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In literature, computer architectures are frequently claimed to be highly flexible, typically implying the ex-
istence of trade-offs between flexibility and performance or energy efficiency. Processor flexibility, however,
is not very sharply defined, and consequently these claims cannot be validated, nor can such hypothetical
relations be fully understood and exploited in the design of computing systems. This paper is an attempt to
introduce scientific rigour to the notion of flexibility in computing systems. A survey is conducted to provide
an overview of references to flexibility in literature, both in the computer architecture domain, as well as
related fields. A classification is introduced to categorize different views on flexibility, which ultimately form
the foundation for a qualitative definition of flexibility. Departing from the qualitative definition of flexibility,
a generic quantifiable metric is proposed, enabling valid quantitative comparison of the flexibility of various
architectures. To validate the proposed method, and evaluate the relation between the proposed metric and
the general notion of flexibility, the flexibility metric is measured for 25 computing systems, including CPUs,
GPUs, DSPs, and FPGAs, and 40 ASIPs taken from literature. The obtained results provide insights into some
of the speculative trade-offs between flexibility and properties such as energy efficiency and area efficiency.
Overall the proposed quantitative flexibility metric shows to be commensurate with some generally accepted
qualitative notions of flexibility collected in the survey, although some surprising discrepancies can also be
observed. The proposed metric and the obtained results are placed into context of the state of the art on com-
pute flexibility, and extensive reflection provides not only a complete overview of the field, but also discusses
possible alternative approaches and open issues. Note that this work does not aim to provide a final answer to
the definition of flexibility, but rather provides a framework to initiate a broader discussion in the computer
architecture society on defining, understanding, and ultimately taking advantage of flexibility.
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1 INTRODUCTION

Arguably, one of the most famous books in the field is “Computer Architecture — A Quantitative
approach” by John L. Hennessy and David A. Patterson [18]. The title itself is concise and apt, so
it is interesting the authors opted to add this particular subtitle: a quantitative approach. It implies
the belief that quantifying design choices ultimately leads to better computer architectures, a mes-
sage that certainly could be directed towards those who make claims about flexible architectures
without means of quantifying these claims, or even without as much as a commonly accepted
qualitative definition of flexibility. With Moore’s law seemingly coming to an end, new advance-
ments in computing will have to be made on the architectural side. To advance the state of the art,
fundamental understanding of various trade-offs in computer design is vital. The way forward,
therefore, is a quantitative one.

Many key system properties such as performance, power dissipation, and energy efficiency are
all well defined in a quantitative manner. With these metrics in place, quantitative, objective com-
parisons can be conducted between different machines. For flexibility however, such a quantitative
(and even qualitative!) definition is lacking, despite its increasing importance in system design. In
product research and development, computing platforms are required to sufficiently support new
or updated algorithms, as algorithms are changing at a striking speed. Exemplary are the cur-
rent developments in artificial intelligence, which result in new compute-intensive algorithms at
a high cadence. Such rapidly developing markets require systems that can deal with changing ap-
plications, which is the property flexibility typically seems to refer to. However, in absence of a
proper definition, it is impossible to make solid statements, and compare designs on flexibility.

Despite the lack of a formal definition of flexibility, there appear to be some commonly accepted
notions surrounding flexibility. In particular, flexibility seems mainly used to refer to the adapt-
ability of processors to different applications. This leads to the common idea that a programmable
processor which can be reused across applications is ‘flexible’. On the other hand, a processor
with fixed logic such as an ASIC cannot adapt, exposing its inflexibility [36]. As can be seen in
Figure 1, the authors of these figures appear to agree with this sentiment. However, there are also
some contradictions to this view on flexibility. For example, in Figure 1(a), among programmable
processors the field-programmable devices are claimed by the authors to be less flexible than soft-
ware programmable processors due to their inadequate programmability [25]. Unfortunately, the
term “programmability” is also ill-defined here. Perhaps the best definition of programmability
in existence is to check Turing completeness of a programmable device, but this would leave only
two classes of programmability making it a measure with low practical value. Another perspective
on flexibility refers to how well a processor supports different applications, in which case FPGAs
could be seen as the most flexible, since any hardware, including DSPs, GPUs, and CPUs, can be in-
stantiated on FPGAs. Apart from this debate on how to rank the flexibility of architecture classes,
perhaps even more worrisome are the contradicting claims on relations between flexibility and
other metrics. In Figure 1(d) A. Osman El-Rayis equates flexibility to area, whereas T. Noll sees it
as directly related to power dissipation in Figure 1(a). While this is definitely not an exhaustive list
of views on flexibility, it painfully exposes how the lack of a formal definition leads to a wild-west
of claims and conflicting visions, none of which can be backed up with objective measurements.

Despite the greatly varying interpretations of flexibility, many seem to agree that there may be
interesting relations and trade-offs between flexibility and other properties, such as performance
and energy efficiency. As illustrated in Figure 1, processing architectures have been evaluated and
ranked in terms of flexibility, performance, power dissipation, and area [12, 24, 25, 35, 55]. A vari-
ety of architectures have been developed which claim to balance energy efficiency and flexibility.
The development of domain-specific functional units and a transition to heterogeneous multi-core
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Fig. 1. Collection of published figures with claims about the flexibility of architecture classes, and relations

between flexibility and other metrics such as performance and power. Note that none of the axes in these

figures are labelled with units.

systems are a testament to this notion [13, 17, 29]. These hypothetical relations suggest that un-
derstanding flexibility is beneficial when designing a system, enabling informed trade-offs.

To overcome the lack of understanding of flexibility, this work sets out to provide both a qualita-
tive and quantitative definition of flexibility. It should be noted though that, with such a fragmented
landscape of interpretations of flexibility, the authors are under no illusion that it is possible to
unify the field and reach consensus without a wider discussion. Instead, this work is to be seen
as a first attempt, which does not so much aspire to provide a definitive answer, as it hopes to be
thought provoking and spark a discussion within the community.

To arrive at a quantitative measure for flexibility, a qualitative definition is established by ex-
ploring uses of the term flexibility in literature and then examining various options. Based on this
qualitative definition, a quantitative measure is derived. In the translation of flexibility, from a qual-
itative term to a quantitative definition, there exist several degrees of freedom. The final choices
made in this translation are motivated extensively. However, more importantly, the alternatives
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are discussed systematically in similar detail. The intention is that this systematic approach can
provide an initial framework for a broader discussion in the community on how flexibility should
be defined, such that eventually a standard accepted metric can be established.

To validate the metric proposed in this work, in total 14 applications are benchmarked on 25
different commercial off the shelf (COTS) platforms. It is shown that results align with several
common concepts of flexibility found in literature. For example, GPUs deliver the highest perfor-
mance in general for the used parallel benchmarks, but sacrifice in terms of flexibility, compared to
general purpose processors (GPPs) in alignment with Figure 1(a). Furthermore the flexibility of
40 application specific architectures from literature is determined to evaluate the relation between
specialisation [14] and flexibility.

The main contributions of this work can be summarized as follows:

(1) Survey of flexibility in computing and other engineering fields (Section 2);
(2) A qualitative and quantitative definition of flexibility (Section 3);
(3) Definition of intrinsic workload to normalize performance (Section 4), and accompanying

open-source tool [19] for automated extraction (Section 5.1.4);
(4) Evaluation of the proposed metric on 25 COTS platforms for 14 benchmarks, and 40 appli-

cation specific processors taken from literature (Section 6);
(5) In-depth comparison with alternative definitions of flexibility/versatility (Section 7);
(6) Extensive discussion on the proposed metric, and various alternatives, placing it in context

of the current state of the art (Section 8).

The remainder of the paper is organized as follows: Section 2 presents a survey on flexibility
definitions in the literature, both in the field of computer architecture, as well as related technical
fields. Section 3 introduces both a qualitative and quantitative definition for processor flexibility
based on the collected views in the survey. A novel normalization method based on the intrin-
sic workload of applications is included in Section 4. Section 5 explains the experimental setup,
the implementation of the workload estimator, and the methodologies applied in this work. The
flexibility results are analysed in Section 6. Comparison with alternative definitions is provided in
Section 7. In-depth reflection and extensive discussion are presented in Section 8, which places the
proposed definition in context of the field. Finally, Section 9 concludes this work.

2 SURVEY OF FLEXIBILITY IN LITERATURE

In the field of computer architecture, few studies have striven to define and quantify processor
flexibility. Therefore, this section starts with discussing the existing flexibility definitions in other
fields.

Various other fields have more properly defined flexibility, as demonstrated by the three follow-
ing examples:

• A generic viewpoint on system flexibility is provided by Chryssolouris, who defines flexibil-
ity as the sensitivity of a system to (external) changes [8]. Lower sensitivity is understood to
indicate higher flexibility, as the system is apparently able to operate relatively unaffectedly
under the external changes.

• Conceptually identical is the definition proposed by Kellerer et al. who state that the flexi-
bility of electronic networks refers to the ability to support new requests, such as changes in
the requirements or new traffic distributions [27].

• In power systems, flexibility is also based on external changes. More precisely, it is defined
as the ability of a power system to deploy its resources in response to changes in the net
load, which is the residual demand that must be supplied after the depletion of renewable
energy [31].
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In general, these examples consider flexibility as a system property and quantify flexibility as
the insensitivity of the system based on external changes, instead of formulating flexibility as a
function of diverse system parameters. This approach is transferable to computing systems, as
will be outlined in this work.

In literature related to computer architecture, approaches to define processor flexibility can be
divided in two categories:

(1) Definitions that regard flexibility as an intrinsic static property of a system.
(2) Definitions that regard flexibility as an extrinsic mutable property of a system, dependent on

and measured under the influence of external applications.

Works that fall into the first category are discussed in Section 2.1, while the second category is
elaborated in Section 2.2.

2.1 Definitions of Flexibility as an Intrinsic Static Property

One definition that regards flexibility as an intrinsic property is proposed by D. Stigall et al. [47]
as early as 1975. In their definition a computer is seen as major memory/compute units and their
datapath connections. The more connections between the major components, the more options
the machine has, and thus the more flexible it is. The authors also quantify flexibility, namely as
the ratio of the number of data paths that connect major components to the maximum possible
number. The idea is interesting but does not seem to hold for modern machines. For example, when
directly applying this concept to an SIMD machine and a multi-core with the same number of cores,
an SIMD processor that has fewer components (only a single instruction memory and decoder,
instead of one per core), would usually have higher connectivity among components than a multi-
core processor, implying higher flexibility. This conclusion seems counter-intuitive however, since
an SIMD can only execute a single instruction at a time on all compute elements, while a multicore
can execute different instructions on its compute units. Therefore, the set of operation modes of
the multi-core is a superset of the SIMD modes, which implies an SIMD cannot be more flexible
than a multi-core system.

Another intrinsic definition category is processor versatility as proposed by K. van Berkel [26].
As shown in (1), processor versatility is defined as the average number of instruction bits per useful
operation. The amount of useful operations is extracted according to a complexity analysis of a
single algorithm. Based on the intuition that when more bits are used to encode instructions, the
processor is more versatile as more options are available. Therefore, versatility is a property of the
instruction set architecture (ISA) and is independent of particular implementations or executed
applications. For instance, versatility increases if the ISA is extended with special instructions
serving dedicated hardware, while potentially being useless to accelerate the applied applications.
Although the work by K. van Berkel [26] is the most rigorous attempt to formally define flexibility
to date, some aspects hinder its application. Conducting complexity analysis of applications to
obtain useful operations is challenging without manual effort. Using operations as basic units
implies that different operations are weighted equally, such as multiplication and addition. This
seems somewhat arbitrary given that the area or energy footprint of a hardware multiplier, for
example, is many times that of an adder in the same technology. Another weakness of this metric
is that it cannot be applied to all systems, such as processors that do not execute clock-based
instructions, such as FPGAs.

versatility =
average instruction size

number of useful operations per instruction
(1)
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However, the concept of measuring the required bits to execute a task is intriguing, and possibly
has a use of its own. Therefore, this versatility metric is further discussed in Section 7.1.

