
Run-Time Adaptation ofQuality Attributes
for Automated Planning

Rebekka Wohlrab, Rômulo Meira-Góes
wohlrab@cmu.edu,romulo@cmu.edu

Institute for Software Research

Carnegie Mellon University

Pittsburgh, USA

Michael Vierhauser
michael.vierhauser@jku.at

LIT Secure and Correct Systems Lab

Johannes Kepler University Linz

Linz, Austria

ABSTRACT

Self-adaptive systems typically operate in heterogeneous environ-

ments and need to optimize their behavior based on a variety of

quality attributes to meet stakeholders’ needs. During adaptation

planning, these quality attributes are considered in the form of con-

straints, describing requirements that must be fulfilled, and utility

functions, which are used to select an optimal plan among several

alternatives. Up until now, most automated planning approaches are

not designed to adapt quality attributes, their priorities, and their

trade-offs at run time. Instead, both utility functions and constraints

are commonly defined at design time. There exists a clear lack of

run-time mechanisms that support their adaptation in response

to changes in the environment or in stakeholders’ preferences. In

this paper, we present initial work that combines automated plan-

ning and adaptation of quality attributes to address this gap. The

approach helps to semi-automatically adjust utility functions and

constraints based on changes at run time. We present a prelimi-

nary experimental evaluation that indicates that our approach can

provide plans with higher utility values while fulfilling changed

or added constraints. We conclude this paper with our envisioned

research outlook and plans for future empirical studies.

CCS CONCEPTS

• Computer systems organization→ Robotic autonomy; •Hard-

ware → Safety critical systems; • Theory of computation →

Verification by model checking.

KEYWORDS

quality attributes, automated planning, non-functional require-

ments, self-adaptation, conflict resolution, constraints

ACM Reference Format:

Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser. 2022. Run-

Time Adaptation of Quality Attributes for Automated Planning. In 17th

International Symposium on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS ’22), May 18–23, 2022, PITTSBURGH, PA, USA.

ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3524844.3528063

SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9305-8/22/05.
https://doi.org/10.1145/3524844.3528063

1 INTRODUCTION

Real-world, self-adaptive systems commonly operate in heteroge-

neous run-time environments. Depending on the context and the

task of a self-adaptive system, a variety of quality attributes need

to be taken into account that are typically specified by diverse

stakeholders [46]. For instance, client-server applications need to

consider performance, cost, and reliability concerns [44] to ful-

fill the requirements of end users and business owners. To plan

how the behavior or structure of a self-adaptive system should be

adapted in response to changes in the environment, automated

planning approaches have been introduced [20, 31] that take these

quality attributes into consideration. Automated planning has been

successfully applied, for instance, to robotic systems [1], machine

tool calibration [32], and urban traffic management [29]. Typically,

these planning approaches rely on a utility function, i.e., a single

aggregate function indicating the utility or satisfaction level related

to relevant quality attributes (such as timeliness, safety, or energy

efficiency). Utility functions are widely used to specify optimiza-

tion objectives for adaptation planning and have been successfully

applied to self-adaptive systems in the past [8, 10, 15, 19, 40, 40]. In

case multiple candidate plans for adaptation exist, as is often the

case in practice, the one with the highest expected utility value is

selected by the automated planner. Besides utility functions, con-

straints are commonly used to define requirements that must not

be violated, e.g., that the system must preserve a minimum battery

level to prevent it from running out of energy. These constraints

are used to generate possible plans, among which the optimal one

is chosen based on the expected utility.

When applying automated planning in practice, utility functions

and constraints are typically specified before the system’s execution.

While goal-oriented approaches have been proposed to capture a

system’s objectives [2, 14, 30, 35], few techniques exist that support

the lightweight adaptation of utility functions and constraints de-

pending on the system’s context and changing stakeholder needs.

Changes in stakeholder preferences and in a system’s environment,

however, might require a reprioritization and adjustment of quality

attributes [27, 37], including the resolution of conflicts between con-

straints. This need for quality attribute adjustment is not generally

fulfilled by self-adaptive systems [22].

In this paper, we present an approach for the adaptation of quality

attributes for automated planning at run time. It relies on mecha-

nisms to semi-automatically adapt constraints and utility functions

based on changes in a system’s environment or stakeholder input.

We demonstrate the feasibility of our approach by applying it to a

robotic system and present a preliminary experimental evaluation

alongside our envisioned research agenda.

98

17th Symposium on Software Engineering for Adaptive and Self-Managing Systems

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524844.3528063&domain=pdf&date_stamp=2022-08-15


SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

The remainder of this paper is structured as follows: Section 2

presents an example scenario and Section 3 introduces concepts for

planning. In Section 4, we describe our approach, whose evaluation

we present in Section 5.We further describe our envisioned research

outlook in Section 6, followed by related work in Section 7.

2 MOTIVATING EXAMPLE

To motivate our approach, we use the example of a robot that

performs a series of tasks, for example, moving goods as part of a

Cyber-Physical Production System.

Figure 1 illustrates a scenario of a robot repeatedly moving from

location 1© to 6© (e.g., to pick up items at a rack at 6©).

In our mission planning example, we focus on three quality

attributes: safety, to avoid collisions with obstacles; privacy, to

not intrude humans’ personal spaces; and the travel time of the

robot when executing a mission. An automated planner is used

to generate policies that take these quality attributes into account.

