

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Technical Debt Prioritization:
A Developer’s Perspective

Abstract
Background: The prioritization of technical debt is an essen-
tial task in managing software projects because, with current
analysis tools, it is possible to find thousands of technical
debt items in the software that would take months or even
years to be fully paid. Aims: In this study, we aim to under-
stand which criteria software developers use to prioritize
technical debt in real software projects.Methods:We per-
formed a survey to collect data from open-source software
projects in order to reach a large and diverse set of expe-
riences. We analyzed the data using Straussian Grounded
Theory techniques: open coding, axial coding, and selective
coding. Results: We grouped the criteria into 15 categories
and divided them into 2 super-categories related to paying
off the technical debt and 3 related to not paying it. Conclu-
sions:When participants decided to pay off technical debt,
they wanted to do it soon. However, when they decided not
to pay it, it is often because the debt occurred intentionally
due to a project decision. Also, participants using similar
criteria for their decisions tended to choose similar priority
levels for those decisions. Finally, we observed that each
software project needs to tailor the rules used to identify
technical debt to their project context.

CCS Concepts: • Software and its engineering→ Soft-
ware evolution;Maintaining software.

Keywords: technical debt, technical debt prioritization, sur-
vey, grounded theory
ACM Reference Format:
. 2022. Technical Debt Prioritization: A Developer’s Perspective. In
Proceedings of TechDebt ’22: International Conference on Technical
Debt 2022 (TechDebt ’22). ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Technical debt is a metaphor introduced by Cunningham
[2], who highlighted the benefits of taking on debt to speed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
TechDebt ’22, May 22–23, 2022, Pittsburgh, United States
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

up software development against the cost of the interest to
pay that debt off later. Acquiring technical debt could bring
short-term benefits [5], such as time and effort reduction in
the development of tasks. However, it could result in extra
costs in the long term, for instance, in more expensive new
feature development and the maintenance of the legacy code.

Software development teams need to balance the benefits
of technical debt against the cost to pay it off and its possible
interest [12]. The uncertainties related to technical debtmake
the decision-making even more complex. Therefore, effective
technical debt management could help teams by providing
relevant information to aid decision-making.

The technical debt management process consists of identi-
fying technical debt items, measuring their costs, andmaking
decisions about which technical debt items must be paid off
and in which order [6]. The identification consists of finding
technical debt items and storing them in a list with data such
as identifier, date and time, type of problem, and location. It
is difficult, but sometimes possible, to estimate the principal,
interest, and probability of interest for each technical debt
item. With these items estimated, one could use some priori-
tization method to decide whether an item must be paid or
not. It can also help decide which item should be paid first,
which will incur less interest, and/or should be allowed to
persist to achieve goals that increase the project’s value.

In this study, we aim to understand which criteria software
developers use in practice to prioritize technical debt items
in real software projects. This fills a gap in the literature
regarding studies of technical debt prioritization criteria in
real software projects.

We used a survey to collect information from developers
about open-source projects hosted on Github. The survey
questions were based on technical debt items on projects
to which the respondent had contributed. After showing
each technical debt item, the survey asks the respondent to
indicate how soon the item should be paid off and why.

We analyzed the answers using Straussian Grounded The-
ory (Straussian GT) techniques, namely open coding, axial
coding, and selective coding, to identify the criteria devel-
opers used to prioritize technical debt. We grouped the cri-
teria into 15 categories and 2 super-categories related to
paying off the technical debt item: CODE_IMPROVEMENT
and COST_BENEFIT; and 3 super-categories related to not
paying off the item PROJECT_SPECIFIC_DECISION, PROB-
LEM_WITH_RULE, and UNUSED_CODE.

We found that when developers chose to pay off a technical
debt item, they decided to do so soon.When they chose not to
pay it was a project-specific decision. Also, when developers

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

used the same criterion, the payment priority chosen was in
the same neighborhood. Finally, we noted that each project
needs a specific set of criteria to prioritize technical debt.

This work addresses the following research questions:
1. How do developers decide whether a technical debt

item should or should not be paid off?
2. How do developers decide when a technical debt item

should be paid off?
This paper is organized as follows: Section 2 discusses

the previous related work. Section 3 describes the research
methods used in this study. Section 4 shows the results and
coding process. Section 5 discusses the findings. Section 5.2
discusses the threats to the validity of this study. Section 6
presents the conclusions and final remarks.

2 Related Work
Considerable research has been conducted in this area, in-
cluding several studies related to the concepts and criteria
used to prioritize technical debt.

Somework on technical debt prioritization offers a general
view of the relevant criteria. Daneva et al. [3] used in-depth
interviews and grounded theory techniques for data anal-
ysis to show that all prioritization criteria are related to
the concept of business value. Martini and Bosch [8] found,
through a combination of interviews, observations, and a
survey, that competitive advantage, specific customer value,
market attractiveness, and lead time are the most relevant
prioritization criteria mentioned by the respondents. They
also pointed out that the top three architectural technical
debt effects relevant to prioritization are quality issues, dou-
bling the effort, and contagious debt. The same authors [9]
also studied how the cost of refactoring grows over time
correlated with the propagation of architectural technical
debt, and the impact of that growth. Their results imply that
the rate at which interest affects development speed should
be used as a prioritization criterion. Fernández-Sánchez et al.
[4] found through a systematic mapping that expert opinion
provides information that cannot be obtained from avail-
able tools, such as information about contracts, expected
changes and the adoption of new technologies. They also
found that time-to-market and team availability are criteria
used to decide when a technical debt item should be paid off.