2.2 Definitions of Flexibility as an Extrinsic Mutable Property

Most flexibility definitions fall into the second, extrinsic category, and are considered a property
measured under the influence of external applications. Sze et al., for example, provide the follow-
ing view on flexibility: “Flexibility refers to the range of DNN models that can be supported on the
DNN processor and the ability of the software environment (e.g., the mapper) to maximally exploit the
capabilities of the hardware for any desired DNN model.” [48]. Here, the DNN models, i.e., extrinsic
properties, are used to define the flexibility of a system. Their conclusion on flexibility therefore
also is: “...to assess the flexibility of DNN processors, its efficiency (e.g., inferences per second, infer-
ences per joule) should be evaluated on a wide range of DNN models”. Although not a quantifiable
definition per se, the notion of defining the flexibility of a system in relation to the influence of
relevant extrinsic properties is clearly present. Furthermore, it is important to note that various
forms of flexibility are implied, since the effect of an extrinsic property can be expressed in terms
of performance (inferences per second), and energy efficiency (inferences per joule). Also interest-
ing is the inclusion of the software (mapper) into the equation, i.e., system flexibility does not only
depend on the hardware, but also on the supporting software.

Tomusk et al. propose to quantify the flexibility of Single-ISA heterogeneous processors with
entropy-based diversity [51]. The idea is that different cores in a flexible heterogeneous processor
can cover more of the design space. Exploring the design space is achieved by selecting the cores of
the system that are Pareto optimal for power and performance. Higher spread on these Pareto cores
means better flexibility. However, this definition is strictly limited to heterogeneous processors,
ruling it out as a general definition for all computing systems.

Fasthuber et al. propose a different model to define computer architecture flexibility [13]. The
proposed model extracts system requirements from a set of applications to check if architectures
provide sufficient flexibility to support the minimum requirements in a true/false manner. For in-
stance, in case a hardware divider is imperative to reach the required performance for a division, a
processor performing division by software emulation fails to meet the performance requirement.
This model assesses architecture flexibility based on external applications, examining how well
architectures support diverse applications. However, it is challenging to apply this model generi-
cally because of the need for a set of hard boolean requirements. Moreover, the range of the scale
is severely limited, since the flexibility is the result of counting the number of met requirements.
If the set of requirements is small, distinguishing various systems may be impossible.

Apart from the intrinsic versatility metric as proposed by Van Berkel [26], there is a compet-
ing extrinsic definition for versatility by Rabbah et al. [45]. To distinguish the two versatilities in
this paper, the metric defined by Rabbah et al. in their VersaBench paper will be referred to as
“VersaBench Versatility” or Vs . VersaBench Versatility is defined as the geometric mean (GM)

of a processor’s performance over a vector �X = [x1 · · · xn] of benchmark applications, normal-

ized to the best execution time known for each of those applications tf astest (xi ), where xi ∈ �X
(Equation (2)).

Vs =

(
n∏

i=1

tf astest (xi )

ts (xi )

) 1
n

(2)

This can be interpreted as the mean slowdown of a processor compared to an idealized fastest
known execution time per application. As such, VersaBench Versatility has a range of 0 < Vs ≤ 1.
Compared to the definitions provided by Tomusk et al. and Fasthuber et al., this approach resolves
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the limitations on applicability of the metric to more diverse architectures. The use of only ex-
ecution time measurements further increases the practicality of the proposed metric. However,
improvements in VersaBench Versatility can result from an absolute increase in performance, i.e.,
an increase in clock speed to boost performance can effectively improve VersaBench Versatility.
This makes VersaBench versatility and performance directly related, which we argue should be
distinct, orthogonal features. In-depth analysis and comparison with the flexibility metric as pro-
posed later in this work are provided in Section 7.2, and furthermore show that the normalization
proposed by Rabbah et al. [45] is a mathematical unit operation and does not contribute to a change
in the final Vs .

Although not explicitly targeting flexibility, the work of Fisher et al. [14] on customizing pro-
cessors exhibits interesting parallels with work on flexibility in literature. In their work, Fisher
et al. set out to optimize a VLIW processor for a set of tasks, which is again the extrinsic factor. It
is argued that instead of optimizing a processor for only one application, some performance may
be sacrificed for that application to achieve a better average performance for the entire dataset.
In essence, by sacrificing performance for one application to benefit the overall benchmark set, it
can be argued that the flexibility of the processor has been improved. It is important to distinguish
though that the method applied by Fisher et al. still tries to obtain a higher overall performance,
and does not necessarily consider minimizing the impact of external changes. A quantified analysis
of this method and how it relates to the concept of flexibility is provided in Section 6.2.

The related work discussed in this section shows that there are tremendous diversities in un-
derstanding and quantifying flexibility. Overall, flexibility has more frequently been defined as an
extrinsic metric based on external changes, than an intrinsic property. However, it can also be ob-
served that the inherent properties of most of those definitions limit the scope of application. With
this in mind, the metric proposed in this work aims to avoid this pitfall, and also be practical to
apply generically.

3 DEFINING FLEXIBILITY

Despite a few valiant attempts to define flexibility for computing systems in the existing literature,
it can be concluded there is no consensus in the community as to what flexibility exactly is, let
alone how to objectively measure it. Unifying the various views on the topic into a single coherent
definition is a daunting task, yet one that has to be faced if the rewards are to be reaped. This
section outlines our attempt at defining flexibility for computing systems. Starting from a qualita-
tive definition in Section 3.1, a quantitative metric is then derived in Section 3.2. In Section 3.2.1,
several crucial properties of a universal flexibility metric are defined and proven to hold for the
proposed metric. Finally, Section 3.3 details the scope of applying the proposed metric.

3.1 Qualitative Definition

Before determining a quantitative definition of flexibility, there has to be agreement on a qualitative
definition. As outlined in Section 2, a recurring theme when dealing with flexibility in literature is
external changes, or in particular, a system’s response to external changes. A natural translation of
this notion to computing systems is to regard changing applications as the external changes, while
any secondary metric, such as performance or energy efficiency, can be used to express a system’s
response. Consider, for example, the benchmark data for two systems in Figure 2. As applications
change, so does the (normalized) performance of these systems.

For the particular case in Figure 2: Which system is more flexible? Some may argue System I
is more flexible, as System I can maintain the highest average performance when applications
change. However, we postulate such reasoning is a fallacy, and that performance has to be an or-
thogonal measure to flexibility. Were this not the case, then flexibility would merely be a synonym
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Fig. 2. Given the performance of two hypothetical systems I and II, normalised to some baseline system,

System I consistently outperforms System II. However, the performance of System II is much less influenced

by changing applications. Which system is more flexible?

of “average performance”, and not an independent metric as appears to be the common notion.
Rather, we argue that the system which supports different applications equally well is more flexi-
ble, regardless of its average performance. In Figure 2, System II obviously has lower performance
than System I, however, it is stabler under application changes. This is a desirable property orthog-
onal to performance. For example, during the design of a computing platform with cost constraints,
a processor has to be selected but the final applications are still subject to change. In this case, it
could be beneficial to select a processor with overall lower, yet sufficient, performance, but higher
flexibility, such that the performance is likely to be still sufficient when applications do change.

In the case of Figure 2 flexibility is defined in relation to performance variability. However, other
established metrics can be used freely, such as energy efficiency, area efficiency, or a hybrid cost
function. How much the secondary metric changes resulting from changes in applications is an
indication of the flexibility of the platform in that regard.

Based on the reasoning above, we arrive at the following qualitative definition of flexibility:

Compute system flexibility refers to the invariance of a system’s normalized1 perfor-
mance, energy efficiency, area efficiency (or other secondary metrics), to change of
application.

In particular, when the secondary metric is affected more by changes in an application, the system
is considered to be less flexible.

Although it is just a qualitative definition, some general observations as to how it aligns with
several notions regarding flexibility can already be made. Consider, for example, an arbitrary set
of benchmark applications that expose different levels of data-level parallelism (DLP). When
mapped to a GPU, applications with high levels of DLP would benefit from the many vector cores
and achieve high performance. Applications with limited DLP, however, would not be able to run
efficiently on a GPU, and consequently, achieve low performance in comparison. Thus, for a mixed,
arbitrary benchmark set a GPU would not be very flexible. In contrast, a simple single-core CPU
without vector extension would not provide an unbalanced advantage for applications with high
levels of DLP. Therefore, it would be ranked more flexible than the GPU, which aligns with com-
monly accepted notions. Similar examples can be made for various classes of architectures, such as
CPUs with advanced branch predictions and applications with complex control flow, or DSPs and
algorithms that require multiple floating-point multiply-accumulate operations. Specialization to-
wards only a subset of relevant applications may improve overall performance but could degrade
flexibility.

1N.B.: This ‘normalization’ is further clarified in Section 3.2.
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The preceding example also illustrates that the selection of benchmark applications is an im-
portant factor in determining a system’s flexibility. After all, if a dedicated parallel benchmark
set was selected, the GPU would be ranked as more flexible. It is worth pointing out this is not a
weakness nor flaw in the definition of flexibility, but merely emphasizes that benchmarks should
be selected based on the application domain a system is targeting. Similarly, it makes no sense
to use a graphics benchmark on a CPU, when the system is targeted for handling search engine
queries. Proper benchmark set selection is just as crucial to obtain meaningful flexibility results as
it is for measuring any other system property. When done properly though, the obtained flexibility
ranking will be representative for the selected application domains.

Finally, it is highly important to note that flexibility as defined here can be artificially raised.
By inserting nop operations in the fastest applications, the performance of all applications can be
lowered to match the lowest-performing application. This would result in the most flexible system,
although the overall achieved performance is degraded. For real-time systems, such an approach
may not even be undesirable, as long as the performance requirements are still met. However, to
account for the loss in performance, energy efficiency, or any other secondary metric, flexibility
should always be reported coupled to these metrics. One possible way to couple flexibility with
other metrics is through a compound metric, such as the classical energy-delay product (ED),
or energy-delay-power (EDP).

3.2 Quantitative Definition

This section translates the qualitative definition of flexibility to a quantitative measure. In par-
ticular, the focus is on how to quantify “the invariance of a system’s response”. A measure has
to be found which expresses variations in system performance, energy efficiency, or other sec-
ondary metrics. Several such measures for quantifying statistical dispersity, or variation, among
data points exist. This section qualitatively explores these options, and finally selects the most
suited approach to quantify flexibility.

There are two classes of variation measures:

(1) Robust measures are resilient to extreme values in a dataset, and in general, try to reduce the
effect of outliers in the data. A typical example of robust measures is the median absolute
deviation (MAD) (Equation (3)), defined as the median of the absolute deviations from the
median of the original data. The MAD ignores a small number of extreme values, and only
focuses on the median of the dataset.

MAD( �X ) =median
(
|xi −median( �X )|

)
(3)

where �X = [x1 · · · xn] is a vector of measurements.
(2) Conventional measures, in contrast, are sensitive to extreme values [54]. Arithmetic stan-

dard deviation (ASD) (Equation (4)) and geometric standard deviation (GSD) (Equa-
tion (5)) are two such conventional measures, both of which describe the dispersion degree
of a data set.

ASD( �X ) =

√√
1

n

n∑
i=1

(xi −AM( �X ))
2
, where AM( �X ) =

1

n

n∑
i=1

xi (4)

GSD( �X ) = exp

���
√√√

1

n

n∑
i=1

(
ln

xi

GM( �X )

)2���� , where GM( �X ) =

(
n∏

i=1

xi

) 1
n

(5)
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Robust measures are particularly suited for noisy measurements with plenty of data points. In
computer architecture, however, measurements are easily repeatable, allowing noise to be filtered
by alternative means. Furthermore, the number of applications in benchmark sets is often quite
limited, and as such ignoring points risks ignoring important data. Therefore, the conventional
measures are more suited to represent dispersity in a set of benchmark applications.

The fundamental difference between the two conventional measures is the used average: arith-
metic mean (AM) versus geometric mean (GM). The AM simply characterizes the average value
of the dataset by dividing the sum of all points by the length of the dataset. Thus, the ASD indicates
the average distance of data points in the dataset to the AM, and has the same unit as the dataset.
Since the AM and ASD are sum-based values, they are appropriate for additive processes. Differ-
ent from the AM, the GM takes the product of all numbers, and then raises it to the inverse of the
length of the dataset. Because of this, the GSD as defined in Equation (5) is a multiplicative factor
and does not maintain the original dimension of the data [28]. When dealing with multiplicative
relationships such as growth rate and speed-up, the ASD over-estimates data dispersity, while the
GSD as a product-based value is the correct average to use [15, 34].