The planner relies on a utility function whose value should be

maximized by the generated plan. The utility depends on the costs

in terms of safety, privacy, and travel time. In the example, the

safety cost is 1 for each traversed semi-occluded path segment and

2 for each traversed occluded path segment. The privacy cost is 1

for each semi-private location and 2 for each private location that

is visited. The travel time is set to the traveled distance (indicated

by the labels of the edges in Figure 1) multiplied by a speed factor

(which can be either 0.5 or 1.0 in the example). Based on the cost

𝑐𝑖 (𝑝) of a quality attribute 𝑄𝐴𝑖 , the utility of a policy 𝑝 in terms of

that quality attribute is defined as𝑢𝑖 (𝑝) = 1−𝑐𝑖 (𝑝)/𝑚𝑎𝑥𝑜∈Π{𝑐𝑖 (𝑜)},
indicating how “bad” the cost of 𝑝 is in comparison to the maximum
cost for any possible generated policy 𝑜 . The overall utility of 𝑝 is

then calculated using utility function weights𝑤𝑖 , which indicate

the importance of each quality attribute. The utility is defined as:

𝑢 (𝑝) = Σ𝑖∈𝑄𝐴𝑤𝑖𝑢𝑖 (𝑝)

In our example, the initial utility function weights are set to 0.333
for safety, privacy, and travel time, i.e., all quality attributes have

equal importance. As we describe in Section 5, when using equal

utility function weights, the optimal path in the example would

be via 4© and 5©. Besides utility function weights, constraints may

need to be considered when generating a set of possible plans at run

time. In this paper, we consider the following kinds of constraints:

(1) bounding measures constraints (e.g., setting a deadline of 3.5

time units for a task, to meet business owner requirements);

(2) proximity constraints (e.g., avoiding that a robot moves to a

location that is too close to a human or another robot);

(3) speed limit constraints (to comply with safety regulations).

2 3

6

1
Occluded path segment

Semi-occluded path segment

Private location

Semi-private location

1 1

path back to start

1.414

Start/Goal

4 5
1

1.118

1.118

1.118

Figure 1: Example of a robotic mission planning context

In our example, both utility functions and constraints might need

to be adjusted in response to four kinds of possible run-time events:

(1) Map changes: a human enters the area and locations need to be

avoided for privacy or safety reasons;

(2) Task changes: the task is changed to transport a fragile item,

which requires new constraints and a higher priority of safety;

(3) Stakeholder preference changes: the utility function has to be

adjusted to better meet stakeholders’ changing preferences;

(4) Regulatory or restricting changes: new restrictions or regulations

may result in constraints being added, updated, or removed.

For the remainder of this paper, we consider the following sce-

nario: The robot’s task changes and it needs to deliver a valuable

or dangerous item that increases the importance of safety. To ac-

commodate for this change, the weight of safety is changed to 0.9,

the weight of travel time to 0.1, and the weight of privacy to 0.

Moreover, a key stakeholder enters the map and makes location
5© unavailable (imposing a proximity constraint). Visiting the lo-

cation should not only be penalized, but must not occur. These

changes have an impact on the selected plans, as we describe in

our evaluation (Section 5).

3 PRELIMINARIES

In this section, we provide a brief introduction to the underlying

concepts and the formalism that our approach relies on.

Markov Decision Processes. Our automated planning approach

builds upon techniques in Markov Decision Processes (MDPs) [24].

An MDP is a tuple 𝑀 := (𝑄,𝐴𝑐𝑡, 𝑃, 𝑞0, 𝐿, 𝑅), where 𝑄 is a finite set

of states, 𝑞0 ∈ 𝑄 is an initial state, 𝐴𝑐𝑡 is a finite set of actions,
𝑃 : 𝑄 × 𝐴𝑐𝑡 × 𝑄 → [0, 1] is a probability transition function,

𝐿 : 𝑄 → 2𝐴𝑃 is a labeling function that maps states to a set of

atomic propositions in 𝐴𝑃 , and 𝑅 is a finite set of cost functions

𝜌 : 𝑄 × 𝐴𝑐𝑡 → R≥0 that associate non-negative values to every
state and action pair.

Intuitively, the labeling function and the cost functions are used

to define the quality attributes involved in the planning process. For

example, the labeling function is used to define constraints, such

as to avoid certain locations in the map. Cost functions quantify

the policy and we can define constraints so that the cost is within

a certain interval.

Policies. A policy for MDP 𝑀 resolves the nondeterministic

choices in𝑀 by selecting an action to take in every state. Although

there are multiple classes of policies, in this work, we use deter-

ministic memoryless policies. Formally, a policy in 𝑀 is defined as

𝑝 : 𝑄 → 𝐴𝑐𝑡 that maps states into actions. The set of all policies
of 𝑀 is denoted by Π. Under policy 𝑝 , the behavior of 𝑀 is fully

probabilistic and it can be represented by an induced discrete-time

Markov chain [24].

Temporal properties. To synthesize policies that satisfy certain

objectives and constraints, we utilize the framework of probabilistic

temporal logic PCTL, which is used to quantify properties related

to probabilities and rewards in system specifications modeled as

MDPs [5, 12]. For example, the objective of the robot in Figure 1 is

to reach state 6© while minimizing travel time, intrusiveness, and

collision (maximizing safety), which can be described as a PCTL

99



Run-Time Adaptation of Quality Attributes for Automated Planning SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

´

Figure 2: High-level overview of the main components of our approach

formula. Formally, the syntax of PCTL for an MDP 𝑀 is defined as:

𝜙 ::= 𝑡𝑟𝑢𝑒 | 𝑐 | 𝜙 ∧ 𝜙 | ¬𝜙 | P∼𝑏 [𝜓 ] | R
𝜌
∼𝑟 [𝐶] | R

𝜌
∼𝑟 [𝐹𝜙]

𝜓 ::= 𝑋𝜙 | 𝜙𝑈 ≤𝑘𝜙 | 𝜙𝑈𝜙

where 𝑐 ∈ 𝐴𝑃 is an atomic proposition, ∼∈ {≤, <, ≥, >}, 𝑏 ∈ [0, 1]
is a probability bound, 𝑟 ∈ R≥0 is a reward bound, and 𝜌 ∈ 𝑅 is a

cost function.

The semantics of PCTL formulas are formally defined over the

policies of 𝑀 , e.g., see [5, 12]. Herein, we provide intuition on their

semantics using a few examples. The operator P≤𝑏 [𝜓 ] specifies
that the probability of taking a path starting in 𝑞0 that satisfies
property𝜓 is smaller or equal than 𝑏 for all policies 𝑝 . Similarly, the
reward operator R

𝜌
∼𝑟 [𝐶] establishes that the expected cumulative

cost for cost function 𝜌 is ∼ 𝑟 for all policies. Lastly, the reward
operator R

𝜌
∼𝑟 [𝐹𝜙] holds if the total expected cost for cost function

𝜌 before reaching a state that satisfies 𝜙 is ∼ 𝑟 for all policies.
We also allow to replace ∼ with𝑚𝑖𝑛 =? or𝑚𝑎𝑥 =? to specify the

calculation of the minimum/maximum probability (or reward) over

all MDP policies.