Other studies provide detailed criteria lists based on liter-
ature reviews. Riegel and Doerr [11] and Ribeiro et al. [10]
each proposed a set of criteria based on their studies of the
literature. These authors organized their criteria differently
but used such categories as benefits, costs, risks, context,
and effort. Becker et al. [1] organized results from a system-
atic literature review of papers about TD measures into a
theoretical decision-making process.
However, researchers rarely seem to investigate how de-

cisions are made in practice. Leppanen et al. [7] interviewed
professionals and developed a framework for refactoring

(one way to pay off technical debt). They found that static
and dynamic code analysis can contribute to perceiving the
need to pay off technical debt. Developers are the expert
stakeholders who can determine whether a particular code
structure would be better off after refactoring. However, the
framework does not define which criteria led to the decision
to pay the technical debt.
Our work seeks to understand the prioritization of tech-

nical debt in real software projects by directly collecting
the opinions of developers. Our study extends Becker’s [1]
theoretical process by studying how prioritization decisions
are made in practice. Our study also builds on Leppanen et
al.’s framework [7] by identifying decision criteria.

3 Research Method
Our main goal is to understand which criteria software de-
velopers use to decide whether and when a technical debt
item should be paid off in real software projects. For that
purpose, We decided to use a survey to reach many projects
and multiple types of technical debt rather than applying
interviews that would bring more details but for a smaller
number of projects.

The survey participants answered two questions for each
technical debt item presented. The first is a multiple-choice
question on the payment priority of the item. The second is
an open text question to explain the reason for the choice
made in the first question. These two questions provided data
to understand how developers decide whether and when a
technical debt should or not be paid off.
This survey is part of a larger effort to gather data to

populate machine learning models to predict payment prior-
itization and to be able to evaluate these methods not only
quantitatively, but also qualitatively.
We developed a GitXplorer tool to scrape public Github

code repositories to find a large number of open-source
projects and their developers. From a repository, GitXplorer
finds developers and organizations, and from them, find new
repositories and so on.

We analyzed Java software projects hosted on public Github
repositories which we were able to analyze with SonarQube
through the Sonarlizer tool, resulting in technical debt items
related to each project. An example of such technical debt
items is "Remove this "close" call; closing the resource is handled
automatically by the try-with-resources from the HttpProxy
repository". With the technical debt items identified, we pro-
ceeded to the next step, which was asking developers to
evaluate those items via our survey.

In order to administer our survey, we developed an Intera-
SurveyTD tool that shows respondents only those technical
debt items related to the projects they haveworked on. Intera-
SurveyTD shows a technical debt item and some information
related to it, such as file, line location, and description. Then

Technical Debt Prioritization:
A Developer’s Perspective TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

the respondent is asked "When should the item be paid off?"
(multiple-choice) and "Why?" (open-text field).

We used Straussian GT [14, 15] techniques (open, axial,
and selective coding) to analyze answers to the "Why" ques-
tion. This analysis allowed us to understand which criteria
the developers use to prioritize technical debt items.

3.1 Data Collection
The data collection process is composed of four steps: finding
repositories and developers, matching developers with the
files they have contributed to, identifying technical debt
items, and applying the survey to respondents. Figure 1
shows the data collection process.

Figure 1. Data collection process.

We developed the GitXplorer tool to find public software
repositories and developers at GitHub. After collecting git
data, we developed the Sonarlizer tool to use SonarQube
to identify technical debt items and code metrics and to
associate developers with code files where they have been
contributed. Finally, we developed the InteraSurveyTD tool
to apply a survey in which developers answered questions
about technical debt prioritization on items from projects
they contributed to. The data were stored in a database to
be analyzed by using Straussian GT [14, 15].

3.1.1 Find Repositories and Developers. We developed
the GitXplorer tool to scrape public Github software project
repositories and find real software projects and related devel-
opers. There is currently no public dataset available contain-
ing Github repositories and developers’ contact information,
so we used GitXplorer to develop this dataset. We used the
GitHub REST API to access the data.
A repository is an entity that stores a project codebase,

and it is related to many developers (users). It can also be
owned by an organization (defined as a group of developers).
Examples of repositories include Apache Maven, Google
Kubernetes, and Microsoft Visual Studio Code. Developers
can contribute to many repositories. They can also belong
to many organizations. Examples of organizations include
Apache Foundation, Microsoft, and Kubernetes Authors.

Each Github API call returns only one repository, orga-
nization, or developer. For this reason, we had to use the
relationships to find all the data. For example, when we ac-
cess a repository, we can access the list of developers who
contribute to it and its owner organization, if there is one.

The data extraction started by adding the Apache Maven
repository to the repository queue. The tool consumes the

developer, organization, and repository queues iteratively to
get the complete entity information and their related entities
that have not yet been processed to feed the queues.

3.1.2 Technical Debt Item Identification. Wedeveloped
the Sonarlizer tool to automatically perform the SonarQube
analysis for different kinds of build environments, such as
Apache Maven, Apache Ant, and Gradle. The SonarQube
analysis was used to identify technical debt items.