Based on this, the GSD is selected as the measure of dispersity for flexibility. In particular be-
cause, as also stated in the qualitative flexibility definition, benchmark data is to be first normalized
when deriving flexibility. In the case of performance, the inverse of absolute runtime would not
give an accurate view of which applications are supported better than others. Some applications
may simply require more work than others, and thus the runtime needs to be normalized (more
on this normalization in Section 4). Similarly, energy efficiency is the energy consumption nor-
malized to the amount of work performed by each application. This normalization results in a
multiplicative relation to the normalization baseline, and thus GSD is the only correct measure of
dispersity.

Concluding the quantitative definition of flexibility:

Compute system flexibility is defined as the inverse of the geometric standard deviation of
a system’s normalized performance, energy efficiency, or other secondary metric, within

a benchmark set with measurement vector �X = [x1, . . . ,xn] (Equation (6)).

Flexibility( �X ) =
[
GSD( �X )

]−1
= exp


���−
√√√

1

n

n∑
i=1

(
ln

xi

GM( �X )

)2���� , where GM( �X ) =

(
n∏

i=1

xi

) 1
n

(6)

3.2.1 Flexibility Metric Properties. Validation of a new metric is a paradox, as there is no es-
tablished ground truth available. However, it is possible to derive several necessary properties a
flexibility metric should adhere to. This section discusses these properties and proves them for the
proposed metric.

(1) Flexibility in performance should be independent of scaling the platform frequency (equally
across all benchmarks). I.e., if a given platform executes applications at F cycles per sec-
ond, it should measure the same flexibility if it for example runs at 0.5F for all applications.
This holds for the proposed metric as the GSD is invariant to multiplicative scaling (see
Lemma A.3). Note that this scaling over all benchmarks also holds for platforms that have a
difference frequency per application, such as FPGAs. If all applications are executed at half
their original speed, the measured flexibility will be the same.

(2) Stricter than the previous property, flexibility should be independent of performance. Indi-
cated by Lemma A.1 and A.2, the increase of an element in a positive dataset always results
in an increasing GM. However, the GSD value can increase or decrease, which depends on
how the increase of an element impacts dataset diversity.
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Fig. 3. Framework for flexibility measurements.

The two properties described are absolutely essential for any flexibility metric. Apart from these
two, there are two properties which are nice to have, but not strictly required. For completeness
it is shown that these property hold for the proposed metric.

(3) Preferably, flexibility, as a multiplicative measure, is invariant to using the reciprocal of the
underlying metric. This property is particularly useful as it decouples clock frequency, and
with that to some degree the technology node, from flexibility. Furthermore, in the case
of flexibility in relation to energy, the flexibility calculated over J/op will be the same as
the flexibility calculated over op/J . Lemma A.7 shows that this is the case for the proposed
definition, since GSD( �X/�Y ) = GSD( �Y/ �X ).

(4) It is convenient if the metric is bound to a fixed range. In the case of the proposed metric
it can trivially be shown that flexibility has a range of (0, 1]. A flexibility of one is achieved
when an architecture has the exact same speed up for each application in the benchmark set
compared to the normalization reference, as further explained in Section 4.

3.3 Flexibility Scope

One aspect of flexibility that has not been addressed so far is the measurement scope. In the case
of performance measurements, it is not only the performance of a processor that is measured,
but also that of the surrounding memory system, interfaces, and even the compiler. This is not
exclusive to performance measurements but also holds for energy, power, and many other metrics.
The fact that the compiler is part of the measured system is in fact common practice, but often
overlooked when publishing results. Therefore, we like to explicitly state the compiler used to
perform benchmarking of a system should always be part of the results.

For the flexibility measurements in this work, the system border is drawn at the compiler, and
the benchmark code itself is taken as universal for all platforms. When measuring across different
platforms this may not always be feasible, so different choices can be made in specific situations.
The recommendation is, however, to use a cross-platform language benchmark such as OpenCL.
A benchmark set with multi-language support is a good alternative if no single language can sup-
port the systems under test. In general, the procedure of measuring flexibility will follow the flow
illustrated in Figure 3.

The first step is to compile and run the same application set on the target systems, and mea-
sure the desired secondary metrics such as performance and energy consumption per benchmark.
Next follows normalization of the obtained results. Data normalization is a prerequisite to ensure
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benchmark results of diverse applications are comparable, as further discussed in Section 4. Finally,
the proposed flexibility metric is computed from the normalized data, resulting in a flexibility rank-
ing of the measured platforms.

4 NORMALIZATION TO INTRINSIC WORK

Before the GSD can be computed, secondary metrics such as execution time and energy consump-
tion, measured from diverse applications, need to be normalized. The reason is that typically
applications in a benchmark set represent inequivalent computational workloads. For instance,
applying Gaussian filters with different kernel sizes results in different workloads. Therefore,
normalization based on workload is required before any data analysis and comparison [40].

The general approach is normalizing to a reference set, i.e., each application xi of a vector of

applications �X = [x1, . . . ,xn] is normalized according to:

mnorm_baseline (xi ) =
mtarдet (xi )

mbaseline (xi )
,

where mtarдet evaluates an arbitrary metric m for the target architecture for application xi , and
mbaseline does the same for xi on the baseline machine. However, determining a proper baseline for
flexibility poses a challenge. Simply taking benchmark results of one system as reference implicitly
makes the baseline system “the most flexible” by definition. For instance, when using a basic RISC-
type processor as the baseline as is often done by Hennessy and Patterson [18], normalizing to
itself transforms each value in the dataset to one, resulting in no deviation and a flexibility of
one. Consequently, no system could then be more flexible than the baseline RISC processor, or
whichever platform is selected as the baseline. This choice seems rather arbitrary, and a more
fundamental baseline is desirable.

The key concept is that normalization is applied to equalize an imbalance in workload that each
application represents. The underlying notion is thus that applications describe a certain amount of
work. Normalization on this intrinsic workload Wint yields the following normalization procedure:

mnorm_intr insic_workload (xi ) =
mtarдet (xi )

Wint (xi )

This normalization results in measures as “intrinsic work per second” for performance, and “energy
per unit of intrinsic work” for energy efficiency, yielding comparable numbers between various
platforms. Unfortunately, a measure for intrinsic workload also does not exist. There are many
possible viewpoints on how intrinsic workload could be defined, yet this section will focus only
on the one selected for normalization in this work. Section 8 will, on the other hand, explore several
alternatives.

Under the assumption that computation indeed is equivalent to work (something that can be
questioned from a physics point of view as will be discussed in Section 8), the problem condenses to
finding a unit for this work. Something often used in computer architecture is to count one RISC
instruction as one unit of work. However, this implies multiplication and even division would
represent the same amount of work as an addition or a logic and-operation. This is rather counter-
intuitive, as the hardware complexity of a hardware divider is significantly greater than that of a
logic and, i.e., O(b2) for a b-bit wide division, versus O(b) for a logic and of b bits. This implies
division is fundamentally more complex than a logic operation. A possible way of weighting RISC
instructions then is by the complexity of their equivalent combinatorial circuits.

Taking this one step further, the division of work into RISC operations is also rather arbitrary.
From a purely theoretical viewpoint, it can be argued that the workload of an application is repre-
sented by its combinatorial circuit, i.e., the combinatorial circuit that statically represents the entire
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Fig. 4. Application expressed as a single combinatorial circuit.

application, reading inputs and producing the final outputs without a (clocked) state in between as
illustrated in Figure 4. Such a circuit would clearly be completely impractical, but it can be argued
than when written in a minimal form, i.e., with minimal basic gate (2 input — 1 output) count,
it represents the intrinsic workload of the application. The gates toggling during the execution
of this circuit approximate the minimum required toggles to complete the computation. Interest-
ingly, memory and control flow operations are not required in such a completely combinatorial,
spatial circuit, demonstrating that such operations are in essence an artefact of stateful Turing
machines.

Note that this massive combinatorial circuit would have to be written in minimal form though,
something intractable with modern technology since logic minimization is proven to be non-
polynomial [6]. From a theoretical point, obtaining such a minimal circuit would be interesting,
but to arrive at a practical measure for flexibility as is the goal of this survey paper, a more prag-
matic approach has to be employed. Rather than approaching this minimal circuit bottom up, one
solution is to return to the roots of practical computing and approach it top down. Instead of find-
ing the absolute minimal circuit, the circuit can be divided into elementary blocks with common
functionality. Optimizations are not employed across these blocks to keep the design tractable.
As the only requirement for these elementary blocks is that the set is Turing complete, there are
many options. Here, however, it is possible to fall back on decades of research in computer design.
A natural choice would be RISC-like elementary operations, such as addition and multiplication.
Essentially, this circles back to the earlier idea of weighing RISC operations by the complexity of
their equivalent circuitry, but with a notable exception: Those operations in an application that
deal with control flow operations should not be counted towards the intrinsic workload. Since
memory operations are also an artefact of stateful machines, they could too be omitted, but since
they play an ever more important role in modern technology this work proposes several methods
to still take memory into account. The effect of memory operations is further investigated in the
experiments described in Section 5.

Practically, the intrinsic workload of an application as defined above can be approximated auto-
matically by leveraging the intermediate representation (IR) of the LLVM compiler framework.
To be able to deal with many input languages and target platforms, LLVM front-ends translate code
into a generic intermediate instruction set, the IR. From this generic IR, the back-ends generate
target-specific code. This IR has to be very generic to support as many languages and platforms
as possible, and as such is a good candidate to use in an automated intrinsic workload estimator.
Furthermore, it has the advantage that operations related to control flow and memory are distin-
guishable from other operations, and as such can be rejected for the workload estimation. This
particular approximation gives rise to the following definition:

Approximated intrinsic workload is given by the dynamic IR instruction count of all op-
erations not related to control flow (and optionally memory), weighted according to the
circuit complexity of the operations.

More details on how this procedure is automated, and the weighting of the individual IR instruc-
tions used in this work can be found in Section 5.1.4.
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Table 1. Overview of GPUs

Processor Chip Archi #Cores Compiler

Tegra K1 GK20A Kepler 192 nvcc 6.5
GTX 570 GF110 Fermi 480 nvcc 7.5
GTX TITAN GK110 Kepler 2688 nvcc 7.0
GTX 750 TI GM107 Maxwell 640 nvcc 7.0

5 EXPERIMENTAL SETUP

Now that a flexibility metric has been established, measurements of various systems can be per-
formed to both validate the metric against commonly accepted ideas surrounding flexibility, as well
as investigate hypothetical relations between performance, energy, area, and flexibility. To achieve
this a wide spectrum of computer architectures is examined in this work, including commercial
off the shelf (COTS) CPUs, GPUs, FPGAs, and DSPs. The selection of these COTS systems, the
selected benchmark set, and details regarding compiler settings and performed experiments are
described in Section 5.1. Inspired by the work of Fisher et al. [14] the flexibility of custom, or appli-
cation specific, processors (ASIPs) is also investigated. The setup and parameters of the related
experiments are described in Section 5.2.

5.1 Commercial Off the Shelf Processors

Measuring the flexibility of various off the shelf processors provides insight into hypothesized
relations between flexibility and metrics such as performance, energy efficiency and area effi-
ciency. In particular, it is interesting to see if general notions surround architecture classes such
as (multi-core) CPUs, GPUs, FPGAs, and DSPs can be seen back in the measured flexibility. This
section describes the selection of 25 COTS systems in Section 5.1.1, and the selected benchmark
set in Section 5.1.2. Since compilers are considered part of the system, Section 5.1.3 deals with
the used compilers and their specific settings. The workload estimation of the benchmark set is
captured in Section 5.1.4, and finally, Section 5.1.5 describes the measured properties and their
relations.

5.1.1 Selected Systems. In this work, flexibility measurements are conducted on 25 different
systems. Applications are directly executed on real GPUs and CPUs. For the embedded DSPs, cycle-
accurate simulators from the manufacturer have been employed to extract execution times. The
FPGAs, finally, have been characterized using high-level synthesis (HLS) combined with post
place & route clock speed reporting. Note that in contrast to the other considered systems, for the
FPGAs the clock-speed in fact varies per application, as measured using post place & route clock
speed estimation per application, target pair. Compilers, as a part of target systems, are tuned for
maximum optimization where possible, to exploit the capability of the target processors as good
as possible with the given code-base.

• GPU: Aimed at comprehending the difference of flexibility between desktop and embedded
GPUs, one embedded GPU Tegra K1 and three desktop GPUs are evaluated in this work
by compiling the CUDA [39] versions of the applications. Note that the default datasets in
the provided C and CUDA version varies, hence the dataset sizes are modified to be equal,
ensuring the application workload is consistent over all platforms. The precise platforms
and used compilers are listed in Table 1.