4 APPROACH

Figure 2 provides an overview of the main parts of our approach for

run-time quality attribute adaptation: (1) a Quality Attribute Con-

figurator that facilitates user input; (2) a Quality Attribute Adapter

responsible for analyzing run-time data and user input, resolving

conflicts between constraints, and defining the utility function and

constraints to be used by the system; (3) a Model Creator that takes

the provided constraints and utility function as an input and gener-

ates an MDP and PCTL properties; (4) a Policy Synthesizer that uses

the MDP and PCTL properties to generate a mission policy that can

then be executed by a self-adaptive system. The Quality Attribute

Adapter uses (5) a Reasoning Engine to analyze and plan changes to

the utility function and constraints, relying on collected run-time

data and triggered changes. In our scenario, run-time data refers to

any data that can be observed and collected from a running system,

such as the current trajectory of a robot, quality measures, sensor

data, or detected objects/persons in the environment.

As part of our approach, we currently consider the following

changes: (A) new user input, for example, related to changed pref-

erences or constraints, (B) task changes, and (C) changes to the

environment (cf. Section 2). A central knowledge base is used to cap-

ture user preferences, constraints, utility functions, current tasks,

and the current state of the environment in the form of run-time

models. This knowledge base is continuously updated based on

collected run-time data and user input.

The run-time adaptation of quality attributes can be used to

replan at run time, when parts of the plan are being executed. For

instance, if any of the listed changes occur when the robot in our

running example is at location 4©, replanning with the new input

can help to decide which path should be selected for the remainder

of the mission. Note that run-time replanning can be costly. We

discuss ways to address this issue in Section 6.

In the following, we describe the components in further detail.

4.1 Quality Attribute Configurator

Before a mission is executed, stakeholders can specify preferences

and constraints for a set of quality attributes. Preferences are used

to indicate their priorities, whereas constraints can be defined to

specify restrictions (such as upper and lower bounds) or invariants

that should be guaranteed by the system. For instance, users might

want to constrain the battery level to always be above 10% (ensur-

ing that the robot is not running out of energy, so that a mission

can be safely completed). The Quality Attribute Configurator also

serves as a dashboard, presenting preferences and constraints in a

consolidated view, requesting user input in case of conflicts, and

providing insights into the system’s state and behavior at run time.

4.2 Quality Attribute Adapter

The Quality Attribute Adapter executes a reasoning engine to gen-

erate a utility function and constraints that should be used during

planning. In this paper, we assume the utility function to be a

weighted sum of quality attributes [42], where the weights indicate

the priorities of each quality attribute. The quality attribute adap-

tation is based on the indicated preferences and constraints from

stakeholders, which are stored in the knowledge base. If safety-

related conflicts between constraints occur or it is not possible

to create a utility function based on the user input, stakeholders

are prompted for input. The call for active human participation

is motivated by safety standards requiring human assessment of

changes that affect safety-critical constraints. Once all input has

been consolidated, the utility function and constraints are used by

the Model Creator.

4.3 Model Creator

The Model Creator develops the MDP and PCTL properties to be

used during policy synthesis. The MDP and properties are created

based on the current task that should be executed, a model of the

current environment/plan, for example, a map of waypoints, and

the previously defined utility functions and constraints.

100



SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

Using information provided by stakeholders about the environ-

ment (Knowledge Base in Figure 2), the Model Creator creates an

MDP model which includes (at least) a state for each location in the

map, actions to transition between states (e.g., to move to another

location or change the speed), and a reward structure capturing the

cost obtained in each state for each quality attribute. In other words,

the MDP models the environment in which the planning task takes

place. In the following, we describe how constraints and costs are

captured in the verification property and in reward structures.

4.3.1 Representation of quality attribute priorities. We consider

weighted sum utility functions in this paper, where the utility func-

tion weights 𝑤𝑖 indicate the priorities or importance of quality

attributes. Approaches for defining weighted sum utility functions

for self-adaptive systems based on stakeholder preferences have

been previously proposed, e.g., in [46]. When creating the MDP

model for policy synthesis, each quality attribute is coupled to a

cost function. In this manner, we consider a multi-objective cost

function 𝑐 of MDP 𝑀 as a linear scalarization of all cost func-

tions: 𝑐 (𝑞, 𝑎) =
∑
𝑖∈𝑄𝐴𝑤𝑖𝑐𝑖 (𝑞, 𝑎), where𝑤𝑖 are the utility function

weights. To avoid that certain QAs have too much impact on the

results, the cost functions 𝑐𝑖 are normalized as in [41]. The PCTL
formula R𝑐

min
[𝐶] specifies that 𝑐 should be minimized.

4.3.2 Representation of constraints. While the cost function 𝑐 based
on quality attributes ranks the policy planning space, a set of con-

straints restricts this policy space. In other words, a set of con-

straints excludes policies that violate any of the specified con-

straints. For example, constraining the robot to avoid location 5© in

Figure 1 limits its actions in location 4©, i.e., it cannot move to loca-

tion 5©. In this work, we consider two types of constraints: safety

constraints and bounding cost functions. These constraints support

the properties listed in Section 2: bounding measures constraints,

proximity constraints, and speed limit constraints.

Safety constraints: Safety constraints are related to safety prop-

erties in model checking [26]. Note that not all safety properties

are safety-critical constraints. Informally, safety properties specify

that something “bad” should never occur. Safety properties can

introduce proximity constraints and speed limit constraints. For

example, constraining the robot to avoid location 5© in Figure 1 is

a safety constraint. In this case, any visit to location 5© is “bad”. All

policies that avoid this location satisfy this safety constraint.

To formally define safety constraints, we introduce PCTL safety

formulas that the robot’s plan must satisfy. In this case, we use the

synthetic globally operator 𝐺𝜙 , which describes that the state for-
mula 𝜙 should always hold. For more details on PCTL formulas see,

e.g., [5, 12]. In this manner, the safety constraint to avoid location
5© is described by the formula 𝐺 (¬ 5©).