As input, Sonarlizer receives a project name and a GitHub
repository URL. Sonarlizer clones the repository fromGitHub
to our server. Then it performs a SonarQube analysis to find
technical debt items and collect code metrics, such as num-
ber of lines, number of files, average complexity per file,
and cognitive complexity. SonarQube has a list of rules, and
when one of these rules is violated, a technical debt item is
created. Some examples of rules are Member Name, Unused
Imports, Nested If Depth and Method Length.
Finally, Sonarlizer relates the technical debt items to the

developers who have contributed to the code in which the
item is located by analyzing the git history to find which
developers worked in each file. It then matches those de-
velopers to the technical debt items related to the file. This
process allows the survey tool to show each respondent only
the technical debt items related to files that the respondent
has contributed to.

3.1.3 Survey. We developed the customer survey tool In-
teraSurveyTD to show developers technical debt items from
projects they have contributed to and ask them whether and
when the item should be paid off. We sent invitation emails 1

to the developers with a project brief and a link to the ques-
tionnaire with an identifier to load the technical debt items
specific to that developer. Once the developer(respondent)
follows the link, they are shown a set of instructions for com-
pleting the survey and informed consent for participation 2.
Before starting the survey, they had to confirm having read
and agreed with consent terms and to be at least 18 years
old. Then, the InteraSurveyTD tool chooses a technical debt
item from the respondent’s project.
To preserve anonymity, not all the items shown to a re-

spondent are from files they have contributed to. InteraSur-
veyTD randomly chooses an item specific to the developer
respondent only 70% of the time. This avoids the situation
where a particular file has just one contributor, so the devel-
oper’s responses could be identified. Also, we do not store
information about any relationship between the answer and
the participant. All selected projects have three or more par-
ticipants, which allows for anonymity and prevents tracking
of participant answers.
1http://raptor210.startdedicated.com/pack/email-template-
anonymized.pdf - Later, we will store in a scientific repository in
order not to compromise doubly anonymous reviewing
2http://raptor210.startdedicated.com/pack/research-web-consent-
anonymized.pdf

TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

Figure 2 shows a survey screen presenting a technical debt
item and the questions, which capture the developer’s view
of when the technical debt item needs to be paid off.

Figure 2. Questionnaire question example.

Question 1 has six possible answers on a descending scale
according to how urgent the item is (these explanations are
provided in the instructions to respondents):

• Immediately: pay the item off before developing any-
thing else;

• As soon as possible: pay item off in the current re-
lease;

• In the next release: plan item payment for next re-
lease;

• In the next few releases: it doesn’t postpone pay-
ment indefinitely, but it doesn’t have to happen in the
next release;

• When there is free time: no planning is required,
but eventually the item should be paid;

• Never: the item is not important for the project or it
is not in fact a technical debt item, or for some other
reason, should not be paid.

The answer to question 2 is an open text field where the
respondents can explain their answer to question 1. After
storing the answers to both questions, InteraSurveyTD re-
peats the process with another TD item.
Respondents can leave the survey at any time, and come

back using the email invitation link. Tomotivate respondents,
there was also a gamification scheme whereby developers
could earn points by answering more questions and by re-
ferring other developers to the study. Points earned allowed
respondents to receive prizes at the end of the study.

3.1.4 Pilot Study. We conducted a pilot study to evalu-
ate and improve the data collection flow. The pilot study
included 15 students who developed open-source software

in Java in an Extreme Programming course from the Uni-
versity of São Paulo. We sent the invites through email and
Facebook Messenger with the link to the survey.
After one week, we sent an evaluation survey to under-

stand how easy it was to respond to the original survey,
if the website and invite email provided enough and clear
information about the research and technical debt, and con-
cerning the gamification. For each of these areas, we asked
for improvement suggestions. The evaluation survey was
answered by 5 students.

We used the collected suggestions to improve parts of the
text, to add more information and improve the interface, and
to change the survey flow - for example by adding a button
to skip a question.

3.2 Data Analysis
We analyzed the survey data qualitatively applying Straus-
sian GT [14, 15]. We decided on Straussian GT instead of
classic Grounded Theory because our research questions
were defined upfront and derived from the literature [13].
They also are broad and open-ended.

The data analysis process started as soon as data was
available. We analyzed applied open, axial, and selective
coding. Every time we added a new code during analysis of
an answer, we would write a memo describing it. Otherwise,
we would try to improve the existing memo. The application
of these techniques was iterative for each new response.

From the beginning of data collection, we constantly com-
pared data, memos, codes, subcategories, categories, and
super-categories to ensure that the data were correctly in-
terpreted and were in the categories that best fit them. The
period between sending the first invitation by e-mail and
closing the survey was approximately six weeks.
We applied open coding to the survey responses. This

process involves segmenting the answers into excerpts with
a singular meaning and expressing that meaning with a code.
For each answer to question 1, we applied a unique code
based on the multiple-choice option. For example, for the
answer "As soon as possible" we used the code ASAP. For
answers to question 2, we applied between one and three
codes for each answer. Like in "This code is correct. Lint
rules cannot be applied blindly.", where we applied two codes:
RULE_SHOULD_NOT_BE_APPLIED and LINT_RULES. This
was an iterative process where we added, changed, and re-
moved codes with each answer analyzed.