• CPU: In total, 10 CPUs are included, 6 Intel CPUs, and 4 ARM CPUs, to distinguish and
compare the flexibility of embedded and desktop/server CPUs. The benchmarks are compiled
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Table 2. Overview of CPUs

Processor ISA Micro- Cores #Threads Compiler
architecture

i76700 x86_64 Skylake 4 8 gcc 4.8
i74770 x86_64 Haswell 4 8 gcc 4.8
i7-960 x86_64 Bloomfield 4 8 gcc 4.8
i7-950 x86_64 Bloomfield 4 8 gcc 4.8
i7-920 x86_64 Bloomfield 4 8 gcc 4.8
Pentium 4 x86_64 Northwood 1 2 gcc 4.8
Processor ISA System Cores #Threads Compiler
Cortex A15 ARMv7 Nvidia JTK1 4+1 4+1 gcc 4.8
Cortex A9 ARMv7 Odroid U3 4 4 gcc 4.8
Cortex A53 ARMv7 RPi3 Model B 4 4 gcc 6.3
ARM1176 ARMv6 RPi1 Model B 1 1 gcc 6.3

with the gcc compiler [49]. Table 2 provides detailed information of the examined CPUs and
the used compilers.

• FPGA: As PolyBench/ACC does not include applications described in hardware description
languages, Vivado High-level Synthesis (HLS) [56] is utilized with it’s default settings to
transform C applications into register transfer level (RTL) code, which can be directly
targeted to Xilinx programmable devices. In Vivado HLS v2018.2 [56], when synthesizing a
C function, a report is generated which provides performance metrics such as loop and func-
tion latency in clock cycles. To obtain more accurate estimates of resource utilization and
the achieved clock period, the resulting designs have been synthesized towards the target
FPGA platforms.

Unfortunately, when the application involves a variable loop bound, Vivado HLS fails to
compute the iteration count required for performance analysis. An example of code where
Vivado HLS v2018.2 fails is shown in Code 1, where variable k causes the Vivado’s loop
analysis to fail for the loops L2 and L3.

1 for(k = 0; k < m; k++) (L1)

2 for(i = k + 1; i < m; i++) (L2)

3 for (j = k + 1; j < m; j++) (L3)

4 A[i][j] = A[i][k] * A[k][j];

Code 1. Example loop-nest with bounds of L2 and L3 based on variable k.

Fortunately, this scenario occurs only in four out of 14 benchmarks, specifically correlation,
covariance, gramschmidt, and lu as described in Table 5. Nonetheless, for these four cases an
alternative method is required to obtain performance estimates. A possible solution would be
to use C/RTL Co-simulation in Vivado HLS, which simulates the application at the RTL level.
However, for the selected benchmarks the simulation runtimes are prohibitively high, as well
as the enormous amount of memory required for the simulation, which renders this option
infeasible. Since the benchmark set targets polyhedral applications with strictly static control
flow, manual derivation of the iteration counts is fortunately quite straightforward. There-
fore, in this work manual static loop analysis is utilized to derive an approximate cycle count.

As an example, the latency of the loop-nest in Code 1 can be manually derived as follows.
The number of iterations of L2 and L3 depend on variable k, which only varies in L1. Thus,
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Table 3. Overview of FPGAs

Family Device LUTs FFs DSPs BRAMs∗

Artix7 xc7a200t 129000 269200 740 730
Kintex7 xc7k480t 597200 597200 1920 1910
Virtex7 xc7v2000t 1221600 2443200 2160 2584
Zynq xc7z100 277400 554800 2020 1510
Virtexuplus xcvu13p 1728000 3456000 12288 5376
Kintexu xcku115 663360 1326720 5520 4320
Zynquplus xczu19eg 522720 1045440 1968 1968

*17kB per BRAM.

Table 4. Overview of DSPs

Processor #Cores L1I L1D L2 Simulator Compiler

Hexagon V60 4 16K 32K 512K Hexagon SDK X
Hexagon V5 3 16K 32K 256K Hexagon SDK X
TI C6747 1 32K 32K 256K CCSv4 X

their iteration counts can be expressed as in Equations (7) and (8), respectively.

#L2 =
m∑

i=1

(m − i) =
1

2
m(m − 1) (7)

#L3 =
m∑

i=1

(m − i)2 =
1

6
m(m − 1)(2m − 1) (8)

By using an artificially small input, i.e., small m, these equations for all four affected
benchmarks have been validated against short co-simulations and found to be exact for
the unoptimized loop-nests. When Vivado HLS optimizations are enabled through pragmas
such as loop unrolling and pipelining, these equations have to be adjusted accordingly and
again verified for small input sizes using co-simulation. These adjusted equations were
all exact with the exception of the gramschmidt application, where the equations slightly
deviated from the measured cycle count.

Aimed at exploring the impact of the amount and the type of resources on flexibility,
Xilinx FPGAs from different device families, and with different resources, are included in
this study. The Virtexuplus, for example, is an UltraScale+ version of the Virtex FPGA, with
many more resources compared to a normal Virtex7. Table 3 lists the details of the selected
FPGAs. All simulations were performed with Vivado HLS v2018.2.

• DSP: DSPs are an important class of architectures that should be part of this study.
Two multi-threaded Hexagon DSPs from Qualcomm, and one single-threaded DSP from
Texas Instruments (TI) are therefore included. All measurements for these are based on
simulations, as measuring on the actual devices was not available. The Hexagon V60 and
V5 DSPs are simulated in the cycle-approximate mode provided by the Hexagon SDK [43],
and Code Composer Studio v4 (CCSv4) [21] provides cycle-accurate simulations for TI
C6747. Table 4 provides more details of these three DSPs.

5.1.2 Benchmark Set. Selection of a benchmark set is orthogonal to the definition of flexibility
given in this work. It depends on the application domain which benchmarks make sense. Since in
this work a generic comparison between platforms is desired, a generic benchmark set is required.
A restriction is the support of different platforms, which needs to be broad in this work for compari-
son between different architectures. Although many options exist, eventually PolyBench/ACC [16]
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Table 5. Descriptions of the Applied Benchmarks from PolyBench/ACC

Benchmark Description

2mm 2 Matrix Multiplications (D=A.B; E=C.D)
3mm 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)
adi Alternating Direction Implicit solver
correlation Correlation Computation
covariance Covariance Computation
doitgen Multiresolution analysis kernel (MADNESS)
fdtd-2d 2-D Finite Different Time Domain Kernel
gemm Matrix-multiply C=alpha.A.B+beta.C
gramschmidt Gram-Schmidt decomposition
jacobi-1D 1-D Jacobi stencil computation
jacobi-2D 2-D Jacobi stencil computation
lu LU decomposition
syr2k Symmetric rank-2k operations
syrk Symmetric rank-k operations

was selected for its wide support of languages/platforms. Moreover, it is a rather generic bench-
mark set, i.e., not specific to a specific application domain, and includes programs with static con-
trol flow which eases static analysis of the workloads. Furthermore, it provides multi-language
versions of benchmarks, including C and CUDA, making it suited for cross-platform evaluation.
In this work, 14 applications from this set, supported by multiple languages, are evaluated using
their standard dataset. It should be noted that the overall benchmark set contains more applica-
tions, but critical issues were encountered for several when targeting the selected platforms. In
particular, compilation issues led to blacklisting several applications. Table 5 provides details for
each application.

5.1.3 Compiler Directives. It can be argued that not optimizing code gives a distorted image
of reality, since programmers typically will spend some effort to manually optimize code for ac-
celerators such as GPUs and FPGAs. As it is unfeasible to hand optimize all benchmarks for each
platform, and the code quality would depend heavily on the programmer, a compromise is made by
inserting compiler directives. Without directives, some compilers can hardly exploit the maximum
potential of the target systems. Therefore, to further investigate the impacts of applying compiler
directives on flexibility, compiler directives are inserted in the C-code for CPU, FPGA, and DSP.
The GPUs form an exception, as during the transformation to CUDA already manual effort has
been made to optimize the code. Extra compiler directives would not change their performance in
any significant way. The remainder of this section describes the various compiler directives used
for each platform category.

• CPU: Multi-threading that parallelizes tasks among multiple threads is enabled by OpenMP
directives. The outermost loop is parallelized in each kernel. In case dependencies between
loop iterations prohibit parallelization, the (next) inner loop is parallelized.

• FPGA: For FPGAs, directives are inserted to refine implementations, aiming at exploiting
massive parallelism and increasing resource utilization. By default, Vivado HLS simply trans-
lates C functions into Verilog designs. Optimizations are applied rarely without directives.
For instance, Vivado HLS does not apply loop unrolling to the C code, meaning that one
iteration of the loop is synthesized into a block of logic, which executes sequentially [56]. In
this manner, FPGAs cannot exploit their massive parallelism, and merely a diminutive part
of resources are utilized. To enable some optimizations without modifying the code-base too
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Fig. 5. Automated intrinsic workload estimation using llvm.

extensively, PIPELINE directives were inserted to promote loop pipelining. When asked to
pipeline a loop with an inner loop, Vivado HLS attempts to unroll all inner loops to enable
the requested pipelining, increasing resource utilization. If the inner loop spans many itera-
tions, this may lead to a significant increase in required resources. Therefore, pipelining of
outer loops is used sparingly, only when the resulting design still fits all target devices, and
performance does in fact improve. The default is to pipeline only the inner loop.

• DSP: To examine the hypothesis that best-effort techniques, including cache hierarchy and
multithreading, negatively impact flexibility, Hexagon DSPs are simulated in two modes: tim-
ing accurate and inaccurate mode. With the accurate timing mode, Hexagon models cache,
optimal multithreading mode, and processor stalls. With the inaccurate mode, caches are
assumed to be perfectly accessed, stalls are excluded, and a simplified multithreading model
is simulated [41].

5.1.4 Intrinsic Workload Estimator. As discussed in Section 4, the intrinsic workload of applica-
tions is used as the baseline to normalize against. In this section, a practical approach is proposed
based on LLVM IR to extract the intrinsic workload from arbitrary applications. An embodiment of
the described approach is made available as an open source tool [19] for anyone to use to estimate
the intrinsic workload of their application.

In the compilation process that LLVM employs, applications written in diverse languages are
translated by front-ends to a high-level intermediate language, IR. General optimization techniques
are applied to this IR before generating target-specific code, allowing the reuse of optimization
passes across different languages and targets. To serve this purpose the IR instruction set is rela-
tively minimal, and more importantly, platform-independent. Thus, IR is selected as the elementary
building blocks for approximating the minimal circuit of an application as detailed in Section 4.

Figure 5 illustrates the procedure to automatically estimate the intrinsic workload of applica-
tions. Applications are first translated into LLVM IR by a front-end. Next, the instrumentation
code is inserted by a custom LLVM pass called libDynCountPass, which triggers a callback for
every execution of an IR instruction by the IR interpreter. These callbacks record dynamic instruc-
tion counts for each IR instruction type. As loops are fully unrolled in the ideal combinatorial
circuit, computations related to control flow and memory accesses are excluded. This is achieved
by skipping instrumenting these particular operations in LLVM IR. In particular, a for loop rep-
resented by IRs is composed of several basic blocks with dedicated names. For example, blocks
named for.cond and for.inc are meant for evaluating the loop condition and increasing the loop
counter, respectively. When iterating through basic blocks in functions, the libDynCountPass pass
skips instrumenting those blocks which names contain for.cond and for.inc. Furthermore, any par-
allelism in IR instructions due to vectorization is accounted for by passing the vector width to
the instrumentation code. The instrumentation code then adjusts the dynamic instruction counts
accordingly.

What remains is weighing all the IR instructions based on their equivalent circuit. To get the
size of these circuits, the basic IR operations are mapped to basic 2-input-1-output and 1-input-1-
output gates using Cadence Encounter RTL compiler [7]. The number of gates found for different
IR instructions is listed in Table 6. Note that the synthesis tool is set up to optimize for area, not

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 4, Article 37. Publication date: August 2022.



