
The Maximum Entropy Approach and
Probabilistic IR Models

WARREN R. GREIFF and JAY M. PONTE
University of Massachusetts, Amherst

This paper takes a fresh look at modeling approaches to information retrieval that have been
the basis of much of the probabilistically motivated IR research over the last 20 years. We
shall adopt a subjectivist Bayesian view of probabilities and argue that classical work on
probabilistic retrieval is best understood from this perspective. The main focus of the paper
will be the ranking formulas corresponding to the Binary Independence Model (BIM),
presented originally by Roberston and Sparck Jones [1977] and the Combination Match Model
(CMM), developed shortly thereafter by Croft and Harper [1979]. We will show how these
same ranking formulas can result from a probabilistic methodology commonly known as
Maximum Entropy (MAXENT).

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—retrieval models

General Terms: Theory

Additional Key Words and Phrases: Binary independence model, combination match, linked
dependence, idf weighting, probability ranking principle

1. INTRODUCTION

This paper takes a fresh look at modeling approaches to information
retrieval that have been the basis of much of the probabilistically moti-
vated IR research over the last 20 years. We shall adopt a subjectivist
Bayesian view of probabilities and argue that classical work on probabilis-
tic retrieval is best understood from this perspective. The main focus of the
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paper will be the ranking formulas corresponding to the Binary Indepen-
dence Model (BIM), presented originally by Robertson and Sparck Jones
[1977] and the Combination Match Model (CMM), developed shortly there-
after by Croft and Harper [1979]. We will show how these same ranking
formulas can result from a probabilistic methodology commonly known as
Maximum Entropy (MAXENT).

In order to rank documents in response to a query, a probabilistic system
will calculate a probability of relevance for each document. This calculation
will be based on some joint probability distribution over the relevance
variable and variables corresponding to the evidence used by the system.
The system, however, will not have full knowledge of such a distribution. In
the Binary Independence and Combination Match models, a probability
distribution is chosen by making strong assumptions concerning the distri-
bution, which together with parameters estimated from the data, allows
the desired probability of relevance to be calculated. In this paper we will
show how these formal models can be derived from the Principle of
Maximum Entropy, which counsels us to select the probability distribution
with maximum entropy of all those that conform to an accepted set of
constraints.

1.1 Maximum Entropy

1.1.1 Bayesian Reasoning. A clear distinction is made in statistics
with regard to those who consider themselves frequentists and others who
tend to be known as Bayesians. Frequentists view a probability as a real
characteristic of a physically reproducible experimental setup. A clear
example of this would be the repeated throwing of a coin or pair of dice.
Another would be the random sampling of a physically existing population
such as that which is done for the purposes of medical testing or political
polling.

Bayesians can be distinguished in two important ways. First is a far
greater tendency to call on Bayes law:

p~H uE, K! 5
p~E uH, K! z p~H uK!

p~E uK!
(1)

when reasoning probabilistically. The second is that Bayesians have a
wider view of what a probability is. For a Bayesian, a probability is
interpreted as the plausibility of a proposition. While these propositions
can refer to repeatable events, such as coin tosses, they may also refer to
propositions that are not easily or naturally given a frequentist interpreta-
tion. Propositions referring, for example, to whether Albert Gore will be
elected president of the United States in the year 2000, or whether Lizzy
Borden was actually guilty of what she was accused, are anathema to the
frequentist, but considered grist for the probabilistic mill by the Bayesian.

These two facets of the Bayesian are not unrelated. Often, H is a
statistical hypothesis, and E is data that have been collected. K is included
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to emphasize that, for the Bayesian, all probabilities are conditioned on the
background knowledge possessed by the person (or machine) making the
probability assessment, as well as other information such as the data from
an experiment. In such cases, p(E uH, K) is the likelihood of seeing the
evidence we have observed given that the hypothesis is true, and p(H uK) is
the prior probability that H is true before any data have been observed.
p(E uK) is the probability assigned to seeing the evidence without any
knowledge of which of the possible hypotheses may be true. In general, it
may be calculated by summing the product of the likelihoods and prior
probabilities over all possible hypotheses:

p~E 5 euK! 5 O
i51

n

p~E 5 e ∧ H 5 hiuK! 5 O
i51

n

p~E 5 euH 5 hi, K!p~H 5 hiuK!

where e is the observed evidence; each hi is one of the possible hypotheses;1

and the summation is over all possible hypotheses. Equivalently, p(E uK)
can be viewed as a normalization constant chosen to make the sum of
probabilities over all possible hypotheses conditioned on the evidence, e,
sum to 1.