Bounding cost functions: In this case, we restrict policies based

on their final expected cumulative reward, for example, constrain-

ing the robot to arrive at its final location within a certain time

limit. Only policies that satisfy this bound constraint will be consid-

ered, while the ones that violate it will be discarded. Formally, we

can use the reward operator R
𝜌
∼𝑟 [𝐶] to specify these constraints.

Bounding cost functions can be used to express bounding measures

constraints. For example, if we want to bound the travel time of the

robot to be less than 5 time units, then we introduce the constraint

R
𝑐𝑡
≤5 [𝐶], where 𝑐𝑡 is the travel time cost function.

4.3.3 Combining preferences and constraints: So far, we have de-

scribed how to define preferences and constraints using PCTL for-

mulas. However, these formulas were defined separately and hence

can not be directly combined. For example, we cannot combine

a PCTL formula with a probability operator and one with a re-

ward operator. For this reason, we combine all the constraints

using multi-objective definition [13]. In our robot planning exam-

ple, we define the following multi-objective goal:𝑚𝑢𝑙𝑡𝑖 (R𝑐
min

[𝐶],

P≥1 [𝐹 6© ∧𝐺 (¬ 5©)], R𝑐𝑡
≤5 [𝐶]). The first objective is to minimize

the multi-objective cost function 𝑐 . Next, we want to reach state
6© while avoiding 5© with probability 1. Finally, the last objective

states that the expected travel time should be less than or equal to

5. Generally, the multi-objective goal is defined as:𝑚𝑢𝑙𝑡𝑖 (R𝑐
min

[𝐶],
P≥1 [𝐹𝜙𝑔𝑜𝑎𝑙 ∧ 𝜙𝑠𝑎𝑓 𝑒 ], bounding1, . . . , bounding𝑛), where 𝜙𝑔𝑜𝑎𝑙 de-
fines the reachability goal, 𝜙𝑠𝑎𝑓 𝑒 defines the safety constraint, and
each bounding𝑖 defines a bounding constraint. Note that the multi-

objective goal has only one optimization task, i.e., R𝑐
min

[𝐶].

4.4 Policy Synthesizer

The Policy Synthesizer executes the MDP based on the PCTL prop-

erty defined in the previous step. It outputs a mission policy that

can be translated into a sequence of actions to be executed by a

self-adaptive system.

The output from the Policy Synthesizer is also used to calculate

the policy’s utility. In Section 2, we defined the utility function of a

policy using the cost functions to describe how “bad” the cost of

𝑝 is in comparison to the maximum cost for any possible policy.

In this paper, we define it as 𝑢𝑖 (𝑝) = 1 − 𝑐𝑖 (𝑝)/max𝑜∈Π{𝑐𝑖 (𝑜)},
although for other contexts different cost functions might be more

appropriate. To avoid policies with infinite cost, we assume that

the graph representation of the map does not have any loops. We

compute the maximal cost for each cost function using the PCTL

formula R𝑐𝑖max [𝐹𝜙], where 𝜙 defines the goal states. The overall

utility of a policy is then calculated using utility function weights

𝑤𝑖 as: 𝑢 (𝑝) =
∑
𝑖∈𝑄𝐴𝑤𝑖𝑢𝑖 (𝑝). Lastly, given a policy 𝑝 , we can also

calculate the cost 𝑐𝑖 (𝑝) for each cost function using the MDP model.

4.5 Reasoning Engine

Our approach uses a rule-based reasoning engine to analyze data

in the knowledge base and create a utility function and set of con-

straints. The advantage of using a reasoning engine is that rules

can be adjusted to the specific contexts of a system. Being based on

rules, our approach can provide certain guarantees of how utility

functions and constraints will be adjusted in a given situation.

We use Drools [33] as a reasoning engine. It is triggered by the

Quality Attribute Adapter and operates on the knowledge base.

Rules can be specified to automatically adjust utility functions (e.g.,

to increase the weight of privacy when a stakeholder enters the

map). Drools rules can also be specified to deal with constraints.

Conflicts between pairs of constraints might occur, implying that

not both can be fulfilled at the same time. For conflicts between

hard constraints, it is not possible to automatically compute a reso-

lution, but stakeholder input needs to be collected to decide which

constraints should hold.

101



Run-Time Adaptation of Quality Attributes for Automated Planning SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

Listing 1: Example rule to handle conflicting constraints

rule resolveConflict

salience 5

when
$cons: Constraint($myQA: getQA (),

isLowerBound (), $myValue: getValue ())

$otherCons: Constraint(

getQA ()== $myQA, isUpperBound (),

getValue () < $myValue,

$otherValue : getValue ())

then
Constraint $new = new Constraint($myQA,

($myValue + $otherValue) / 2)

$new.setEqual ()

insert($new)
addConflictTrace($new,$cons)

addConflictTrace($new,$otherCons)

end

Listing 1 shows an example Drools rule to deal with conflicts

between soft constraints. The conflict occurs if a soft constraint

$cons restricts the lower bound of a quality attribute measure to a

value higher than the upper-bound value of another soft constraint

$otherCons. In such a case, the rule creates a new constraint that

requires the measure to be equal to the mean value of the two

conflicting constraints. A trace link is created to the two previ-

ous constraints and the system can resume planning without any

constraint conflicts.

In practice, there are multiple ways of dealing with conflicting

constraints, and choosing the mean might only be a valid default

strategy for soft constraints. Other rules (e.g., to keep constraints

based on their priorities or the authority levels of stakeholders)

can be added to arrive at different conflict resolution behavior,

depending on the current context and stakeholder needs. Fallback

strategies can be specified to deal with unknown contexts.

5 PRELIMINARY EVALUATION

In order to assess the applicability of our approach and to evaluate

the potential benefit of adapting constraints and utility functions,

we conducted a preliminary evaluation using our previously men-

tioned example scenario. We focus on the adaptation of constraints

and utility functions using the Quality Attribute Adapter and the

utilities of the generated policies.

5.1 Evaluation Setup

We use the example described in Section 2 of a warehouse in which

a robot performs tasks that include traveling from the start location,

visiting a location (e.g., to collect items), and returning to its initial

location. We use the map shown in Figure 1. Although our frame-

work supports MDP models in general, for the sake of simplicity

of our explanations, we present an example with a deterministic

MDP (without probabilities).

