first aim at verifying how

performing multiple JPEG compression impacts on the results. It can be observed from Fig. 3 (middle) that iterating

1Our results with JPEG are better than those in [4] as they use the setting of [23], where the QF is set to 75.
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(a) (b) (c) (d) (e)

Fig. 5. Adversarial perturbation induced by BPDA. In (a), the clean image, in (b), the result of applying our full defense

on the clean image. Despite the multiple compression-restoration steps, the quality of the image is maintained so

that the classification is not degraded. In (c) the attacked image without defense, while in (d-e) the result of applying

simple JPEG compression or our full defense, respectively. It is clear that our defence forces the attacker to inject a

significant distortion.

the JPEG compression J (x) does not provide any improvement. In fact, by applying a cascade of 3 compression,

we still have J (J (J (x))) ≈ x, and the identity approximation performed by BPDA circumvents the defense.

Randomization: The other module of our defense consists in randomizing the JPEG quality factor at each iteration.

We randomize the QF within the range δq = [20, 60]. Differently from the previous case, adding the randomization

results effective, which suggests our intuition is valid. Still, the sole JPEG does not yet provide enough robustness.

4.2.2 AR-GAN Restoration. In this section, we explore how restoring the compressed images with AR-GAN

impacts on the defense.

Different Quality Factors: In Fig. 4 (left) we show that for lower quality factors e.g. 5 or 10, the restoration

step improves the accuracy for strong perturbations, although we still cannot achieve a perfect classification on

clean images, making this strategy not useful. The curves instead drop faster for larger quality factors, despite an

almost perfect accuracy on non-attacked samples. This evidences that BPDA can effectively approximate the input

transformation and break the defense.

Iterating the process: Fig. 4 (middle) shows the effect of iterating the compression-restoration steps with a

fixed quality factor (QF=40). Differently from the case of sole JPEG, repeating the compression-restoration

process instead provides a slight increase of robustness. However, the defense accuracy is still low i.e. around 25%

classification accuracy at ℓ∞ = 0.031.

Full Defense: Finally, Fig. 4 (right) shows the effect of randomizing the quality factor for the JPEG compression

and changing the AR-GAN parameters accordingly. We randomly sample the quality factors in a range δq = [20, 60]

at each iteration of the defense. To restore the image, we use three different AR-GANs, trained with quality factors

of 20, 40 and 60. At each iteration, we pick the one that is closest to the current compression factor. The complete

defense with ResNet50 obtains an accuracy of 80.3% at a perturbation of ℓ∞ = 0.031, and of 59.4% at a perturbation

of ℓ∞ = 0.062.

To aid the reader with understanding the entity of the distortions, in Fig. 5 we show some examples of images

corrupted by the attack when different defense methods are applied. Our solution forces the attacker to inject a

significantly stronger noise to make the network predict a wrong class (Fig. 5 (e)). In addition, we might observe an
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Random ℓ∞ = 0.031 ℓ∞ = 0.062

EOT-BPDA

Ours - ResNet50
✓ 91.4 77.7

✗ 31.7 8.9

Ours - DenseNet
✓ 90.1 77.4

✗ 28.4 8.6

Ours - MobileNet
✓ 87.4 74.4

✗ 24.9 6.3

BPDA

Bit Depth [51] ✗ 0.0 -

Quilting [23] ✗ 0.0 -

TVM [23] ✗ 0.0 -

DNN-JPEG [35]* ✗ 60.0 -

Ours - ResNet50 ✓ 86.5 60.1

Ours - DenseNet ✓ 87.2 56.9

Ours - MobileNet ✓ 84.1 57.1

BPDA-ID

Ours - ResNet50 ✓ 89.2 66.3

Ours - DenseNet ✓ 89.5 62.8

Ours - MobileNet ✓ 88.9 72.5

Table 1. EOT-BPDA and generalized BPDA. Each defense (JPEG+GAN) is applied 3 times, fixing the QF at 40 or

drawing it at random. Different levels of ℓ∞ distortion are reported. Results for * are taken from the original paper

and are obtained from 100 correctly classified images out of 1000. For BPDA-ID, we approximate both the JPEG

and AR-GAN backward with the identity function.

interesting side-effect; differently from the uniform noise induced by JPEG, the adversarial noise resulting from

our defense forms small cross shaped patterns, that are easier to spot. Finally, in Fig. 5 (b) we show the effect of

our defense applied to the clean image. The defense does not degrade the image quality, preserving its details and

allowing us to perform a correct classification.