During axial coding, the open codes were reassembled in
new ways to form categories. The goal was to create a higher
abstraction level. Thus, codes were grouped to form subcat-
egories, and in turn, they were organized into categories.
In addition, we also tried to find relationships between the
categories to form super-categories. This process was highly
iterative, with codes and categories forming and re-forming

Technical Debt Prioritization:
A Developer’s Perspective TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

as more data was incorporated into the evolving understand-
ing. We wrote a memo to explain each category and provide
examples of the answers that motivated its creation.
We applied selective coding to refine and integrate cate-

gories, revealing the main categories indicating the devel-
opers’ criteria to prioritize technical debt and their relation-
ships. We were able to identify the technical debt prioritiza-
tion criteria used by the developers from the categories and
their relationships.
We stopped collecting data when we identified that the

answers did not result in new codes.

4 Results
In this section, we describe our results and findings. Al-
though applying the Gaussian GT techniques has been made
iteratively, and all the steps were taken simultaneously, in
order to improve reading, we divided them into open, axial,
and selective coding.
We sent invite emails to 2471 developers distributed in

855 projects. 1869 developers opened the invitation email,
and 341 accessed the survey; however, only 39 developers
from 21 projects 3 answered it.

The developers chose 11 times to pay off the technical debt
item immediately, 30 times as soon as possible, 7 in the next
release, and 66 never; thus 42% chose to pay off the technical
debt, and 58% chose not to pay it off.

4.1 Open Coding
We organized the collected data in a spreadsheet 4. Each row
contained one participant’s answer about one technical debt
item. Besides the developers’ answers, each row has columns
to describe the technical debt item based on SonarQube data.
All open codes were created in vivo, meaning they were
derived directly from the collected data.

4.2 Axial Coding
We organized and assembled the open codes in order to form
two levels of categories: the first level contains categories
that group open codes, and the second level contains super-
categories that group the first-level categories. For each open
code, we tried to add it to an existing category that encom-
passed its meaning. If that was not possible, we created a
new category. We performed this step iteratively, constantly
revisiting and evaluating the set of categories. We performed
the same iterative process to group the categories into super-
categories. Below we list and briefly discuss the categories
and super-categories.
Super-Category PROJECT_SPECIFIC_DECISION includes
the following categories:

3http://raptor210.startdedicated.com/pack/projects.csv
4Our data is available at http://raptor210.startdedicated.com/pack/answers.csv
- Later, we will store in a scientific repository in order not to compromise
doubly anonymous reviewing

DESIGN_DECISION:More experienced developers often
use design patterns to create the software architecture and
write the code. However, some of these design patterns break
quality rules that generally apply to only a code snippet and
not the architecture of the software as a whole. Therefore,
for some software architectures, it makes sense to break
some quality rules so that a design standard is maintained.
Thus it is easier to read, maintain, scale and improve the
performance of the software.
Examples: When developers needed to choose between

paying a technical debt item or keeping their design intact,
they always chose to preserve the design and Never pay off
the debt. One developer refers to another Lint rule: “This
code is correct. Lint rules cannot be applied blindly”, and for
another item, he referred to Javadocs to explain his decision:
“This file is correct per the Javadoc documentation”.

MEANINGFUL_NAMES: Some developers prefer to use
their naming conventions for software projects or modules.
For example, Java convention defines variable names using
the following regular expression: ’[̂a-z][a-zA-Z0-9]*$’, that is,
the first character must be a lowercase letter followed by zero
or more alphanumeric characters. Using other conventions
triggers a TD item.

Examples: One developer explained that the names came
from reflection: “I suspect this code has to interface with gen-
erated code that gets those names via reflection.” Another
developer preferred using their naming convention: “I prefer
the way I name variables/parameters to the Java conven-
tion”. Another one uses specific names for that project: “The
name is specific to the project”. Another developer explained:
“There are reasons for the names. I likely will never fix them.”

KEEP_READABILITY: Sometimes giving up standards
to make the code more readable and easier to understand is
the best choice. Some problem solutions are complex, and
trying to reduce or fit them into code patterns can make the
solution hard to read and understand, so it is best to leave
the pattern aside so that the code is easier to maintain.

Examples: Two developers chose Never to pay off the tech-
nical debt items to keep the code easy to read: “GitException
is used to carry failure information and declaring it makes it
clear that it can be thrown.”, and “No. Code is more readable
the way it is.”
BREAK_SOMETHING_ELSE: Sometimes paying off a

technical debt item could break something else; that is, chang-
ing a snippet could break functionality or compatibility. For
this reason, sometimes paying off a technical debt item is
not worth it because its principal could be very high, costing
several days of development.
Examples: One respondent chose to pay off an item As

soon as possible because changing the code can break the
existing code: “This TODO should be treated with more
care, because it can break existing code.” For two technical
debt items, another developer chose Never to pay off the

TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

technical debt items because: “Removing this code would
break functionality and compatibility”. And for the other:
“Deprecation in Jenkins does not mean "remove the code". If
we remove the code, it will break compatibility. One of the
compelling values of Jenkins is that it retains compatibility
so that plugins compiled many years ago continue to operate
with current releases.”
Super-Category PROBLEM_WITH_RULE includes the
following categories:
RULE_SHOULD_NOT_BE_APPLIED: Some projects

use their standards, so not all quality rules should apply.
Examples: Every time a respondent explained that a rule

should not be applied, they decided Never pay off the techni-
cal debt item. They explained that rule application did not
precisely identify a technical debt item, e.g. “This is a stupid
rule. Sometimes verifying that the given code executes with-
out throwing is all you need.” They also explained that some
rules are wrong based on program language documentation,
as in the previous example about Javadoc documentation.
ARBITRARY_RULE: For some developers, some rules

should not be applied because they believe that the kind of
technical debt found by the rule is not technical debt. Thus,
the rule should be ignored - for instance, rules that try to
anticipate possible runtime errors.

Examples: All developers that indicated an arbitrary rule
chose Never to pay off the technical debt item, such as in:
“This evaluation seems verywrong—how can a staticmethod
call throw an NPE?”, and “The rule is wrong, it actually
throws NoSuchElementException, but the linter is unable
to detect it. It probably has an incomplete type system and
flow analysis.”
FALSE_POSITIVE: In some contexts, a technical debt

item is considered a false positive. Unlike the rules that
should not be applied to a project or the rules that wrongly
identify technical debt items, this code refers to cases in
which, in another code snippet, the item might be consid-
ered technical debt. However, it does not make sense as
technical debt for that snippet of code.

Examples: Every time a respondent indicated a false posi-
tive, they chose Never to pay the technical debt. Many used
the term "false positive", but others said more, e.g. “Once
again, default case may or may not make sense: in cases
where it is omitted it is literally useless.”
Super-Category UNUSED_CODE: includes the following
categories:
UNUSED_CODE: Code to test a concept or idea, but

later, is replaced by some better code or, after writing it, the
developer realizes it is not a good concept/idea. Some code
is considered useless because it was written as an example
to show or teach.

Examples: All developers chose Never to pay off technical
debt where the code was unused. In some cases, the item
was inside a test class, or private, or just never used.

Super-Category CODE_IMPROVEMENT includes the
following categories:
PERFORMANCE: Code written by a developer is not

always the one with the best performance. To improve per-
formance the developer could spend hours or even days to
rewrite the code to reduce complexity. They can also simply
use some programming language features, such as built-in or
call methods that perform processing in parallel, resulting in
significant improvement in the performance of the software.

Example: One respondent chose to pay off a technical debt
item As soon as possible because they saw it specifically to
be a performance issue.

REMOVE_BUG: When developers write code, they can-
not cannot always see all possible situations. So sometimes
there is a need to rewrite the code in order to remove bugs
that are generated by the wrong use of logic or because the
code is not covering every possible case.

Example: One respondent decided to pay off the technical
debt item As soon as possible because: “A better exception
here would be a good idea. This might even be a bug.”.
TEST_FAIL: Sometimes code can break the tests. This

happens because the code was written incorrectly and there-
fore returns unexpected behavior, in which case the code
must be rewritten to behave as the test expects. It may also
have been written with a different structure than expected
by the tests and therefore the test also fails. In this case the
code structure can be changed to adapt to the test or the test
can be changed to adapt to the code structure.
Example: One respondent chose to pay off the technical

debt Immediately because it broke a test: “It should be paid
immediately because the test is broken. The expected value
is "Number of created files" and the files.size() is an integer.”

IMPROVE_READABILITY: A code needs to be rewrit-
ten to be easier to read. Generally, rewriting can be done by
renaming variables, classes, methods/functions. It can also be
done by decreasing complexity, such as removing "if", "for"
and "while" statements. It can also be done through refac-
toring the code or using methods that encapsulate part of it.
These techniques make the code easier for other developers
to understand.

Examples: A respondent decided to correct one of the iden-
tical sub-expressions on both sides of operator "||" C because
he thought it was “Confusing”. Another developer decided
to use isEmpty() As soon as possible to check whether the
collection is empty or not to make it “clearer”.
INCOMPLETE_CODE: The code is incomplete when

some implementation is missing for the method/function
to work as expected. Most of the time, developers annotate
these missing parts with the following comment: "TODO:
explanation", where TODO means the code needs to be writ-
ten, and sometimes there is an explanation about what needs
to be written and/or how.
Examples: Sometimes this code leads to Immediate pay-

ment and sometimes the payment should be done As soon as

Technical Debt Prioritization:
A Developer’s Perspective TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

possible. A developer chose to pay two technical debt items
Immediately because he considered that TODO annotation
should be paid off urgently: “From my point of view, TODOs
should be urgent, otherwise people are going to leave it there
and procrastinate as much as they can.”
Super-Category COST_BENEFIT includes the following
categories:
LOW_PRINCIPAL: The code is easy to modify, that is,

in a few minutes a developer is able to fix the problem or
complete the logic. Therefore, the technical debt item has a
low principal cost.
Examples: Respondents tended to pay off these items ei-

ther Immediately or As soon as possible. They used terms
such as "trivial", "easy and safe", and "easy change". In one
case, the respondent thought that the change could even be
automated.