For the experiments, we calculated the (1) obtained utility values,

(2) costs, and (3) the generated policies with and without adaptation

considering different utility function weights and constraints. As

quality attributes we selected safety, which describes the number of

expected collisions, the completion time of the plan, and privacy (i.e.,

non-intrusiveness of humans’ personal spaces), which is measured

Figure 3: Initial results with/without QA adaptation

by the number of traversed private or semi-private locations. While

design-time calculations can be used to verify the experimental

results, the actual quality attribute adaptation in our approach is

performed at run time.

For policy synthesis, we used the off-the-shelf probabilisticmodel

checker PRISM1 [25] to generate plans for a robot to travel from 1©
to 6© using the following utility function weights and constraints:

(1) Equal weights for all three quality attributes (0.333) and no

constraints (for the planner without adaptation);

(2) Adjusted weights to support the delivery of a valuable/dan-

gerous item: 0.9 for 𝑤𝑠𝑎𝑓 𝑒 , 0.1 for 𝑤𝑡𝑖𝑚𝑒 , 0 for 𝑤𝑝𝑟𝑖𝑣 (for the

planner with an adapted utility function)

(3) A human enters the map and makes location 5© unavailable to

travel through (for the planner with an adapted constraint)

5.2 Evaluation Results

This section presents the results of our preliminary evaluation.

Figure 3 shows the obtained utility for the example scenario. The

results stem from the cost and utility calculations in Table 1. It is

1http://www.prismmodelchecker.org

Table 1: Cost and utilities of different plans depending on

utility functions and constraints

𝑤𝑠𝑎𝑓 𝑒𝑤𝑡𝑖𝑚𝑒 𝑤𝑝𝑟𝑖𝑣 con-
straint

Plan
(optimal)

𝑐𝑠𝑎𝑓 𝑒 𝑐𝑡𝑖𝑚𝑒 𝑐𝑝𝑟𝑖𝑣 𝑢𝑠𝑎𝑓 𝑒 𝑢𝑡𝑖𝑚𝑒 𝑢𝑝𝑟𝑖𝑣 𝑢

0.333 0.333 0.333 no 2, 3 1 3.414 3 0.667 0.065 0 0.243

4, 3 2 3.65 1 0.333 0 0.667 0.333

4, 5 (�) 3 3.236 0 0 0.113 1 0.371

0.333 0.333 0.333 yes 2, 3 1 3.414 3 0.5 0.065 0 0.188

4, 3 (�) 2 3.65 1 0 0 0.667 0.222

4, 5 violates constraint (forbid location 5) 0

0.9 0.1 0 no 2, 3 (�) 1 3.414 3 0.667 0.065 0 0.607

4, 3 2 3.65 1 0.333 0 0.667 0.3

4, 5 3 3.236 0 0 0.113 1 0.011

0.9 0.1 0 yes 2, 3 (�) 1 3.414 3 0.5 0.065 0 0.457

4, 3 2 3.65 1 0 0 0.667 0

4, 5 violates constraint (forbid location 5) 0

102



SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

shown how the utility changes depending on whether the utility

function, constraints, or both are adapted, or whether no adaptation

is used. In the table, the utility function weights𝑤𝑖 are shown, along

with whether or not the example constraint (of forbidding 5©) is

considered. For each plan, it is indicated whether it is optimal and

the cost and utilities in different quality attribute dimensions are

shown (𝑐𝑖 for costs, 𝑢𝑖 for utilities). In all columns, 𝑠𝑎𝑓 𝑒 stands

for safety, 𝑡𝑖𝑚𝑒 for the travel time, and 𝑝𝑟𝑖𝑣 for privacy. Finally,
the total utility 𝑢 is shown in the rightmost column, which is the

weighted sum of the utilities of different quality attributes.

For our evaluation example, we assume all initial utility function

weights to be 0.333 in the no-adaptation system (leading to a fixed

policy via 4© and 5©, which is used as the plan without adaptation).

In the scenario of the task change that requires safety to be priori-

tized higher and the weights to be adjusted to (0.9, 0.1, 0), the policy

via 2© and 3© is selected, leading to a utility of 0.607. On the other

hand, the no-adaptation plan has a utility of 0.011 (as it would still

select the policy via 4© and 5©). When considering the example

constraint (i.e., making location 5© unavailable), the no-adaptation

system would be unable to plan for it and arrive at a utility of 0.

Note that because the plan via 4© and 5© is not usable anymore,

the utilities of the quality attributes need to be recalculated, given

that the maximum cost might have changed. For instance, while

the maximum cost of collision was 3 for the no-constraint plans, it

is 2 now that the plan via 4© and 5© is disregarded, which impacts

the obtained utilities for the two other plans.

In the case of constraint adaptation, it is possible for our adaptive

framework to plan a policy by avoiding location 5© and achieve a

utility of 0.222 by choosing the path via 4© and 3© (assuming that all

utility function weights are 0.333). In case both the utility function

and constraint are adapted, the utility of the adapted system is 0.457

(in comparison to 0 for the no-adaptation system).

6 DISCUSSION AND RESEARCH OUTLOOK

Results from our preliminary evaluation have shown that adapting

quality attributes can provide plans with higher utilities. Depending

on the concrete system and mission in a specific context, the utility-

focused evaluation can result in more or less substantial findings.

In our case, the difference was highest (i.e., 0.596) for the scenario

in which only the utility function needed to be adapted.

To further evaluate our approach, we plan to run experiments

with real-world systems and assess the required effort when adapt-

ing quality attributes. Our approach involves the re-construction of

the model and the synthesis of a new policy at run time, which can

induce a high overhead. To address this issue, hybrid planning [31]

or plan reuse [23] can be leveraged to reduce the cost of replanning,

react as quickly as needed, and potentially reuse pre-computed

plans. In certain situations, for example, if a location is only un-

available during a limited time interval, it might not be beneficial

to replan the policy and adapt quality attributes. The goal should

be to have a sufficiently stable policy in most contexts and only

replan when needed.