4.3 White-box Attacks

In this section, we present results on three white-box attacks, namely BPDA and EOT-BPDA [4], C&W [8], and

DeepFool [38] using our full defense. All the following experiments are conducted on the full set of 1, 000 images.

EOT-BPDA Our defense includes the following components: non-differentiable operators, i.e. JPEG, a determinis-

tic module with its own parameters, i.e. the AR-GAN, and a randomization criterion acting on both the quality

factors and the parameters of the GAN. When using a defense mechanism that applies a random input transfor-

mation h(), drawn from a distribution T , before the classifier f (), EOT optimizes with respect to the expectation

over the transformations Eh∼T f (h(x)). A PGD-like attack, such as BPDA, can then be applied observing that

∇Eh∼T f (h(x)) = Eh∼T ∇f (h(x)). The expectation is approximated by sampling from the distribution of h().

Randomizing the quality factor can easily result ineffective against this strategy; the result of applying JPEG

to an input image is deterministic once the QF is fixed. So, an attacker who applies EOT sampling from a set of

quality factors can get meaningful gradients. The same applies when restoring the compressed image with the

AR-GAN, as its output is conditioned on the image, and so in turn on the quality factor. However, we argue that

changing the parameters θ of д(x,θ ) prevents an effective estimation of the EOT. A GAN д(x,θ ) can be seen as a

process that generates samples from an underlying data distribution, that is parameterized by θ . So, changing the

parameters θ is equivalent to sampling from a different data distribution. This implies that EOT should approximate

the expectation from multiple distributions д(x,θq1), . . . ,д(x,θqn).
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We perform EOT in our experiments by applying the defense for 10 repetitions at each iteration of the attack,

so to average gradient information over different parameterizations θ . Results are reported in Table 1. It turns out

evidently that using EOT, BPDA can break our defense when using a fixed quality factor (QF=40). Instead, when

randomizing the quality factor, and so using multiple AR-GANs, the robustness increases substantially, proving our

proposal is fundamental to achieve robustness to this attack. Note that we could not randomize the QF without

changing the AR-GAN as each one is trained for a specific factor.

We report in Table 1 also the accuracy obtained against generalized BPDA, which proved more effective than

EOT against our defense. This reinforces our claim that changing the AR-GAN iteratively leads to a difficulty in

estimating the expectation from multiple distributions. Our defense cannot completely protect from BPDA though;

as discussed in [4], similarly to natural images, adversarial examples can still be found in a GAN manifold; indeed,

iterating the compression-restoration steps with fixed QF provided only a marginal improvement. However, when

using multiple AR-GANs, finding an effective adversarial sample i.e. lying in the intersection of the different

manifolds, is much more complex, and leads to significant image distorion as shown in Fig. 5. Other than baseline

results reported in Fig. 3 and Fig. 4, we also report results of some other previous methods, namely Bit Depth

reduction [51], Quilting and Total Variation Minimization (TVM) [23] and the DNN-oriented JPEG compression

method of [35]. The latter is particularly related to our method as it tries to specialize the JPEG operator by

increasing the quantization of malicious features. While methods based on simple input transformations are

completely circumvented by BPDA, the DNN-oriented JPEG method shows a certain degree of robustness to the

attack. Still, our method outperforms it, obtaining a higher classification accuracy.

Our defense mechanism tries to obfuscate the gradient by changing the underlying AR-GAN parameters at each

iteration. An attacker that is aware of this strategy could try to circumvent it by ignoring the gradient and apply the

same solution used for JPEG i.e. approximating the backward pass with the identity function. We report results for

this attempt in Table 1 (BPDA-ID). As expected, in this scenario the defense is more robust, and the classification

accuracy increases.

Carlini & Wagner (C&W) [8] is a strong iterative attack that aims at finding adversarial samples by minimizing

the ℓ2 perturbation with respect to an auxiliary variable instead the original image directly. A constant c controls

the trade-off between perturbation and effectiveness of the attack, which is usually found by grid-search. We found

the c value resulting in perturbations within the range 0.005 - 0.01 being c = 0.1, and used it in our experiments.

Results are reported in Table 2 (left). The proposed defense demonstrates robust, comparing to the baseline. We

remark that we experimented the defense in full white-box, differently from other approaches that cannot be directly

compared as they were conceived to be used in a gray-box setting [23, 39]. We instead report results obtained with

the recent ComDefend [28] method. It uses a trained network instead of simple JPEG to compress the image, and

then restores it with an additional trained module. In [28], the networks are trained either including adversarial

samples in the training, or not. For a fair comparison, since we do not use adversarial images to train the AR-GAN,

we report the results obtained in the latter case. ComDefend demonstrates fairly robust to the attack, reporting a

loss of classification accuracy of 16 points. In comparison, our method only loses 1.4% accuracy with respect to

non attacked images, which demonstrates a substantial improvement.