HIGH_PRINCIPAL: The code is hard to modify, that is, a
developer could take several hours or even days to (re)write
the code to fix the problem or complete the logic. Therefore,
the technical debt item has a high principal cost.

Examples: In one case, a developer thought that the tech-
nical debt item should be paid off As soon as possible, but
“This TODO should be treated with more care, because it
can break the existing code”. Another developer chose Never
to pay the debt because the effect was minimal and the com-
plexity to remove the item was huge: “This TL works as part
of injected code during test runs. The overhead is minimal
and the complexity of calling remove is huge.”
LOW_INTEREST: The code is almost never called by

other methods/functions, that is, it has a low probability of
causing extra effort if the item is not paid off. Therefore, the
technical debt has low interest.
Examples: One respondent chose to pay off an item In

the next release because he did not face that issue at that
moment: “Since it might define other method interfaces, I
would prioritize this issue to the next release. In this code,
we do not face this issue at the moment because the method
is private and the public methods do not re-throw the excep-
tion.” The same developer also chose to pay off In the next
release another technical debt item because it had a minor
impact: “Good catch. Minor impact/nit.” Another developer
chose Never pay the technical debt item because it had low
impact and high effort to pay off: “This TL works as part of
injected code during test runs. The overhead is minimal and
the complexity of calling remove is huge.”. Another devel-
oper also chose not to pay off an item because it is inside a
private method.

4.3 Selective Coding
We performed selective coding to refine and integrate cate-
gories. The main goal was to understand the main criteria
that developers use to decide whether a technical debt item
should be paid off or not and when to make the payment.

Abstraction was used to incorporate all aspects related to
the collected data and coding [15].
The codes and categories fell naturally into those repre-

senting influences on the decision to pay off technical debt
and those influencing the decision not to pay off technical
debt. The super-categories PROJECT_SPECIFIC_DECISION,
PROBLEM_WITH_RULE and UNUSED_CODE represent the
codes describing decisions not to pay off the technical debt
item. Figure 3 shows the categories and super-categories
related to decisions not to pay off the technical debt item.
In some situations, a PROJECT_SPECIFIC_DECISION is

made to keep the current solution (i.e. not pay off the debt) in-
stead of rewriting the code to follow the rules. These are are
project-specific decisions because a similar situation in a dif-
ferent project might lead to a different decision about paying
off the debt. Sometimes these decisions are related to archi-
tectural design (DESIGN_DECISION); for example, when
a generic interface is designed to propagate any checked
exception or singletons are used as constants. Another type
of project-specific decision is related to naming conventions
(MEANINGFUL_NAMES), i.e. when a project prefers to use
a different way to name variables, methods, functions, and
classes than conventions commonly used. Another type of
project-specific decision is related to a concern about read-
ability (KEEP_READABILITY); the decision is not to change
the code and follow the rules because that would make the
code harder to read. Finally, developers also decided not to
pay the technical debt item when it would break compati-
bility or functionality (BREAK_SOMETHING_ELSE); fixing
a code snippet would imply changing a lot of other code
snippets that depend on the first one. The only exception
is when it breaks something else, but it is important to pay
off a debt (TODO_SHOULD_BE_TREATED_CAREFULLY)
as soon as possible; that is when a missing snippet needs to
be written to provide the expected behavior.
The PROBLEM_WITH_RULE category describes cases

where a respondent cites a problem in a rule used to detect
technical debt items in SonarQube. Respondents felt some
rules should not be applied (RULE_SHOULD_NOT_BE_APPLIED)
because they identified irrelevant technical debt. Others felt
that some rules were arbitrary (ARBITRARY_RULE), not
logical, or incorrectly evaluated a technical debt item. Some
cases were cited as false positives (FALSE_POSITIVE); that
is, the respondent considered the found item not to be a
technical debt item, at least in the specific situation.
Developers sometimes wished not to remove or change

code that exists just as an example, even though the code
has been superseded by other code or is no longer used.
Sometimes, developers want to keep the UNUSED_CODE
for future comparison. Some projects are created as proof-
of-concept or just to teach software development.

The super-categories CODE_IMPROVEMENT andCOST_BENEFIT
summarize the influences for developers deciding to pay off
the technical debt item, as shown in Figure 4.

TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

Figure 3. Codes and categories for not paying off technical debt items.

Figure 4. Codes and categories for paying off technical debt items.

When a developer’s reason for paying off a technical debt
item fell into one of the CODE_IMPROVEMENT categories,
there are interesting relationships between the specific rea-
son and how quickly they wanted to pay off the debt (i.e. "im-
mediately" or "as soon as possible"). When the reason to pay
off the debt is to improve the performance (PERFORMANCE)

or remove bugs (REMOVE_BUGS), developers indicated that
it should be paid off as soon as possible. On the other hand,
they decided to pay off the technical debt immediately when
the reason was a failed test (TEST_FAIL) or incomplete code
(INCOMPLETE_CODE). Finally, when the motivation is to
improve readability (IMPROVE_READABILITY), they want

Technical Debt Prioritization:
A Developer’s Perspective TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

to pay off the debt immediately when the code is confusing,
and as soon as possible when they want to clarify the code.