For a frequentist, this type of reasoning is not considered valid unless the
probability of a hypothesis can be given a frequency interpretation. Often it
is not possible, or at least it is very unnatural, to conceive of the hypothesis
as a random event. For the Bayesian who views the probability of a
hypothesis as a measure of its plausibility, this does not present a problem.
We see then that the two aspects of the Bayesian outlook, the utilization of
Bayes law and the interpretation of the meaning of a probability, are
intimately intertwined. The reader is referred to Fine [1973] and Hacking
[1965] for more in-depth discussions of these issues.

1.1.2 The Principle of Maximum Entropy. At the end of the 19th
century, primarily as a result of the work of Maxwell, Boltzmann, and
Gibbs [Jaynes 1979], the area of Statistical Mechanics was born. As a
consequence, the entropy of a physical system became associated with a
probability distribution of the phase space of possible atomic configura-
tions.

In 1948, Claude Shannon published The Mathematical Theory of Commu-
nication and established the foundations of Information Theory. From
three intuitively appealing desiderata, Shannon developed a formal expres-
sion for a measure of “how much ‘choice’ is involved in the selection of an
event or of how uncertain we are of the outcome” [Shannon 1948]. He
showed that for a probability distribution, p 5 ( p1, . . . , pk), over k

1It is assumed for the purposes of this paper that the number of hypotheses under consider-
ation is finite.
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possible elementary events, the quantity

H~p! 5 2 O
i51

k

pk log pk (2)

is, within a constant factor, the unique quantity in accord with his
assumptions.2 Since the form of the expression is recognized as the expres-
sion given for the physical property of entropy in formulations of statistical
mechanics he calls the quantity entropy and adopts the symbol H, recalling
Boltzmann’s H-theorem.

In 1957, Edwin Jaynes “converted Shannon’s measure to a powerful
instrument for the generation of statistical hypotheses and . . . applied it as
a tool in statistical inference” [Tribus 1979]. In a pair of seminal articles
[Jaynes 1957a; 1957b], Jaynes demonstrates that by viewing it as a
problem of statistical inference, statistical mechanics can be derived with-
out depending on “additional assumptions not contained in the laws of
mechanics” [Jaynes 1957a]. His method of inference is based on what has
come to be known as the Principle of Maximum Entropy. In his own words,
this principle states that the maximum entropy estimate is

the least biased estimate possible on the given information; i.e. it is
maximally noncommittal with regard to missing information [Jaynes
1957a, p. 620].

This maximum entropy estimate is obtained by determining that probabil-
ity distribution associated with a random variable, A, over a discrete space
(a1, . . . , an) which has the greatest entropy subject to constraints on the
expectations of a given set of functions of the variable. That is, the
distribution that maximizes (2) subject to a set of constraints:

E~ g1~ A!! 5 O
i51

n

p1 z g1~ai! 5 G1

···

E~ gm~ A!! 5 O
i51

n

pm z gm~ai! 5 Gm

These constraints embody the knowledge that we wish to incorporate in
our distribution of the probability over the possible elementary events.

2This constant factor can be identified with the base chosen for the logarithm in the
expression of entropy. Typically, base 2 is used for the base of the logarithm. This promotes
the conceptualization of information in terms of “bits of information.” However, for reasons of
algebraic simplicity, we will use the natural logarithm for the definition of entropy, and all
uses of the log symbol in this paper will refer to base e.
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1.1.3 An Example. The example given here is an adaptation of the
“Brandeis Dice Problem” originally presented as an illustration of the
maximum entropy approach in Jaynes [1963].