Moreover, our approach does not need to be based on policy syn-

thesis using MDPs but could also employ other automated planning

techniques. We envision our approach to be applicable to diverse

self-adaptive systems with MAPE-K components. As an integrated

part of a system, our approach can inform the design of these com-

ponents, e.g., to define what monitoring data should be collected

to trigger quality-related changes, or how and when re-planning

should occur.

With our initial prototype and application example, we have

demonstrated that our approach can be leveraged to increase the

utility obtained by selected plans, considering changed utility func-

tions and constraints. Based on these initial results, we are planning

to extend our work and specifically target four main areas:

Diverse types of constraints: Up until now our approach sup-

ports defining constraints that limit the measures of a quality at-

tribute or restrict the proximity or speed of self-adaptive systems.

Additional types of constraints to support are, for instance, temporal

logic constraints (so that time-bound constraints can be expressed).

Conflicts between different types of constraints might need to be

resolved with different strategies. For hard constraints, it is not

feasible to resolve conflicts automatically, and stakeholder input

needs to be collected.

Different types of preference representations: While we

focus on weighted sum utility functions in this paper, the approach

can be extended to support other kinds of utility functions (e.g.,

weighted products [42]) by adjusting the Model Creator and Policy

Synthesizer. However, in practice, it can be a non-trivial task to

define utility functions. Certain systems and contexts might require

different preference representations. For instance, it can be desir-

able to compute “knee points”, which are well-balanced trade-offs

between several objectives [6, 16]. Future work can incorporate

this notion, so that knee-point solutions are selected by default

and alternative solutions can be chosen when priorities of quality

attributes change.

Support for stakeholder input and explainability: In our

envisioned approach, stakeholders should be able to indicate pref-

erences and constraints at run time. Understanding the adaptation

behavior of the system is key to make appropriate decisions. Fu-

ture work will examine what the Quality Attribute Configurator

should look like, how adaptation actions can be explained, and how

decision support can be provided to assist stakeholders when giv-

ing input, resolving conflicts, and making decisions. Mechanisms

can be added to elicit preferences and constraints for previously

unconsidered quality attributes. To deal with scalability issues, we

aim to limit the required stakeholder input by initially eliciting

default preferences and constraints [46] and adjusting them only

in specific situations. Our approach is semi-automatic and involves

stakeholders only when needed (e.g., when dealing with hard or

safety-critical conflicting constraints).

Evaluation of the approach: To evaluate the proposed ap-

proach, we intend to perform a human subjects study. The focus

will lie on the ease of use and the understandability of our approach.

The study can be performed as a think-aloud study (to elicit par-

ticipants’ mental models while working with the tool/approach).

Additionally, controlled experiments can be conducted to under-

stand whether the provided explanations can help humans make

decisions more confidently and deliberately in comparison to users

that select utility functions without any guidance.

103



Run-Time Adaptation of Quality Attributes for Automated Planning SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA

7 RELATEDWORK

Our approach addresses the need to manage requirements for self-

adaptive systems, deal with uncertainty, and involve users in in-

teractive decision-making at run time [4]. Relevant related work is

concerned with the run-time adaptation of utility functions, con-

straints, and goal models.

Adjusting utility functions at run time: While utility functions

have been widely used for self-adaptive systems [8, 9, 11, 15, 17, 40],

only in recent years, the need has been raised to re-adjust util-

ity functions at run time [22, 27] based on changing user pref-

erences [27]. One approach that focuses on this issue switches

between “variants” of utility functions depending on the system’s

context [21]. Another approach uses fuzzy logic to adapt utility

functions based on predefined adaptation rules [3]. Instead of re-

quiring stakeholders to describe rules for all possible contexts at

design time, our approach supports user input at run time.

The topic of utility function adaptation is similar to recent work

on adjusting priorities at run time [36], which uses ML techniques

to adjust priorities of quality attributes (which are similar to our

utility function weights) to ensure that QoS constraints are met.

Adjusting constraints at run time: Several tools have been pro-

posed to detect and resolve conflicts between requirements, e.g., the

Oz System that can automatically detect conflicts and find compro-

mise solutions [34]. For self-adaptive systems, Song et al.’s approach

elicits end user preferences and constraints, which are used to find

a solution for a constraint satisfaction problem that minimizes the

number of violated goals [39].

The language RELAX allows stakeholders to specify require-

ments for self-adaptive systems under uncertainty and supports

several operators to indicate how a requirement can be relaxed at

run time [45]. The issue of conflicting requirements is mentioned,

along with the potential use of temporal constraint analysis to

identify inconsistent pairs of RELAX constraints [38].

In the context of smart cities, a decision support system has

been developed that uses Integer Linear Programming to resolve

conflicts between constraints [28]. Our work is similar in the sense

that it collects input from stakeholders at run time and supports

the semi-automatic resolution of constraints.

Goal-oriented self-adaptation: Several approaches have applied

goal modeling in the context of self-adaptive systems [2, 14, 30, 35].

For example, FLAGS [2] uses KAOS and LTL to support the run-time

adaptation of goals. ActivFORMS [18] supports goal model adapta-

tion at run time and uses the Uppaal model checker for checking

TCTL expressions. While ActivFORMS allows to change and verify

goals at run time, our work is more strongly focused on quality

attributes and provides mechanisms for conflict resolution. Another

approach combines KAOS and RELAX to identify and mitigate un-

certainty factors in requirements for self-adaptive systems [7]. In

the domain of CPS architecture adaptation, an approach [14] for

architectural self-adaptation has been developed based on goal mod-

els and predictive monitoring to deal with operational uncertainty.

While these approaches tackle important aspects of self-adaptive

systems, they do not focus on the adaptation of quality attributes

based on run-time user input and conflict resolution.

The issue of conflicts in goal-oriented requirements engineering

has also been studied, along with solution strategies (e.g., goal

weakening or resolution heuristics) [43]. We plan to build upon that

work to inform the development of conflict resolution mechanisms.