The other super-category describing cases where the tech-
nical debt item should be paid off is COST_BENEFIT. There
are also variations in how quickly the debt should be paid
off in these cases. When the criteria used were low princi-
pal (LOW_PRINCIPAL), respondents immediately chose to
pay off the technical debt item because they considered it a
trivial change, an easy and safe payment. However, when
the debt item was considered an easy change or low im-
pact, they decided to pay it off in the next release. When
the criteria used was low interest (LOW_INTEREST), re-
spondents chose to pay off the technical debt item in the
next release, except when overhead was minimal (OVER-
HEAD_MINIMAL), and the complexity to remove it was
huge. About (HIGH_PRINCIPAL), they decided not to pay it
when there was a huge complexity to do so, and to pay off
as soon as possible when there is a TODO tag that should
be treated carefully.

5 Discussion of the Results
The developers used a wide array of criteria both to decide
whether a technical debt should be paid off and when. They
had different motivations when deciding to pay off a techni-
cal debt or not in different kinds of situations. These criteria
were grouped into three super-categories that define when
a technical debt item should not be paid off and two that
define when an item should be paid off.
Another interesting observation is that when developers

decide to pay a technical debt item off they want to do it
soon: immediately, as soon as possible, or in the next release.
However, it was not possible to determine through data if
this decision was technically based or if personal feelings
(worry, anxiety, fear of the reputation) made them choose
higher priority actions.
In addition, they used specific criteria for each priority

level. This means that when they use the same criterion in dif-
ferent instances, they also choose the same priority level or a
neighboring level. For instance, when the technical debt item
was about improving readability, participants always decided
to pay off those debts immediately or as soon as possible,
i.e. they chose neighboring categories. The codes OVER-
HEAD_MINIMAL and HUGE_COMPLEXITY_IF_REMOVE
are the exceptions to that observation, as there was more
variety in developers’ answers related to these criteria.

Another finding is that each software project needs a spe-
cific set of rules to identify technical debt items that are
relevant to the project. More than half of the answers were
never to pay off the technical debt item. For many of these
cases, the respondents explained they were using a differ-
ent pattern than the one identified as technical debt by the
SonarQube detection rules.

We identified categories similar to the decision-making
criteria presented by Riegel and Doerr [11] and Ribeiro et
al. [10]. Like Leppanen et al. [7], we present a framework to
decide on the payment of a technical debt item, but ourmodel
is based on the decision criteria of the respondents. The first
and fourth findings presented in this discussion confirm the
literature. However, the second and third findings are new
completely new.

5.1 Implications for Researchers and Practitioners
The results of this study could be used as the basis for re-
searchers to identify other criteria that developers use to
decide to pay off or not a technical debt item and to choose
the payment priority level. This study could be replicated
in other software project groups to identify new decisions
and prioritization criteria, such as applying it to projects that
use other programming languages and non-OSS projects.
Besides that, other methods such as interviews could be used
to identify and better understand the criteria.
After defining criteria, researchers could study the sce-

narios in which they are used, that is, to define when and
how each criterion is used based on project variables like
a programming language, project patterns, project size, de-
velopment methodology, development team size, and others.
With these definitions, it is possible to create guidelines to
assist developers to decide the payment priority level for
each technical debt item they identify in their software. In
addition, researchers can try to relate the criteria to software
context, such as code metrics and commit history, to auto-
matically categorize payment of technical debt using, for
instance, machine learning.

Practitioners can use the criteria we have found to evalu-
ate and plan technical debt payment pragmatically in their
projects. That is, they could verify that the criterion applies
to the project, and, if so, they use it to define its priority level
of payment. In addition, practitioners who develop technical
debt management tools could use the criteria list identified
here to improve the technical debt identification tools. After
further research, they could use the criteria to tune technical
debt management software for each project established on
context based in the guidelines.

5.2 Threats to Validity
In this study, we adopted a careful approach to mitigate
possible biases and misinterpretations. Below, we describe
the steps we took to reduce threats to validity.

Construct validity:We conducted a pilot study by applying
the questionnaire to fifteen developers. First, they answered
the questions related to their projects, and then they wrote
a report about their experience using the questionnaire tool
and suggested improvements. Based on the reports, we fixed
some issues in the tool and applied improvements to make
sure the data items reflected a consistent interpretation of
the study constructs.

TechDebt ’22, May 22–23, 2022, Pittsburgh, United States

External validity: This study can be replicated in other
software projects. For that, it will be necessary to analyze
the project with SonarQube and use the questionnaire tool
to identify technical debt items and collect answers. We have
collected answers from 21 Java open-source projects with a
variety of sizes and features. Future replication should be con-
ducted on a larger number of projects, other programming
languages, and non-OSS projects. Applying an interview can
also help understand the prioritization criteria and make
them more general.

Internal validity:We analyzed the answers one by one and
applied codes to them. After that, we tried to improve the
codes and interpret them through grouping. Then, we re-
viewed all of them several times to make sure they accurately
represented the answers. We extracted the conclusions and
verified that they all were derived from the data. We followed
the standard guidelines for qualitative coding reviewed by
other authors. The iterative approach helps to mitigate anal-
ysis biases. In addition, the survey was designed specifically
to capture the relationship between criteria and decisions
to pay off or not technical debt items. Thus the conclusions
about that relationship come directly from the data.