How Flexible is Your Computing System? 37:19

Table 6. Estimated Hardware Cost for Spatial Implementations of

Several IR Instructions

IR 32-bit 64-bit

Gates Transistors Depth Gates Transistors Depth

add/sub1 188 880 63 380 1776 127
fadd/fsub 1905 8086 103 3494 14882 233

mul 5164 25458 130 20100 98476 313
fmul 4327 20490 97 16124 77246 215
udiv 4486 10763 1128 18217 44752 4350
sdiv 4777 21300 1189 18840 84616 4458
fdiv 12190 54146 992 66565 303284 2295

urem 4616 20426 1168 18452 82524 4440
srem 4882 21842 1228 19053 85682 4552
and 32 128 1 64 256 1
or 32 128 1 64 256 1

xor 32 256 1 64 512 1
116-bit add/sub operation: #(gate) = 92, #(trans.) = 432, #(depth) = 31;

8-bit add/sub operation: #(gate) = 44, #(trans.) = 208, #(depth) = 15;

1-bit add/sub operation: #(gate) = 2, #(trans.) = 12, #(depth) = 1.

Table 7. Basic 2 Input — 1 Output Logic Gates and the Number of

Transistors Required to Implement Them in CMOS [44, Chapter 6]

Gate AND NAND OR NOR XOR XNOR INV
Trans. 6 4 6 4 8 8 2

speed. This choice results in a minimal number of gates to achieve certain functionality, rather
than a speed-optimized design. In the case of an addition, for example, a carry look-ahead adder
would be considerably faster than a ripple adder. For the minimal circuit though, the ripple adder
is desired.

Instead of merely counting the number of basic gates per instruction, the argument can be
made that in CMOS technology some logic functions are harder to implement than others. An
inverter only requires two transistors, where an XOR gate requires eight. To compensate for this,
the workload per IR is not only measured in gates, but also in the number of transistors required to
realize the circuitry. An approximation of the number of transistors per gate in CMOS technology
is listed in Table 7. We refer to the number of these transistors as the intrinsic transistors, orTint , of
an application. The intrinsic transistors per application is more precisely defined in Equation (5.1.4).
Note that op∈Application in Equation (5.1.4) represents the dynamically executed operations.

Tint =
∑

(op∈Application)

∑
(gate∈MinCiruit(op))

Transistors(gate) (9)

An alternative to expressing circuit complexity in the number of gates or transistors is logic
depth of the circuit. The rationale behind this is that the deeper the ideal circuit, the longer
the minimum execution time would be. This approximation ignores parallelism inside the
operation however, and would likely give rise to the selection of different circuits. For example, a
straightforward ripple carry adder has the lowest gate count, but a relatively high logic depth. A
carry look ahead circuit has a shallower logic depth, but increases the gate count. Which of these
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Table 8. Specifications of Processors in This Work

No. Processor Freq. Trans. TDP Node Ref.
(MHz) (M#) (watt) (nm)

1 GTX TITAN 837 7100 250 28 [37][3]
2 GTX 570 732 3000 219 40 [37]
3 GTX 750 TI 1020 1870 60 28 [37]
4 Tegra K1 756 — 1 14 28 [37][33]
5 Pentium 4 3400 169 84 90 [23]
6 i7-920 2670 731 130 45 [23]
7 i7-950 3070 731 130 45 [23]
8 i7-960 3200 731 130 45 [23]
9 i74770 3400 1400 84 22 [23][2]
10 i76700 3400 1750 64 14 [23][22]
11 ARM1176 700 — 2.9 40 [9]
12 Cortex A9 1700 — 4 32 [1]
13 Cortex A15 2300 — 5 23 [38][32]
14 Cortex A53 1200 — 4.4 40 [9]
15 TI C6747 300 222 0.453 65 [11][50]

16, 194 Hexagon V5 650 — — 28 [10]
17, 184 Hexagon V60 2000 — — 14 [42]

1“-” means no information available.
2Speculated based on TI C66x DSPs [11].
3Estimated by TI Power Estimation Spreadsheet 2013.3.
4Simulated in inaccurate timing mode as detailed in Section 5.1.3.

approximations to use is debatable. In this work the gate count is used, as it bounds the designs to
minimal compute effort for a particular operation. Nonetheless, logic depth could be an interesting
alternative when computing the flexibility of high performance computing platforms for example.

5.1.5 Applied Methodologies. In practice benchmarking different systems in terms of perfor-
mance, energy, and area efficiency is challenging, as it is difficult to unify results across different
technology nodes. Furthermore, energy and area numbers are hard to obtain or measure accu-
rately if the platform of interest is physically inaccessible, or not equipped for power measure-
ments. Therefore, in several cases, we had to resort to extrapolation from publicly available data.
For example, due to the lack of a power/energy measurement set up for each device, the thermal
design power (TDP) of platforms is used to estimate their energy usage. The information used
per platform and its sources are summarized in Tables 8 and 9.

The following list describes how each metric is obtained for the evaluated systems:

• Normalized Performance: Execution time, or cycle counts, can be reliably measured for
each of the platforms. The measured times are normalized according to the estimated intrin-
sic workload of each benchmark, yielding normalized performance with the unit number of
intrinsic transistors per second.

Normalized Performance =

(
Tint

texec

)
(10)

More intrinsic transistors that can be computed per time unit indicates higher performance.
Note that some simulators only provide execution time in cycles, independent of frequency.
This does not constitute a problem, since flexibility is invariant to frequency scaling.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 4, Article 37. Publication date: August 2022.



How Flexible is Your Computing System? 37:21

Table 9. Specifications of FPGAs used in This Work

Processor Freq. (MHz)1 #Trans.2 Pwr (watt)3 Node

no opt. opt. (M#) no opt. opt. (nm)

Artix7 116 102 1025 1.4 2 28
Kintex7 120 103 2370 1.7 2.5 28
Virtex7 118 105 9700 2.3 3 28
Zynq 118 96 2200 1.7 2.6 28
Virtexuplus 118 104 14000 4.1 5.5 16
Kintexu 120 101 5300 2.1 3.4 16
Zynquplus 117 103 4100 2.1 2.8 16

1Average estimated clock period from Vivado HLS when the target clock period is 10ns.
2Speculated based on a published value of Virtex UltraScale XCVU440 [46].
3Estimated by Xilinx Power Estimator (XPE) 2018.2.2 based on the average design utilization

of benchmark set.

• Energy Efficiency: Defined as the quotient of normalized performance and power, normal-
ized energy efficiency is defined as intrinsic transistors per joule.

Energy Efficiency =

(
Tint

texec · Power

)
(11)

The more intrinsic transistors that can be computed with a joule of energy, the higher energy
efficiency.

Energy numbers were estimated based on publicly available data. For most cases this
means the reported thermal design power (TDP) is used to estimate energy consump-
tion. For multi-core CPUs, this means the same TDP value is used for both single-threaded
and multi-threaded mode. As the whole multicore processor is considered as a system, only
utilizing a single thread in this system leaves other threads idle, resulting in energy and area
overhead.

• Area Efficiency: Area efficiency is the quotient of normalized performance by area, ex-
pressed in intrinsic transistors per physical transistor. Here a ‘physical transistor’, or Tphy ,
refers to all the transistors implemented on the actual platform under test. This leads to the
following definition of area efficiency:

Area Efficiency =

(
Tint

texec ·Tphy

)
(12)

By expressing area as the number of transistors on the device, and not the more typical μm2,
the area efficiency can be expressed independently of technology. Next to this it also allows
an alternative interpretation of area efficiency, namely (physical) transistor utilization, which
provides some insight into how many transistors are utilized effectively towards computing
the application.

Note that the transistor count of the FPGAs is for the whole device. When a design uses
fewer resources, it could be argued that only the mapped transistors should be included.
However, in this work, the full number of transistors is used, as those are physically always
present, no matter if an application can utilize them, much like the transistors in any system.

• Flexibility: Compute system flexibility is derived relative to performance, energy, and area
efficiency. However, due to the way energy and area are measured in this work, these three
flexibility values yield the same ranking. In particular, for energy, the same TDP value is used
for all applications on a given platform. Hence, the TDP is merely a scaling factor compared
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Table 10. Benchmarks for ASIPs Taken from the Work of Fisher et al. [14]

App. Description

A FIR symmetrical filter implemented using a 7 × 7 convolutional kernel.
C Inverse DCT transform with dequantization of the DCT coefficients. The algorithm used

is the Arai, Agui, and Nakjima algorithm for scaled FDCT/IDCT, with some improve-
ments, as described in [4, 52].

D, E Color conversion from the RGB to the YCbCr color space (and vice versa, as described
in the JPEG standard).

F Halftoning via standard Floyd-Steinberg error diffusion (no stochastic weights update).
The benchmark produces triplets containing 1 bit halftoned pixel.

G 1D bilinear scaling by integral factors along columns.
H 3 × 3 median filter using the standard algorithms not using a “smart” version of the

median.

GF 1D bilinear scaling followed by Floyd-Steinberg halftoning.
GEF 1D bilinear scaling followed by E, a YUV ← RG color space conversion, followed by

Floyd-Steinberg halftoning.
DH RGB ← YUV color space conversion followed by a 3 × 3 median filter.

DHEF RGB ← YUV color space conversion followed by a 3 × 3 median filter, followed by E, a
YUV ← RGB color space conversion, followed by Floyd-Steinberg halftoning.

The benchmark applications in the lower part of the table are constructed out of the applications in the upper part.

Benchmark naming is kept identical with the original work for consistency.

to performance, and flexibility is invariant to constant scaling of data points (in accordance
with Lemma A.3). The same holds for the intrinsic transistor count in the area estimates,
which again works out to be a constant scaling factor concerning performance. Hence, in
this particular case:

Flexper f = GSD

(
Tint

texec

)
= GSD

(
Tint

texec · Power

)
= GSD

(
Tint

texec ·Tphy

)
(13)

Notably, this does not hold generically. When energy can be measured accurately across
different applications and does vary, the equality no longer holds. Area efficiency flexibility
strictly speaking would always be the same as performance flexibility, unless somehow only
the active area of a system would be counted. Such a scenario may be meaningful in the
context of multi-core systems executing a single thread. In this case, it may be preferable to
exclude the inactive cores, resulting in a difference between area efficiency and performance
flexibility.

5.2 Customized Processors

Apart from quantifying the flexibility of COTS systems, it is also interesting to investigate how
flexibility relates to specialisation. To that end the work of Fisher et al. [14] is used, which reports
speedups for a VLIW that is optimized to a varying degree for various target applications. More
precisely, a baseline 2 issue slot VLIW processor with a 64 entry registerfile is constructed with one
ALU capable of integer multiplication, and one issue slot for accessing L1 or L2 memory. Starting
from this baseline, an architecture exploration extending the architecture in several aspects such
as ALU and multiplier count, memory ports, and register file size, is performed targeting each of
the benchmark applications listed in Table 10. This exploration is performed under a ‘computing
architecture cost’ constraint, which is a custom metric defined in Section 3.3 of the work of Fisher
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et al. [14]. This cost metric depends amongst other parameters on the number of ALUs, width of
datapaths, and number of ports to the register file. Within a given cost constraint, the VLIW ar-
chitecture is first optimised targeting each individual application. For the ten benchmarks listed
in Table 10, this yields ten optimised architectures. Each of these architectures are still capable
of executing the complete benchmark set, and as such a speedup can be reported for each appli-
cation on each architecture. These speed up measurements are reported in Tables 8, 9, and 10 in
the original paper [14]. Using these speedups, the flexibility of each resulting architecture can be
computed, with the notable exception that normalisation is not based on intrinsic workload, but
rather the single ALU baseline machine as described earlier.

Apart from just optimising for each application individually, Fisher et al. propose optimisation
with a certain ‘range’. When this range is set toX%, it means the optimisation algorithm is allowed
to sacrificeX% of the maximum performance of the application currently being optimized for, and
trade that off for an improvement in the overall performance of the architecture over the com-
plete benchmark set. For example, when the range is set to 0%, the processor is allowed to have a
cost of 10 according to the defined cost metric, and the optimization target is benchmark GEF, the
maximum speedup for GEF is 8.93×. The harmonic mean performance of that tuned architecture
over the entire benchmark set then equals 3.9×. However, when the range is set to 50%, the opti-
misation procedure accepts a maximum penalty on the speedup of application GEF reducing it to
5.97×, in order to improve the harmonic mean performance over the complete benchmark set to
5.8×. These results can be verified in Table 9 of the original paper [14].

Using the reported speedups, the relation between this range parameter and flexibility can be
investigated. The results and analysis of this experiment are presented in Section 6.2.

6 RESULTS AND ANALYSIS

The experiments are split into two categories. First, flexibility measurements are performed for
commercial of the shelf systems in Section 6.1. Relations between flexibility and performance,
energy efficiency, and area are investigated as part of this experiment. Furthermore, the relations
between flexibility and several architecture classes is examined. Secondly, Section 6.2 analyses the
relation between flexibility and processor specialisation, inspired by the work of Fisher et al. [14].