8 CONCLUSION

In this paper, we have presented an initial approach for the dynamic

adaptation of quality attributes for automated planning. Our ap-

proach supports the semi-automatic adjustment of utility functions

and constraints, including support to process input from multiple

stakeholders and resolve conflicts between soft constraints. Our

evaluation indicated that the approach can lead to higher utility

values in comparison to approaches that do not support the adapta-

tion of utility functions and constraints. We presented a research

outlook that includes directions for future work, such as support-

ing different types of constraints and preference representations,

creating comprehensible interfaces, and evaluating the approach.

As part of our ongoing work, we are implementing a system to

support the described approach, designing an empirical study for

evaluation, and developing a comprehensive user interface to elicit

stakeholder input and support explainability.

ACKNOWLEDGMENTS

Thisworkwas partially supported by theWallenbergAI, Autonomous

Systems and Software Program (WASP) funded by the Knut and

Alice Wallenberg Foundation, and the Linz Institute of Technology

(LIT-2019-7-INC-316).

104



SEAMS ’22, May 18–23, 2022, PITTSBURGH, PA, USA Rebekka Wohlrab, Rômulo Meira-Góes and Michael Vierhauser

REFERENCES
[1] Jonathan Aldrich, David Garlan, et al. 2019. Model-based adaptation for robotics

software. IEEE Software 36, 2 (2019), 83–90.
[2] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. 2010. Fuzzy goals for

requirements-driven adaptation. In Proc. of the 18th Int. Requirements Eng. Conf.
IEEE, 125–134.

[3] Mounir Beggas, Lionel Médini, Frederique Laforest, and Mohamed Tayeb Laskri.
2013. Fuzzy Logic Based Utility Function for Context-Aware Adaptation Planning.
Springer International Publishing, Cham, 227–236. https://doi.org/10.1007/978-
3-319-00560-7_27

[4] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel
Letier. 2010. Requirements reflection: requirements as runtime entities. In Proc.
of the ACM/IEEE 32nd Int. Conf. on Software Engineering, Vol. 2. ACM, New York,
199–202. https://doi.org/10.1145/1810295.1810329

[5] Andrea Bianco and Luca de Alfaro. 1995. Model checking of probabilistic and
nondeterministic systems. In Foundations of Software Technology and Theoretical
Computer Science, P. S. Thiagarajan (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 499–513.

[6] Tao Chen, Ke Li, Rami Bahsoon, and Xin Yao. 2018. FEMOSAA: Feature-Guided
and Knee-Driven Multi-Objective Optimization for Self-Adaptive Software. ACM
Trans. Softw. Eng. Methodol. 27, 2, Article 5 (jun 2018), 50 pages. https://doi.org/
10.1145/3204459

[7] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. 2009. A Goal-
Based Modeling Approach to Develop Requirements of an Adaptive System with
Environmental Uncertainty. In Model Driven Engineering Languages and Systems,
Andy Schürr and Bran Selic (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
468–483.

[8] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. 2006. Architecture-
based self-adaptation in the presence of multiple objectives. In Proc. of the 2006
International Workshop on Self-Adaptation and Self-Managing Systems. ACM, New
York. https://doi.org/10.1145/1137677.1137679

[9] Javier Cámara, Antónia Lopes, David Garlan, and Bradley Schmerl. 2016. Adapta-
tion impact and environment models for architecture-based self-adaptive systems.
Science of Computer Programming 127 (2016), 50–75. https://doi.org/10.1016/j.
scico.2015.12.006

[10] Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. 2013. A learning-based
framework for engineering feature-oriented self-adaptive software systems. IEEE
Transactions on Software Engineering 39, 11 (2013), 1467–1493.

[11] Funmilade Faniyi, Peter R. Lewis, Rami Bahsoon, and Xin Yao. 2014. Architecting
Self-Aware Software Systems. In Proc. of the 2014 IEEE/IFIP Conference on Software
Architecture. IEEE, 91–94. https://doi.org/10.1109/WICSA.2014.18

[12] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. 2011.
Automated verification techniques for probabilistic systems. In International
school on formal methods for the design of computer, communication and software
systems. Springer, 53–113.

[13] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. 2011. Quantitative
Multi-Objective Verification for Probabilistic Systems. In Proc. of the 17th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’11).
Springer, 112–127.

[14] Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, Jaroslav Keznikl, Michal Kit,
Frantisek Plasil, and Noël Plouzeau. 2016. Self-adaptation in software-intensive
cyber-physical systems: From system goals to architecture configurations. Journal
of Systems and Software 122 (2016), 378–397.

[15] Carlo Ghezzi and Amir Molzam Sharifloo. 2013. Dealing with Non-Functional
Requirements for Adaptive Systems via Dynamic Software Product-Lines. Springer
Berlin Heidelberg, 191–213.

[16] Sara Hassan, Nelly Bencomo, and Rami Bahsoon. 2015. Minimizing Nasty Sur-
prises with Better Informed Decision-Making in Self-Adaptive Systems. In Proc.
of the 2015 IEEE/ACM 10th Int. Symp. on Soft. Eng. for Adaptive and Self-Managing
Syst. (SEAMS 2015). IEEE, 134–145. https://doi.org/10.1109/SEAMS.2015.13

[17] William Heaven, Daniel Sykes, Jeff Magee, and Jeff Kramer. 2009. A Case Study in
Goal-Driven Architectural Adaptation. In Software Engineering for Self-Adaptive
Systems. Springer-Verlag, Berlin, Heidelberg, 109–127. https://doi.org/10.1007/
978-3-642-02161-9_6

[18] M Usman Iftikhar and Danny Weyns. 2014. ActivFORMS: Active formal models
for self-adaptation. In Proceedings of the 9th Int. Symp. on Soft. Eng. for Adaptive
and Self-Managing Syst. (SEAMS 2014). ACM, New York, 125–134.

[19] Paola Inverardi and Marco Mori. 2013. A software lifecycle process to support
consistent evolutions. In Self-Adaptive Systems, R. de Lemos (Ed.). Vol. 7475 LNCS.
Springer Berlin Heidelberg, 239–264.

[20] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Artificial intelligence
101, 1-2 (1998), 99–134.

[21] Konstantinos Kakousis, Nearchos Paspallis, and George Papadopoulos. 2008.
Optimizing the Utility Function-Based Self-adaptive Behavior of Context-Aware
Systems Using User Feedback. In OTM 2008. 657–674.