Reliability:We followed Straussian GT analysis techniques
to interpret the data. Initially, one author conducted the cod-
ing and analysis. Then, the other authors revised, discussed,
and iteratively improved the codes and analysis. All steps
were carefully documented.

6 Final Considerations and Future Work
In this study, we performed a survey to collect data on Java
open-source software projects hosted on Github to under-
stand which criteria software developers use in practice to
prioritize technical debt items, that is, to decide whether and
when a technical debt item should be paid off. The partici-
pants were asked questions about technical debt items from
the projects they had contributed to.
We analyzed the data using Straussian GT techniques to

identify developers’ criteria to prioritize technical debt. We
grouped the criteria into 15 categories. Then, we grouped
them into 2 super-categories related to paying off the tech-
nical debt item; and 3 super-categories related to not paying
off the item.
We observed that some participants decided not to pay

off a technical debt that had occurred because of a project
decision. However, when participants decide to pay off an
item, they want to do it soon. Another observation is that all
respondents who use a particular criterion, choose the same
priority level or a neighboring level. Finally, we noted that
each software project needs a specific set of rules to identify
technical debt.

In future work, it will be important to expand the number
of projects and participants to cover more kinds of projects
and types of technical debt. Furthermore, we intend to train

machine learning methods to prioritize technical debt items
automatically.

Acknowledgments
This study was financed in part by the Coordenacao de Aper-
feicoamento de Pessoal de Nivel Superior – Brasil (CAPES)
– Finance Code 001.

References
[1] Christoph Becker, Ruzanna Chitchyan, Stefanie Betz, and Curtis Mc-

Cord. 2018. Trade-off decisions across time in technical debt man-
agement: a systematic literature review. In Proceedings of the 2018
International Conference on Technical Debt. ACM, pp. 85–94.

[2] Ward Cunningham. 1993. The WyCash portfolio management system.
ACM SIGPLAN OOPS Messenger 4, 2 (1993), pp. 29–30.

[3] Maya Daneva, Egbert Van Der Veen, Chintan Amrit, Smita Ghaisas,
Klaas Sikkel, Ramesh Kumar, Nirav Ajmeri, Uday Ramteerthkar, and
Roel Wieringa. 2013. Agile requirements prioritization in large-scale
outsourced system projects: An empirical study. Journal of systems
and software 86, 5 (2013), pp. 1333–1353.

[4] Carlos Fernández-Sánchez, Juan Garbajosa, and Agustín Yagüe. 2015. A
framework to aid in decisionmaking for technical debtmanagement. In
Managing Technical Debt (MTD), 2015 IEEE 7th International Workshop
on. IEEE, pp. 69–76.

[5] Yuepu Guo, Rodrigo Oliveira Spínola, and Carolyn Seaman. 2016. Ex-
ploring the costs of technical debt management–a case study. Empirical
Software Engineering 21, 1 (2016), 159–182.

[6] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. 2012. Technical
Debt: From Metaphor to Theory and Practice. Ieee software 29, 6
(2012).

[7] Marko Leppänen, Samuel Lahtinen, Kati Kuusinen, Simo Mäkinen,
Tomi Männistö, Juha Itkonen, Jesse Yli-Huumo, and Timo Lehtonen.
2015. Decision-making framework for refactoring. InManaging Techni-
cal Debt (MTD), 2015 IEEE 7th International Workshop on. IEEE, 61–68.

[8] Antonio Martini and Jan Bosch. 2015. Towards prioritizing Archi-
tecture Technical Debt: information needs of architects and product
owners. In Software Engineering and Advanced Applications (SEAA),
2015 41st Euromicro Conference on. IEEE, pp. 422–429.

[9] Antonio Martini and Jan Bosch. 2016. An empirically developed
method to aid decisions on architectural technical debt refactoring:
Anacondebt. In Software Engineering Companion (ICSE-C), IEEE/ACM
International Conference on. IEEE, pp. 31–40.

[10] Leilane Ferreira Ribeiro, Mário André de Freitas Farias, Manoel G
Mendonça, and Rodrigo Oliveira Spínola. 2016. Decision Criteria for
the Payment of Technical Debt in Software Projects: A Systematic
Mapping Study.. In ICEIS (1). 572–579.

[11] Norman Riegel and Joerg Doerr. 2015. A systematic literature review
of requirements prioritization criteria. In International Working Con-
ference on Requirements Engineering: Foundation for Software Quality.
Springer, pp. 300–317.

[12] Carolym Seaman and Yuepo Guo. 2011. Measuring and Monitoring
Technical Debt. Advances in Computers 82, 6810 (2011), 25–46.

[13] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory
in software engineering research: a critical review and guidelines. In
Proceedings of the 38th International Conference on Software Engineering.
120–131.

[14] Anselm Strauss and Juliet Corbin. 1994. Grounded theory methodol-
ogy: An overview. (1994).

[15] Anselm Strauss and Juliet Corbin. 1998. Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory. Sage 2nd
Ed.

	BlanksCover
	techdebt22-paper25PREPRINT
	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 Open Coding
	4.2 Axial Coding
	4.3 Selective Coding

	5 Discussion of the Results
	5.1 Implications for Researchers and Practitioners
	5.2 Threats to Validity

	6 Final Considerations and Future Work
	Acknowledgments
	References