6.1 Commercial Off the Shelf Processors

This section presents the flexibility measurements of 25 platforms over 14 benchmarks, and in-
vestigates the hypothetical relations between flexibility, performance, energy efficiency, and area
efficiency. In particular, Figures 6, 7, and 8, respectively represent the relations between flexibility
and these metrics. The indexing in the figures corresponds to the platform numbering in Table 8.
To achieve a fair comparison, performance results are scaled to the technology node of each plat-
form. Accurate technology scaling is a topic on it’s own, and different techniques should be used
for different devices. For example, memories, wires, and gates all scale differently. To keep the
comparison in this work straightforward, the basic assumption is used that performance, i.e., gate
delay, scales linearly with the inverse of the technology node. Scaling under this assumption is
sufficient to observe overall trends, and draw preliminary conclusions on the relation of the de-
fined flexibility metric with respect to performance. Note that this technology scaling is an issue
that arises in our particular measurement due to the lack of a set of platforms in the same technol-
ogy node, and is orthogonal to the definition of flexibility itself. Any comparison of performance
between architectures instantiated on different technology nodes requires such scaling.

Note that since performance, energy efficiency and area efficiency flexibilities are all equal for
our measurements according to Equation (13), the flexibility rankings do not move horizontally
between Figures 6, 7, and 8.
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Fig. 6. Performance and Flexibility. Platform indexes according to Table 8.

Fig. 7. Energy efficiency and flexibility. Platform indexes according to Table 8.

Before exploring the relations between flexibility and other metrics, it is interesting to note that
the flexibility ranking has the power to discriminate between different architecture classes. From
our measurements we make the following six observations:

(1) The GPUs are clearly the least flexible of the tested architectures, while FPGAs without
optimization are highly flexible. This does align with the idea that GPUs are specialized
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Fig. 8. Area efficiency and flexibility. Platform indexes according to Table 8.

devices, supporting only a specific subset of algorithms (with DLP) very well, while FPGAs
on the other hand are generic devices.

(2) When optimization is turned on for FPGAs however, clearly some applications benefit more
than others because of the extra resources, but without optimization their flexibility is far
superior to other architectures.

(3) Furthermore, multi-core CPUs measure as slightly less flexible than single-core CPUs, which
again is intuitive as not all applications will benefit equally from extra cores. In general, it
seems that for this generic benchmark set, architectures that employ more parallel execution
pay a penalty in flexibility.

(4) Predictably though, the same parallel architectures also have the highest performance, as
can be seen in Figure 6. This confirms the general notion that there is a trade-off between
performance and flexibility. Although there are definite outliers, overall higher flexibility
implies lower performance. The ideal point in Figure 6 is at the top right, combining high
performance with high flexibility. The points closest to that corner are the general-purpose
CPUs, showing these devices cover the middle-ground in this trade-off as would be expected.

(5) For energy efficiency (Figure 7), a similar trend can be observed, although much less pro-
nounced. In particular, unoptimized FPGA as the most flexible platforms have less of a gap
to the CPUs in energy efficiency than they have in performance. A plausible explanation can
be found in the much lower clock frequency of the flexible FPGA fabric, which obviously
incurs a penalty in performance, but does not necessarily translate to low energy efficiency.
Because the FPGAs essentially execute highly customized/parallel instructions, they may
perform more useful work per cycle, leading to less register/memory overhead. The fact that
CPUs execute their more generic, yet simple, operations much faster gives them a definitive
edge in performance, however, the extra required cycles give them a relative handicap in
energy efficiency. This shortage is overcome by the optimized FPGAs, which can customize
their operations to achieve more work per cycle bringing them on par with the bulk of CPUs
in terms of energy efficiency, even though their performance is lower.
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(6) In area efficiency (Figure 8), the results are far less conclusive. The only outliers are the
FPGAs, which are in a class of their own. This is to be expected, as the flexible FPGA fabric
requires not only large silicon area for the LUTs but also routing, which makes it is very
complex compared to other architectures. Between the other systems, the area efficiency
numbers do seem to drop off slightly with increasing flexibility, but the results are too close
to draw any significant conclusions at this stage.

In general, the results show the proposed flexibility metric can distinguish between various ar-
chitecture classes, indicating it represents a fundamental property. The measurements also align
with some generally accepted notions surrounding flexibility, such as the trade-off between perfor-
mance and flexibility. Furthermore, it is interesting to see there is a gap between the fairly flexible
FPGAs and the single-core CPUs, which indicates room for exploration and possibly exploration.
For many years, coarse grain reconfigurable architectures (CGRAs) have claimed to combine
the benefits of flexible FPGAs with the benefits of fixed-functionality hardware [53]. Introducing
CGRAs for flexibility comparison would be very interesting.

6.2 Customized Processors

In this experiment, the relation between flexibility and the measure of customisation/optimisation
of an application specific processor (ASIP) is investigated. In particular, the relations between
flexibility, computing architecture cost, and range as defined in Section 5.2 are of interest. This
evaluation is based on the reported speedups in Tables 8, 9, and 10 in the work of Fisher et al. [14].
Using these speedups, the flexibility of each architecture is computed, the results of which can be
found in Tables 11 and 12 in this work. Each row in these tables shows the speedups of all individual
applications compared to the baseline VLIW processor, when the architecture is optimized for a
particular application. The last two columns respectively give the harmonic mean speedup which
Fisher et al. used as the cost function in their architecture search algorithm, and the flexibility as
defined in this work. Note that when the ‘range’ parameter is set to infinite, it does not matter what
the optimisation target application is, the optimisation algorithm will find only one architecture.
After all, if it is allowed to compromise the speedup of the target optimization by an infinite amount,
it does not matter what the target application is. The architecture with the best harmonic mean
speedup over all applications will be selected, regardless.

From the results in Tables 11 and 12, three key observations are made:

(1) In general, the high cost architectures achieve better generalisation than the low cost ar-
chitectures. With plenty of compute resources available the benefits for each application
average out, while with low compute cost only specific parts of all the applications benefit,
leading to a more unbalanced speed up over the entire benchmark set.

(2) For the architectures with cost ≤ 5, the flexibilities of the resulting architectures are almost
all identical to the architecture found with range∞. In fact, for most applications the selected
architecture is actually equal, as can be seen in Table 9 of the original paper by Fisher et
al. [14]. A clear outlier is application A, which when set as the optimization target actually
yields a very high flexibility. As can be seen in the table, the speedup of A is rather significant,
while the other benchmarks appear to benefit fairly equally. The conclusion must be that
application A is quite different from the other benchmarks in the set, and optimising for it
within low cost constraint does not benefit the other applications. In the original paper of
Fisher et al. [14] it can be seen that the number of registers for architecture A is higher than
the other architectures, suggesting that application A benefits heavily from more registers,
while that does not help the other benchmarks that much.

(3) A higher range interestingly does not always result in a more flexible architecture, as is the
case for application G at cost ≤ 15 in Table 12, for example. The sacrificed performance of
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Table 11. Speedup and Flexibility of ASIP Architectures with Cost ≤ 5, Based on Fisher et al. [14]

Arch. Speedup for application X HMean Flex.

A C D F G H GF GEF DH DHEF

Cost 5 — Range 0%

A 6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60 3.7 0.848
C 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
D 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
F 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
G 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
H 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GEF 1.04 3.93 4.09 4.53 5.72 6.15 6.14 5.97 6.31 6.36 3.8 0.593
DH 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
DHEF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590

Cost 5 — Range 10%

A 6.12 3.60 3.52 3.54 3.43 3.58 3.53 3.52 3.56 3.60 3.7 0.848
C 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
D 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
F 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
G 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
H 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
GEF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
DH 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590
DHEF 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590

Cost 5 — Range ∞%

All 1.05 3.93 4.09 6.00 5.72 6.35 6.16 5.86 6.33 6.38 3.8 0.590

G when increasing the range from 0% to 10% does lead to a higher harmonic mean perfor-
mance, but the variation in speed ups increases. This again demonstrates that performance
and flexibility are orthogonal properties, and while Fisher et al. optimised for overall perfor-
mance, the flexibility decreased. If the goal of an architect is to design a processor that is
likely to perform well under varying applications, the optimisation goal should thus have
been flexibility and not overall performance.

Note that observation 1 is supported by the findings of Arnold and Corporaal [5], who inves-
tigate the benefit of adding custom instructions to a processor that replace two basic operations.
Figure 9 is taken from their work, and shows the reduced operation count by adding a library
of size x with more complex operation patterns of size two, i.e., replacing two operations in the
original execution graph. The theoretical best case is an operation count reduction of 50%. As
can be seen in the figure, when the number of added complex patterns is on the low end, e.g., 10
patterns, the vertical spread is relatively high. A high vertical spread equals low flexibility, since
there is large variation between different applications. To validate this, the operation reductions
for 10 and 40 patterns were extracted from the image2, and summarized in Table 13. It shows that

2The original work [5] does not list the raw numbers, but a vector image of the graph could be recovered from the pdf file

which allowed accurate reconstruction of the measurements.
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Table 12. Speedup and Flexibility of ASIP Architectures with cost ≤ 15, based on Fisher et al. [14]

Arch. Speedup for application X HMean Flex.

A C D F G H GF GEF DH DHEF

Cost 15 — Range 0%

A 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14 6.8 0.690
C 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
D 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38 6.1 0.811
F 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38 6.1 0.811
G 9.38 6.15 4.33 6.13 5.72 6.35 6.16 5.86 6.33 6.38 6.1 0.838
H 5.95 7.46 3.86 3.98 5.41 10.52 5.75 6.79 10.58 9.74 6.2 0.705
GF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
GEF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DH 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DHEF 10.54 6.43 3.86 5.25 5.41 10.50 8.39 8.93 10.55 10.06 7.1 0.710

Cost 15 — Range 10%

A 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14 6.8 0.690
C 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
D 10.72 6.07 4.42 6.13 5.42 6.35 6.16 5.86 6.31 6.38 6.1 0.811
F 13.06 5.88 3.52 5.63 4.95 9.68 8.13 8.65 9.60 9.14 6.8 0.690
G 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
H 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
GF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
GEF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DH 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710
DHEF 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710

Cost 15 — Range ∞%

All 11.04 7.46 3.86 5.25 5.41 10.50 8.39 8.93 10.61 9.88 7.2 0.710

Table 13. Operation Count Reductions from Figure 9, and Associated Flexibility

Top X Application Flex.

bspline dft pse iir foewf fir flatten smooth expand compress edge
10 45.8 31.1 44.1 34.6 22.0 42.2 32.6 38.5 32.5 31.6 38.5 0.82
40 45.8 44.5 45.6 39.3 39.1 42.1 42.7 42.4 42.4 43.4 41.5 0.95

overall flexibility increases from 0.83 to 0.95 when adding 30 extra patterns. This corresponds to
the cost ≤ 5 architectures from Fisher et al. with relatively limited resources, and low flexibility.
When the number of available resources increases however, such as the cost ≤ 15 architectures or
30+ patterns, the flexibility increases. With more resources available, there is more room to have
every application profit maximally.

7 COMPARISON WITH EXISTING DEFINITIONS

This section compares the proposed flexibility metric with related work that provide alternative
definitions. In particular, the proposed method is compared against versatility as defined by Van
Berkel [26], and ‘VersaBench versatility’ as defined by Rabbah et al. [45], in Sections 7.1 and 7.2,
respectively.
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Fig. 9. Operation count reduction by library with x patterns [5].

7.1 Flexibility and Versatility

In the search for alternative definitions of flexibility in Section 2, the qualitative and quantitative
definitions of versatility provided by Van Berkel [26] appeared to be most related. Rather than
looking at change of a system’s performance metrics under the influence of external changes, the
assumption is made that the less information required to specify an amount of work to a system,
the less versatile it must be. In terms of computing systems this translates to the number of dynamic
(instruction) bits required to execute a given program on a given processor. The fewer bits required,
the fewer options were available to select functionality from, hence the less versatile the system
must be. This is captured in the versatility formula in Equation (1).

This interesting approach does not directly measure the effects of external changes on the sys-
tem. Rather, it makes the underlying assumption that more functionality to select from should
result in a more flexible system. After all, if there are more options/instructions, it is easier to
adapt to a new program. The danger in this assumption is that the computer architect now has
become part of the metric, i.e., it is assumed that the extra added functionality is diverse enough
to handle more cases. In a way, the number of dynamic bits per workload is a measure of both
how flexible the system is, and how well the architect anticipated and addressed possible changes
to the system.