Suppose that we are given a large number of dice and the task of ranking
them. Once the dice are ordered, each will be thrown one time, and our goal
is to get as large a number of 4’s as we can. Suppose, furthermore, that
experiments have been run on the dice. Each die has been thrown a large
number of times, but the only knowledge we have of these experiments is
the average value produced by each die. Following the Probability Ranking
Principle [Robertson 1977], we decide to rank the dice by the probability of
their producing 4’s. How are we to arrive at this probability?

Of some things we feel sure. A die whose average is very close to either 1
or 6 should rank very low. We know that a die that produced an average
close to 1 must have produced almost all 1’s and hence could have produced
only a few 4’s at best. The frequency of 4’s was low in the experimental
trials, and common sense dictates assigning a very low probability to its
producing 4 the next time it is thrown. Similarly for an average close to 6.
Somehow common sense also tells us that dice that produce sample means
above 3.5 should be ranked higher than those that produced sample means
below 3.5. A die that produced an average greater than 3.5 has exhibited a
tendency toward the higher numbers, whereas a die that produced an
average below 3.5 has exhibited a tendency toward the lower numbers. It is
reasonable, then, to assign a higher probability of producing a 4 to a die
that has displayed an affinity for higher numbers. But, how are we to
compare, for example, a die with an average of 3.7 against a die with an
average of 4.2?

There are a number of formulations that might be employed here which
are reasonable and analogous, in fact, to approaches taken in a variety of
real applications. For example, we might choose the probability distribu-
tion with maximum variance. This would result in all of the probability
mass placed on the 1 and the 6 in such a way that mean, m, was respected.
That is,

p 5 Kp1 5
6 2 m

5
, p2 5 0, p3 5 0, p4 5 0, p5 5 0, p6 5

m 2 1

5
L .

Another approach that has been used in statistics is to choose the distribu-
tion that minimizes the sum of the squares of the probabilities. Unfortu-
nately, this can lead to negative values for some of the probabilities in some
cases.

The MAXENT solution to this problem is to assign to each die the
probability distribution over the six possible numbers that has maximum
entropy. From this distribution, we can determine the probability of each
die coming up 4, and then rank the dice based on these probabilities. The
MAXENT solution has the following attractive properties:
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● The probability associated with each die accords with the data in that,
under this distribution, the expectation of the number to appear on a
given toss is equal to the experimental average.

● Of all distributions that conform with the data in this way, it is that
which has the maximum uncertainty associated with it, in the sense of
uncertainty which follows from the Shannon desiderata. The probability
is “spread out” as much as possible in accord with the constraints that
have been imposed. In this way, it may be said to include all the
knowledge available and nothing more. In the words of Jaynes, it is the
least biased distribution possible.

● The method is logically consistent. We are guaranteed that anomalies
(negative probabilities, for example) will not occur if we follow the
MAXENT procedure.

● The results accord with common sense. For example, the probability
distribution for a die with an average close to 1 will be highly peaked
around 1.

The probability distribution associated with a die whose average is 4.0 is
given by Golan et al. [1996, Table 2.3.1, p. 14] as

p 5 ^0.103, 0.123, 0.146, 0.174, 0.207, 0.247&.

The expected value for this distribution is 4.0, and of those with expecta-
tion of 4.0, the probability is the most evenly distributed. An average of 5.0
corresponds to a distribution of

p 5 ^0.021, 0.038, 0.072, 0.136, 0.255, 0.478&

which is even more skewed toward higher numbers, as we would expect. An
average of 3.5 corresponds to

p 5 ^0.167, 0.167, 0.167, 0.167, 0.167, 0.167&

which is as spread out as a distribution over six possibilities can be, and is
the same probability distribution we associate with a die about which we
have no information. It is interesting to note here that the MAXENT
approach allows such a die (one for which the experimental average was
missing for some reason) to be included in the ranking along with the rest.
Values for the probability of throwing a 4, associated with dice with
averages of 2.0, 3.0, 3.5, 4.0, and 5.0 are, respectively, 0.072, 0.146, 0.167,
0.174, and 0.136.