DeepFool [38] aims at minimizing the ℓ2 between the image and the adversarial counterpart. It is specifically

designed to apply the minimum possible perturbation to make the classifier commit a mistake. Because of its

particular design, we cannot force it to reach a given perturbation budget. Results are reported in Table 2 (right).

Our full defense attains good robustness compared to the baseline.

4.4 Black-Box Attacks

Our method was specifically designed to deal with white-box attack that make use of gradient information to craft

adversarial examples. However, following the standard practice, we also evaluate it against black-box attacks. We
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Model Defense No attack ℓ2 = 0.005 ℓ2 = 0.01

ResNet50

No defense 100.0 16.4 7.1

JPEG 40 99.4 52.2 33.9

Ours 98.8 97.4 96.2

IncResV2 ComDefend [28]* 77.0 61.0 -

Model Defense No attack DeepFool

ResNet50

No defense 100.0 0.0

JPEG 40 99.4 12.2

Ours 98.8 88.8

Table 2. (left) Classification accuracy against the C&W attack for different levels of ℓ2 distortion. Results of * are

taken from the original paper, and refer to testing on 1000 random images from ILSVRC. (right) Classification

accuracy against DeepFool attack.

Model Defense No attack ℓ∞ = 0.031 ℓ∞ = 0.062

ResNet50
No defense 100.0 0.0 0.0

Ours 98.8 97.2 95.8

Denoiser [33]* 79.1 4.5 -

Inception Randomization [49] * 77.8 3.5 -

Deflection [41]* 69.1 0.0 -

Table 3. Accuracy against Nattack for different ℓ∞ distortions. Results in * are taken from [32].

Model Defense No attack ϵ2 = 5 ϵ2 = 10

ResNet50

No defense 100.0 0.7 0.0

JPEG 40 99.4 5.9 0.0

Ours 98.8 98.3 94.4

Table 4. Accuracy against SquareAttack for different ϵ2 distortion.

choose two recent state-of-the-art attacks, namely Nattack [32] and SquareAttack [3]. For both, even though they

do not exploit gradient information, we provide the attacker with the model including the defense to perform the

queries.

Nattack [32] is a state-of-the-art attack that aims at finding a probability density distribution over a small region

centered around the input, such that a sample drawn from this distribution is likely an adversarial example. We set

the hyperparameters suggested in [32], that is variance of the Gaussian σ 2
= 0.01 and learning rate η = 0.008. The

maximum iterations is set to 300, and the sample size to 100. We use the ℓ∞ version, with a perturbation budget of

ℓ∞ = 0.062. Results in Table 3 show the effectiveness of our defense, which protects even for larger distortions

with respect to other defenses2.

Square Attack [3] is a state-of-the-art, score-based attack based on a randomized search scheme, which selects

localized square-shaped updates at random positions so that at each iteration the perturbation is situated approxi-

mately at the boundary of the feasible set. We run the attack implementing the ℓ2 version from the original code3.

We use the hyperpamaeters suggested in [3], that is p = 0.1, and perturbation budget of ϵ2 = 5 (note that we use the

ϵ2 notation here as the attack consider the non-normalized version of ℓ2). For consistency with the previous settings,

we also use a larger perturbation budget, that is ϵ2 = 10. We let the attack run for 5, 000 iterations, i.e. queries, and

collect the generated adversarial images. We then apply the defense and report the classification accuracy. From

results in Table 4, it turns out clearly that our defense is extremely robust against this attack, even for a larger

distortion.

2Results indicated with * are taken from [32], and are collected on the subset of correctly classified images among 1, 000 randomly selected.
3https://github.com/max-andr/square-attack
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5 CONCLUSION

In this paper, we proposed a method to protect against gradient-based adversarial attacks. Our method works by

iteratively compressing the image with JPEG at a random QF, and then restoring it using an ensemble of AR-GANs.

The process can be iterated without degrading the image quality thanks to the restoration module. The core of

our proposal consists in using a different AR-GAN at each iteration, chosen randomly depending on the QF. This

strategy allows us to change the internal parameters of the restoration model, so that the underlying data distribution

changes continuously, ultimately resulting in noticeable robustness to both white-box and black-box attacks.
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