Therefore, we still reason the qualitative definition provided at the start of this section is more
suited for defining a flexibility metric, and versatility is in fact different yet very related. In particu-
lar, the difference between measured versatility and flexibility is an indication of how well a system
architect has designed the system. When a system is not flexible, but highly versatile, apparently
a price is paid for having more options/functionality, but it did not translate into added flexibility.
In fact, the ratio between flexibility and versatility can be regarded as a measure of success of an
architect to balance the cost of instruction size with return in flexibility.

Given this conclusion, it is interesting to compare flexibility and versatility for various architec-
tures. Application of the versatility metric is slightly more involved than the proposed flexibility
metric, however, for two reasons:

(1) Versatility is only defined per application, and as such for different applications one architec-
ture would have multiple flexibilities. To be able to compare, we therefore propose to use the

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 4, Article 37. Publication date: August 2022.



37:30 S. Huang et al.

Fig. 10. Flexibility and versatility comparison between Intel and ARM CPUs.

geometric mean of all versatilities of a benchmark set to obtain a single flexibility number
per architecture.

(2) The definition of versatility includes the number of useful operations. This term is not defined
exactly by Van Berkel. In this analysis we will therefore use the proposed intrinsic workload
instead, which also should yield a fair comparison between versatility and flexibility.

The resulting definition of Versatility as used in this comparison is given in Equation (14), where

xi is an application in benchmark vector �X , andWint (xi ) is its intrinsic workload.

Versatility( �X ) =

(
n∏

i=1

avд_instruction_size(xi )

Wint (xi )/#instructions(xi )

) 1
n

(14)

Finding the number of instructions on Intel and ARM machines is straightforward by merit of
the available performance counters. The average instruction size for the considered ARM devices
is also simple, a fixed 32 bits. The instruction size of the Intel machines is dynamic on the other
hand, and not monitored by hardware performance counters. Therefore, an estimate of 20 bits per
instruction on average is used for the Intel machines as per the work of Ibrahim et al. [20].

Figure 10 shows a side-by-side comparison of performance flexibility with versatility for several
Intel and ARM CPUs. The results are quite interesting, and two observations can be made.

(1) First, the flexibility of the Intel machines increases with newer generations, while the versa-
tility is more or less equal. This implies that the designs improve in such a way that without
spending more instruction bits, the Intel processors have become more flexible.

(2) Second, the ARM processors have a much higher versatility than the Intel processors, yet
fail to capitalize on this in particular compared to the later generations of Intel processors.

This outcome seems to make a case for variable instruction width as opposed to fixed.
However, not covered here is the use of the 16 bit thumb instruction set of ARM, which may

paint a different picture. Such investigations are left as future work, but it can clearly be concluded
that by having quantitative metrics insight can be gained, and processor design can potentially be
guided by such metrics to truly get to machines that balance average instruction size, performance,
energy, and flexibility.
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7.2 Flexibility and VersaBench Versatility

Apart from versatility as defined by Van Berkel [26], there is a variant defined by Rabbah et al. [45]
as discussed briefly in Section 2.2. As the motivation behind this second definition is also close to
the goals of this paper, this section provides a short comparison between flexibility as defined in
this work, and this “VersaBench Versatility”.

To understand the differences between VersaBench Versatility and flexibility, it makes sense to
look at the properties of flexibility as defined in Section 3.2.1. In particular, we state that flexibility
should be orthogonal to performance. The motivation behind this property is illustrated in Figure 2,
where the most performant system shows a higher variation to change than the slowest system.

VersaBench Versatility on the other hand normalizes performance based on the fastest proces-
sor known for each application, and uses this to rank processors. Therefore, performance and
VersaBench versatility are directly related. In fact, it can be shown that the normalisation by the
fastest processor for each application is irrelevant for the final versatility ranking. Lemmas A.4
and A.6 show that the normalisation baseline is cancelled out when calculating the ratio of two

positive datasets as shown in Equation (15), where �X , �Y and �B are positive datasets.

GM
(
�X
�B

)
GM

(
�Y
�B

) = GM( �X )

GM( �Y )
, (15)

GSD
(
�X
�B

)
GSD

(
�Y
�B

) � GSD( �X )

GSD( �Y )
, (16)

Hence, the ranking obtained using the metric proposed by Rabbah et al. is equivalent to ranking
on average performance. For completeness, flexibility as defined in this work does depend on the
chosen baseline, as shown in Equation (16), supported by Lemma A.8: GSD( �X/�B) ≥ GSD( �X )/GSD( �B).
Note that ‘�’ here denotes that the relation does not necessarily hold. In conclusion, VersaBench
versatility is in fact a ranking based on average performance, while flexibility is truly an orthogonal
property.

8 DISCUSSION & OPEN ISSUES

The work presented in this document is an attempt at defining a flexibility metric for processors.
The lack of ground truth, however, combined with several existing related studies presented in
Section 2, entails that the resulting definition is to be placed into context for it to carry any meaning.
The definition presented in this work is not to be taken as final, as many open questions underlie
its definition to which there are no definitive answers yet. This section discusses these open issues,
and how they were handled in this particular work.

8.1 From Qualitative to Quantitative

To systematically identify open issues and the choices made when deriving a quantitatively metric
form the qualitative definition of flexibility, we identify three key components in the qualitative
definition of flexibility as given in Section 3.1:

(1) The measured system and its set of (changing) external inputs (Si )
(2) Observed Performance Metric (m)
(3) “Measure of Affectedness” (f (Si ,m))

Each of these components is to be mapped to computing systems to properly define computing
system flexibility. However, each component leaves room for different interpretations, which is
the root cause of different definitions of processor flexibility in related work. What follows is an
attempt to capture different interpretations of these terms, and motivate the choices made in this
work.
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Fig. 11. Where to draw the line, what is part of a compute system, and what is not?

(1) System and External Inputs
Defining what the measured system and its (changing) inputs, Si , seems trivial, but turns out
to be both complex and very relevant for the resulting definition. For example, if the system
is defined as a bare processing core, then the system’s external inputs would be machine
instructions and data. Changes in the instruction and data stream influence the energy usage
of the core in different ways, and flexibility may measure the sensitivity of this energy usage
for different instruction streams on a per cycle basis. However, if the system includes not
only the core but also an instruction cache, the fine grain energy consumption may already
vary without new instructions coming in from outside the system. In this case, some forms
of temporal integration have to be used, and flexibility measures the effects of new blocks of
instructions loaded on this averaged energy usage. The key message is that the cache can be
part of the system, and the cache size can also influence the system’s flexibility in this case.
In fact, many components in the chain from application idea in the mind of a developer,
up to final execution on a core, can influence the system’s performance metrics. Therefore,
each of these components could be seen as part of the computing system, as illustrated in
Figure 11. Although not shown in the figure, in an extreme case the programmer who writes
a program according to changing specifications could even be considered part of the system.
The supported language, compiler, memory hierarchy, and processor architecture then all
influence the measured system. Note that the world is much larger than what is captured
in Figure 11. For example, loop-buffers, or configuration memory in an FPGA could all be
different points to draw a system boundary.

Where the system boundaries are defined is rather arbitrary from this viewpoint, although
it would be sensible to not make an individual programmer part of the system. Yet, it is
preferable to stay at a higher level, as the lower levels quickly become more specific for a
certain subclass of systems, e.g., configuration memory for FPGAs. Therefore, we have cho-
sen to stop at the compiler level, where the compiler is still considered part of the system,
and the source code is the external input. In particular, the source code of different applica-
tions, which is also the external input used for most commonly used processor benchmark
suites. In these benchmarks, the applications are taken as the changing input, hence this best
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practice is followed in this work. This choice also aligns with the view of Zse et al. [48], who
consider the mapper (compiler) part of the system.

(2) Observed Performance Metrics
There exist many widely used metrics in computer system design, such as energy-efficiency,
area-efficiency, and runtime. In principle, any of these or even a combination, can be selected
as the observed performance metric. Related work typically ties flexibility exclusively to run-
time, e.g., the work of Rabbah et al. [45]. We argue this is too restrictive, and a plurality of
meaningful flexibilities can be defined. Zse et al. [48] already hint at flexibility in terms of per-
formance and energy efficiency, which is more in line with the reasoning of our work. In par-
ticular, it is worth noting that flexibility in our view as such is a derived metric, since it mea-
sures changes in other primary metrics. For any primary metric, flexibility can be defined.

(3) “Measure of Affectedness”
Whereas for the other two terms, there is a history of common practices in computer
system design to build upon, it is the “measure of affectedness” (f (Si ,m)) about which there
is the least consensus in the community. There are numerous ways to quantify changes
in a metric m. If the flexibility function f is to be generic for any metric m however, it is
clear the changes in m caused by changing inputs have to be normalized. The selection of
a normalization method is another degree of freedom, which is part of defining f .

In the work of Rabbah et al. [45], the runtime is normalized by comparing the runtime
of applications to the best-known runtime over all processors. Change in the runtime of a
processor compared to this “optimal runtime” is seen as inflexible. The total change over a
selected benchmark set is then seen as the flexibility of a processor. Thus, higher absolute
performance over the benchmark set is taken to mean higher flexibility. Although this direct
coupling of performance and flexibility may seem appealing, in particular for a designer
who needs to design or select a system with flexibility as a metric, we argue that such
reasoning is a fallacy. The implication that the most performant machine automatically is
the most flexible machine is unfounded, and the selection as the best-known runtime for
each application is an arbitrary baseline for a flexible machine.

Instead of normalizing against the best known runtime, we postulate there must be a
notion of intrinsic workload for each application that can be normalized against. The defini-
tion of this intrinsic workload again poses several challenges, which is further discussed in
Section 8.2.

Finally, we argue that any change in intrinsic workload normalized metric m, either
positive or negative, makes a system less flexible. As a measure of how affected a metric m
is under a set of changes, variance seems a natural choice to us.

8.2 Intrinsic Workload

In Section 4, the term intrinsic workload is introduced, which refers to the notation that an applica-
tion inherently describes a fixed amount of work. An open question is, assuming the notion of such
a fixed amount of work per application is correct, how to properly define this intrinsic workload.
There are many possibilities, and selecting one that is both theoretically and practically appealing
is a difficult task. A fundamental approach may consider Landauer’s principle [30], which states
there is a minimum amount of energy that is dissipated when a bit of information is erased. For a
typical irreversible computation that consumes two operands and produces one output value, this
principle can be used to compute a minimum amount of work for that operation. However, if the
computation is reversible, no information is lost in the system, and theoretically no energy would
be required to perform such a computation. Thus, if an application is expressed in reversible opera-
tions, it may not have an intrinsic workload at all, and computation may in fact be free. This is the
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Fig. 12. Effect of different normalisation strategies.

promise of the field of reversible computing, and maybe the only fundamentally correct answer to
the question of how much workload any given application represents, zero.

This definition of (the non-existence of) intrinsic workload from a physics perspective does not
provide any insight for the practical machines in current technology however, so for practical rea-
sons, a more pragmatic approach is taken in this paper. As extensively described in Section 4, an
approach is chosen which expresses workload in terms of the size of the minimal circuit that imple-
ments an application. The motivation for this approach is that it automatically weights operations
based on their complexity, and a multiplier circuit will require more transistors than an adder.

A downside of this choice is the infeasibility to construct the schematic of a truly minimal circuit
for any application. Such a circuit would be extremely large, and logic minimization is proven to
be NP-complete [6]. As discussed in Section 5.1.4, the practical choice was made to approximate
the size of the ideal minimized circuit by dividing applications into LLVM IR instructions and
weighting those based on their approximated minimal circuits. This choice is very much motivated
by the desire to develop a flexibility metric that is also applicable in the real world and not just a
theoretical notion. In particular, this approximation may be done in various different ways, and
remains an open topic of research.

8.2.1 RISC vs Transistors. In Section 4, the choice is made to express workload in intrinsic tran-
sistors. It can be questioned, though, how much this refinement of RISC-like operations to intrinsic
transistors impacts the resulting flexibility measure. To investigate this, Figure 12(a) plots flexibility
based on intrinsic transistors (horizontally) versus flexibility based on RISC-like operations. The
flexibility based on RISC-like operations is calculated similarly to the proposed transistor-based
flexibility, except that all operations in Table 6 are set to one. If both flexibility metrics are exactly
the same, the points in Figure 12(a) would be on the diagonal of the plot. Diversion of points from
the diagonal indicates differences between the two metrics.