We have modified The Brandeis Dice Problem so that the example is
suggestive of the problem faced in the design of information retrieval
systems. It is now time to address directly the issue of how the MAXENT
approach pertains to IR modeling.
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1.2 The MAXENT Approach and Probabilistic IR Modeling

Since the publication of Jaynes’ articles, the principle of maximum entropy
has been applied to practical problems in diverse areas [Erickson and
Smith 1988], including image reconstruction [Gull and Daniell 1978],
spectral analysis [Bretthorst 1988], reliability engineering [Tribus 1969],
and economics [Golan et al. 1996].

In two papers in the early 80’s, Cooper and Huizinga [1982] and Cooper
[1983] make a strong case for applying the maximum entropy approach to
the problems of information retrieval. Cooper points out that “A common
criticism of most probabilistic approaches to information retrieval system
design is that they involve the use of unrealistic simplifying assumptions
concerning statistical independence” [Cooper 1983]. Cooper and Huizinga
state that one might “forgive serious oversimplifications in particular cases
if the assumptions were in some sense correct on the average, or if they
constituted a best guess in some cogent statistical sense, but no convincing
arguments have been advanced showing that the assumptions are support-
able even in this weak sense” [Cooper and Huizinga 1982, p. 101].3

In these papers, firm first steps are taken in the direction of applying
maximum entropy to information retrieval. The maximum entropy ap-
proach is used to incorporate the idea of term precision weighting [Salton
et al. 1976] in a probabilistic context. They show how probability-of-
relevance computations based on MAXENT result in an expressive request
language combining the capabilities of both Boolean and “weighted-re-
quest” retrieval systems.

Kantor and Lee [Kantor 1984; Kantor and Lee 1986] extend the analysis
of the Principle of Maximum Entropy in the context of information re-
trieval. Lee and Kantor [1991] explore the use of maximum entropy to
resolve user estimates of conditional relevance probabilities that may be
inconsistent with available term occurrence data. Very recently, Kantor
and Lee [1998] have conducted experiments to test the performance of the
PME as a method of document retrieval. While they outperform two
simpler methods on small collections, they report discouraging results on
large document sets and conclude that the PME, in general, does not
appear to present advantages over more “naive” methods.

In contrast to the work of Kantor and Lee [1998], our interest is not in
the development of an alternative retrieval algorithm based on the PME.
Our intent is rather to consider the conceptual basis for traditional ap-
proaches to probabilistic retrieval. The goal in what follows will be to
analyze classical probabilistic IR models in light of the Principle of Maxi-
mum Entropy. The primary objectives of this paper are to (1) show that
traditional approaches to probabilistic retrieval modeling can be repro-
duced using the MAXENT methodology and (2) compare and contrast the
classical and MAXENT approaches. The reasons for undertaking this study
is our belief that:

3italics added.
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● The MAXENT approach is, in a sense, more basic than previous ap-
proaches. We believe that maximum entropy allows for the development
of probabilistic models from conceptually simpler, more fundamental
principles. We recognize that opinions will differ as to what is to be
considered conceptually simpler and more fundamental. We shall try to
avoid taking a dogmatic stand in what follows and stay to our goal of
presenting an alternative view and the reasons we believe this view to be
worthy of consideration.

● The MAXENT approach adopts a different philosophical attitude with
respect to the role of probability theory, and the meaning of “probability.”
This difference we believe to be pertinent when the probability calculus is
applied to the problem of information retrieval. We find this distinction to
be more than an abstract issue of philosophical interpretation, but one
with practical repercussions that can affect how the IR problem is viewed;
the types of solutions researchers are predisposed to consider; the meth-
odologies and tools brought to bear; the formulation of proposed solutions;
and ultimately the design of retrieval systems.

● Maximum entropy offers a formal, mathematically consistent technique
for the combination of evidence. The justification of this technique, felt to
be compelling by some, less so by others, can be said, at the least, to be
reasonable. In cases of sufficient simplicity, for which common sense
suggests a solution, MAXENT is found to accord with common sense.