[22] Jeffrey Kephart. 2021. Viewing Autonomic Computing through the Lens of
Embodied Artificial Intelligence: A Self-Debate. Keynote at the 16th Symp. on
Soft. Eng. for Adaptive and Self-Managing Syst. (SEAMS 2021).

[23] Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan, and Claire Le Goues.
2018. Managing uncertainty in self-adaptive systems with plan reuse and stochas-
tic search. In Proc. of the 13th Int. Conf. on Soft. Eng. for Adaptive and Self-Managing
Syst. ACM, New York, 40–50.

[24] H.S. Kushner. 1971. Introduction to Stochastic Control. Holt, Rinehart andWinston.
[25] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Prob-

abilistic Real-time Systems. In Proc. 23rd Int. Conf. on Computer Aided Verification
(CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan and S. Qadeer (Eds.). Springer,
585–591.

[26] L. Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering SE-3, 2 (1977), 125–143. https://doi.org/10.
1109/TSE.1977.229904

[27] Veronika Lesch, Marius Hadry, Samuel Kounev, and Christian Krupitzer. 2021.
Utility-based Vehicle Routing Integrating User Preferences. In Proc. of the 2021
IEEE Int. Conf. on Pervasive Computing and Communications Workshops and other
Affiliated Events. IEEE, 263–268.

[28] Meiyi Ma, John A. Stankovic, and Lu Feng. 2018. Cityresolver: A Decision Support
System for Conflict Resolution in Smart Cities. In Proc. of the 9th ACM/IEEE Int.
Conf. on Cyber-Physical Systems (Porto, Portugal) (ICCPS ’18). IEEE Press, 55–64.
https://doi.org/10.1109/ICCPS.2018.00014

[29] Thomas L. McCluskey, Mauro Vallati, and Santiago Franco. 2017. Automated
Planning for Urban Traffic Management. In Proc. of the 26th International Joint
Conference on Artificial Intelligence (Melbourne, Australia) (IJCAI’17). AAAI Press,
5238–5240.

[30] Mirko Morandini, Loris Penserini, Anna Perini, and Alessandro Marchetto. 2017.
Engineering requirements for adaptive systems. Requirements Eng. 22, 1 (2017),
77–103.

[31] Ashutosh Pandey, Gabriel A Moreno, Javier Cámara, and David Garlan. 2016.
Hybrid planning for decision making in self-adaptive systems. In Proc. of the 10th
Int. Conf. on Self-Adaptive and Self-Organizing Systems. IEEE, 130–139.

[32] Simon Parkinson, Andrew Longstaff, Andrew Crampton, and Peter Gregory. 2012.
The application of automated planning to machine tool calibration. In Proc. of
the 22nd Int. Conf. on Automated Planning and Scheduling.

[33] Mark Proctor. 2011. Drools: a rule engine for complex event processing. In Proc. of
the Int. Symp. on Applications of Graph Transformations with Industrial Relevance.
Springer, 2–2.

[34] William N Robinson and Stephen Fickas. 1994. Supporting multi-perspective
requirements engineering. In Proc. of IEEE Int. Conf. on Requirements Eng. IEEE,
206–215.

[35] Davide Rossi, Francesco Poggi, and Paolo Ciancarini. 2018. Dynamic high-level
requirements in self-adaptive systems. In Proc. of the 33rd Annu. ACM Symp. on
Applied Computing. ACM, New York, 128–137.

[36] Huma Samin, Nelly Bencomo, and Peter Sawyer. 2021. Pri-AwaRE: Tool Support
for priority-aware decision-making under uncertainty. In Proc. of the 29th Int.
Requirements Eng. Conf. (RE’21). IEEE, 450–451.

[37] Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony Finkel-
stein. 2010. Requirements-Aware Systems: A Research Agenda for RE for Self-
adaptive Systems. In Proc. of the 18th Int. Requirements Eng. Conf. (RE’10). IEEE,
95–103. https://doi.org/10.1109/RE.2010.21

[38] Eddie Schwalb and Lluís Vila. 1998. Temporal constraints: A survey. Constraints
3, 2 (1998), 129–149.

[39] Hui Song, Stephen Barrett, Aidan Clarke, and Siobhán Clarke. 2013. Self-
adaptation with End-User Preferences: Using Run-Time Models and Constraint
Solving. In Proc. of the Int. Conf. on Model Driven Engineering Languages and
Systems (MODELS’13). Springer Berlin Heidelberg, Berlin, Heidelberg, 555–571.

[40] João Pedro Sousa, Rajesh Krishna Balan, Vahe Poladian, David Garlan, and Ma-
hadev Satyanarayanan. 2008. User guidance of resource-adaptive systems. In
Proc. of the 3rd Int. Conf. on Software and Data Technologies. 36–44.

[41] Roykrong Sukkerd, Reid Simmons, and David Garlan. 2018. Towards explainable
multi-objective probabilistic planning. In Proc. of the 4th International Workshop
on Software Engineering for Smart Cyber-Physical Systems. ACM, 19–25. https:
//doi.org/10.1145/3196478.3196488

[42] Evangelos Triantaphyllou. 2000.Multi-Criteria DecisionMakingMethods. Springer
US, Boston, MA, 5–21.

[43] Axel Van Lamsweerde, Robert Darimont, and Emmanuel Letier. 1998. Managing
conflicts in goal-driven requirements engineering. IEEE Transactions on Software
Engineering 24, 11 (1998), 908–926.

[44] DannyWeyns and Radu Calinescu. 2015. Tele Assistance: A Self-Adaptive Service-
Based System Exemplar. In Proc. of the IEEE/ACM 10th Int. Symp. on Soft. Eng. for
Adaptive and Self-Managing Syst. IEEE, 88–92. https://doi.org/10.1109/SEAMS.
2015.27

[45] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and Jean-Michel
Bruel. 2010. RELAX: a language to address uncertainty in self-adaptive systems
requirement. Requirements Eng. 15, 2 (2010), 177–196.

[46] Rebekka Wohlrab and David Garlan. 2021. A Negotiation Support System for
Defining Utility Functions for Multi-Stakeholder Self-Adaptive Systems. Require-
ments Eng. (2021).

105