As can be seen in the figure, the majority of the points are close to the diagonal, indicating
the refinement towards transistors does not change the flexibility significantly. Only the most
flexible points, which represent the unoptimized FPGAs, seem to be classified as significantly more
flexible when normalized to RISC instructions rather than transistors. A possible explanation for
this phenomenon is that the FPGA uses its DSP slices to perform the multiplications, relatively
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Fig. 13. Two conceptual combinatorial-circuit models with loads (grey) and stores (blue).

lowering their performance complexity compared to other operations. As such, weighting the
multiplications as more work based on the circuit complexity may expose some inflexibility of
the unoptimized FPGA solutions. For the RISC baseline this skewing is not present, and hence
the solutions are quantified as more flexible. On the optimized FPGA designs, higher degrees of
parallelism may hide this effect. It is, however, difficult to reason about such effects. Nonetheless,
it can be concluded that although the refinement into transistors is from the theoretical viewpoint
arguably “more correct” than not accounting for operation complexity, omission of this refinement
for practical considerations would not have a large impact on the measured flexibility.

8.2.2 Loads and Stores. Although the use of an approximate minimal circuit makes the defini-
tion of intrinsic workload practical for real machines, one problem mentioned at the start of this
section still remains. The minimal circuit of a matrix transpose algorithm would not involve any
transistors, and would consist only of wires, i.e., loads and stores do not exist. Although this may
be a fair game from the theoretical point of view, the retrieval or storage of information should not
need to cost any energy, for practical purposes it may not be the most workable approximation.
An alternative that is possible within the proposed intrinsic workload estimation framework is to
weight IR based loads and stores.

How these loads and stores are to be weighted is again a point of discussion. One additional prac-
tical consideration could be to weight external and internal loads differently, since external mem-
ory accesses are typically much more expensive than internal memory accesses. A very crude way
of separating the two would be to count an internal load for each input operand of an operation,
and a store for each output operand. External loads are then defined by the input to an application
that has to be loaded once, and the output produced by the application which has to be stored
once externally. These options to weighting loads and stores are illustrated in Figure 13. Other
approaches, like taking reuse distance into account to decide on internal versus external memory
accesses, are again possible, although with each more practical consideration for memory levels
and technology guided design it becomes more polluted with memory architecture specifics.

Figure 12(d) plots the flexibility based on RISC operations with, and without loads and stores. For
this evaluation, the RISC based metric is used, as it allows loads and stores to be simply weighted
by one. This avoids the difficult problem of weighting the loads and stores in terms of transistors,
which could, depending on the approach chosen, yield a very different flexibility ranking. Instead,
Figure 12(b) shows that, when loads and stores are simply counted as a single RISC instruction,
their impact on the resulting flexibility metric is minimal for the selected benchmark set. It should
be noted that this observation is dependent on the evaluated benchmarks. For a matrix transpose
algorithm, for example, the outcome is expected to be completely different.

9 CONCLUSIONS

The term flexibility is frequently used in computer architecture literature [12, 24, 25, 35, 55], de-
spite the lack of both a proper qualitative and quantitative definition. This is a harmful situation
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which leads to contradictory statements regarding flexibility as a property and its relation to other
system metrics, and as such does not advance knowledge of computer architectures but rather
dilutes fundamental reasoning. In an attempt to address this matter, a survey of compute sys-
tem flexibility in literature was performed in order to collect general ideas about flexibility in the
community, and hypothesized relations between other metrics such as performance and energy
efficiency. Furthermore, existing definitions of flexibility and related notions were collected and
classified. Based on these statements regarding flexibility in literature, first a qualitative, and con-
sequently a quantitative definition of flexibility in computing systems was derived. As part of the
quantitative definition, intrinsic workload is introduced as a generic method of normalizing appli-
cations. An accompanying open source tool was released to automate the estimation of intrinsic
workload [19]. Using this tool, flexibility is evaluated on 25 platforms over 14 benchmarks, validat-
ing that the proposed metric conforms with some commonly accepted notions of flexibility.

Globally, the proposed flexibility metric orders some major architecture classes from least flexi-
ble to most flexible as: GPUs, CPUs, DSPs, and FPGAs. In particular, it is shown that the proposed
metric is capable of distinguishing diverse architecture classes. The GPUs showed to be the least
flexible, which seems intuitive as their performance is heavily impacted by the amount of paral-
lelism present in applications. Most flexible are the FPGAs, but interestingly only when the high
level synthesis was not optimising. This and the other measurements also align with the idea that
high flexibility is on tension with high performance, especially when not all applications profit
from the applied optimisation. A similar conclusion can be drawn for the relation between energy
efficiency.

Apart from the 25 COTS platforms, 40 ASIPs were used to investigate the relation between flex-
ibility and customisation. Interestingly the results show that flexibility is a property that can be
improved by adding more resources, similar to performance for example. When the available re-
sources are scarce, flexibility is typically low as only some benchmarks benefit from added compute
capabilities. With more resources available, all applications in the benchmark set can be acceler-
ated, often leading to better flexibility.

Furthermore, an extensive discussion is provided on the state of the art, the proposed flexibility
metric, and several alternative choices that could be made when moving the field forward. For in-
stance, it is shown that the impact of the proposed intrinsic workload normalisation compared to
normalising by a standard RISC is fairly limited. While the theoretical case for intrinsic workload
is arguably stronger, using a RISC as normalisation may be a more practical way to move forward.
The inclusion of loads and stores did not impact the flexibility significantly for the selected bench-
marks, although for more complicated memory systems it could still be interesting to consider
them. In particular for applications that have a lot of data movement such as matrix transpose,
accounting for loads and stores is expected to have a significant impact.

Finally, the proposed flexibility metric is compared in depth to the two alternative definitions
found in literature. In the case of VersaBench versatility, it is shown that in fact performance is
measured, and not a orthogonal property. For versatility as defined by Van Berkel [26], it is argued
that it measures a slightly different, yet related property. Instead of the direct flexibility, it measures
how efficiently a computer architect managed to encode the workload of the application domain.
Given these observations, it is concluded that the proposed flexibility metric has its own unique
merits which warrant its introduction. Furthermore, it aligns with several key notions of flexibility
that seem to be shared by a majority of the community, and as such serves as a good starting point
in defining a commonly accepted definition of compute system flexibility.

Overall, this work provides a survey of the current situation, a starting point in assessing pro-
cessor flexibility in a quantitative manner, and lays the foundation for a broader discussion in the
community.
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APPENDIX

A FLEXIBILITY METRIC RELATED LEMMAS

This section lists the lemmas that are instrumental to the properties of flexibility metric discussed
in Section 3.2.1. Note that in this section the term “positive dataset” is to be understood as a set of
positive real numbers.

Lemma A.1. The geometric mean (GM) of a positive dataset �X increases if an element xi ∈ �X
increases.

Proof. Let GM( �X ) = (x1 · x2 · · · xn)
1
n denote the geometric mean of positive dataset �X . Then

for dataset �X and its incremented version �X ′:

GM( �X )
n
= x1 · x2 · · · xn , and GM( �X ′)

n
= x1 · x2 · · · xk

′ · · · xn , where xk
′ = xk + ϵ with ϵ > 0

It follows that:

GM( �X ′)
n
−GM( �X )

n
= (x1 · x2 · · · xk

′ · · · xn) − (x1 · x2 · · · xk · · · xn) = x1 · x2 · · · (xk
′ −xk ) · · · xn > 0

And since GM( �X )
n

is a positive, monotonically increasing function for positive dataset �X and

n = | �X |, it follows that GM( �X ′) > GM( �X ). �

Lemma A.2. The geometric standard deviation (GSD) of a positive dataset �X can either increase

or decrease when an element of �X increases.

Proof. Let �X = [1, 3, 2, 2] be the original positive dataset, and �X ′ = [2, 3, 2, 2], �X ′′ = [10, 3, 2, 2]

be two datasets after increasing the first element of �X .

GSD( �X ) = GSD([1, 3, 2, 2]) ≈ 1.48

GSD( �X ′) = GSD([2, 3, 2, 2]) ≈ 1.19

GSD( �X ′′) = GSD([10, 3, 2, 2]) ≈ 1.93

Hence, an increase of an element in �X can either increase or decrease the geometric standard

deviation of �X . �

Lemma A.3. The geometric standard deviation (GSD) is invariant to multiplicative scaling, i.e.,

GSD(s · �X ) = GSD( �X ), where �X is a positive dataset and ‘s’ is a positive constant.

Proof.

GM(s · �X ) =

(
n∏

i=1

s · xi

) 1
n

=

(
sn

n∏
i=1

xi

) 1
n

= s ·GM( �X )

GSD(s · �X ) = exp

���
√√√

1

n

n∑
i=1

(
ln

s · xi

GM(s · �X )

)2���� = exp

���
√√√

1

n

n∑
i=1

(
ln

xi

GM( �X )

)2���� = GSD( �X ) �

Lemma A.4. The geometric mean (GM) of a dataset �X normalized to dataset �B is equal to the ratio

of the GMs of �X , and �B, i.e.,GM(
�X
�B
) =

GM ( �X )

GM ( �B)
, where �X = [x1,x2, . . . ,xn] and �B = [b1,b2, . . . ,bn] are

positive datasets.

Proof.

GM( �X )

GM( �B)
=

(∏n
i=1 xi

) 1
n(∏n

i=1 bi

) 1
n

=

(∏n
i=1 xi∏n
i=1 bi

) 1
n

=

(
n∏

i=1

xi

bi

) 1
n

= GM

(
�X

�B

)
�
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Lemma A.5. The geometric mean of dataset �X normalized to dataset �B is equal to the reciprocal of

the geometric mean of �B normalized to �X , i.e., GM(
�X
�B
) = GM(

�B
�X
)
−1

Proof.

GM

(
�X

�B

)
Lemma A.4
=

GM( �X )

GM( �B)
=

(
GM( �B)

GM( �X )

)−1

Lemma A.4
= GM

(
�B

�X

)−1

�

Lemma A.6. The ratio of the geometric means (GMs) of different normalized dataset is the same

as the ratio of the GMs of the original datasets, i.e.,
GM (

�X
�B
)

GM (
�Y
�B
)
=

GM ( �X )

GM ( �Y )
, where �X , �Y , and �B are positive

datasets.

Proof.

GM
(
�X
�B

)
GM

(
�Y
�B

) Lemma A.4
=

GM ( �X )

GM ( �B)

GM ( �Y )

GM ( �B)

=
GM( �X )

GM( �Y )
�

Lemma A.7. The geometric standard deviation (GSD) of a normalized dataset is equal to the GSD

of the reciprocal of that normalized dataset, i.e., GSD(
�X
�B
) = GSD(

�B
�X
), where �X and �B are positive

datasets.

Proof.

GSD

(
�X

�B

)
= exp


����
√√√√√√√ 1

n

n∑
i=1


���ln

xi

bi

GM
(
�X
�B

) ����
2����� = exp


���
√√√

1

n

n∑
i=1

(
lnxi − ln

(
bi ·GM

(
�X

�B

)))2����
= exp


���
√√√

1

n

n∑
i=1

(
ln

(
bi ·GM

(
�X

�B

))
− lnxi

)2���� = exp

����
√√√√√√√ 1

n

n∑
i=1


���ln
bi ·GM

(
�X
�B

)
xi

����
2�����

Lemma A.5
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Lemma A.8. The geometric standard deviation (GSD) of a normalized dataset is always greater

than or equal to the ratio of the GSDs of the original dataset and the baseline, i.e.,GSD(
�X
�B
) ≥

GSD( �X )

GSD( �B)
,

where �X and �B are real positive datasets.

Proof. First rewrite GSD(
�X
�B
) and GSD( �X )

GSD( �B)
:
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�B

)
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Lemma A.4
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GSD( �X )

GSD( �B)
=
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1
n
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ln xi

GM ( �X )
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)
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Since exp (y) is a positive monotonic function, it is sufficient to prove:√√√

1

n

n∑
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ln

xi

GM( �X )
− ln

bi

GM( �B)
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√√√
1
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Substituting �U = ln xi

GM ( �X )
, and �V = ln bi

GM ( �B)
yields:

| | �U − �V | | ≥ | | �U | | − | | �V | |

Which holds according to the reverse triangle inequality. �
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