● Maximum entropy can be viewed as a methodology of research. The
researcher, intent on modeling some aspect of nature stochastically,
chooses an elementary event space as best she can based on her knowl-
edge of the phenomenon under study. She further constrains the proba-
bility distribution over this space using whatever information she has
available. She then may mathematically derive the form of the maximum
entropy distribution. If this distribution is satisfactory, all is well, and
she is done. The results, however, may not be acceptable. The derived
distribution may not predict something known to be true, in statistical
mechanics, for example. Or, an application utilizing the distribution, for
image reconstruction perhaps, may produce results inferior to what we
have reason to suspect is possible. If so, this is where, according to
Jaynes, the maximum entropy approach can be most valuable. Jaynes
recounts how classical statistical mechanical theory was unable to predict
some thermodynamic properties such as heat capacities. This state of
affairs forced the search for additional constraints. The nature of this
constraint lay in the discreteness of possible energy states. Jaynes
asserts as “historical fact that the first claims indicating the need for the
quantum theory . . . were uncovered by a seeming unsuccessful applica-
tion of the principle of maximum entropy” [Jaynes 1994, p. 1125].

● If the distribution is not living up to expectations, then something known
about the problem has not been taken into account, and MAXENT points
a finger in the direction that needs to be explored. There may be a way of
using this knowledge to further constrain the distribution. If this extra
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piece of knowledge can be identified, a way of incorporating the knowl-
edge in the form of one or more new constraints can be designed, and the
process may continue. If no more constraints can be found, and the
results are still not adequate, the researcher must begin to question the
specification of the elementary event space over which the probability
distribution is defined. After serious contemplation, the space may, in
retrospect, be thought not to be the best. The researcher may want to
modify the space so as to better conform to her prior knowledge with
respect to the nature of her problem.

In this paper, the following view of a probabilistic retrieval system is
adopted. The rank of a document is the system’s probability that the
document in question will be found to be relevant to a given query. In
arriving at this probability, the system brings to bear all general knowl-
edge it has concerning the relevance of documents to queries. This is
combined with knowledge of the characteristics of the particular document
collection being searched and the specific query/document pair currently
under scrutiny. In the case of the Binary Independence Model, knowledge
gleaned from the user in the process of relevance feedback is used as well.

For a given query, the system will arrive at a joint probability distribu-
tion over the elementary event space V 5 X 3 R, where X is a vector of
document attributes, and R 5 {0, 1} corresponds to judgments of relevance.
Knowledge built into the system in combination with knowledge of the
statistical characteristics of the document collection are used to constrain
the probability distributions that will be considered. Of the set of probabil-
ity distributions satisfying these constraints, the unique distribution that
maximizes the entropy will be chosen. The distribution can then be used to
assign the system’s probability of relevance.

1.3 Maximum Entropy Applied to Natural Language Processing

The Principle of Maximum Entropy has also been applied successfully in
the area of natural language processing, using a class of models known as
the generalized Gibbs distribution. A maximum entropy approach to esti-
mating model parameters was developed by Darroch and Ratcliff [1972]
and was later improved upon by Della Pietra et al. [1997]. This class of
models can be used to model sequential effects in natural language text
accounting for longer-range effects than a simple trigram model.

The distribution is defined as follows:

p̂~ x! 5
elzf~ x!pd~ x!

OX elzf~ x!pd~ x!

where l is a vector of parameters; f( x) is a vector of features that predict x;
and pd( x) is a default probability estimate of x. Beeferman et al. [1997]
applied this class of models to the topic segmentation problem. Briefly, the
problem is to segment text into stories when the story boundaries are not
marked.
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The model utilizes two types of features which the authors call “relevance
features” and “lexical features.” A relevance feature is a ratio of a long-
range language model and a short-range language model. A trigram model
is used as the short-range model. Longer-range “triggering” effects are
incorporated into the model by means of a recently seen word cache, and
then the probabilities are calculated using the exponential model described
above. To be more precise, the relevance features are defined as follows:

L 5 log1 S
elzf~ x!ptri~ x!

OX elzf~ x!ptri~ x!D
ptri~ x!

2
where the features of the exponential model, fi, consist of words that
predict the word x within a predefined window of 500 words and ptri( x),
the trigram probability, is the probability of x given the two previous
words. The intuition behind this approach is that when a short-range
language model outperforms a longer-range language model, that indicates
a shift in topic.

The second class of features, the lexical features, consists of words whose
presence predicts a topic break or the absence of one. An example of such a
feature is the personal pronoun “he.” The presence of the word “he”
indicates that the current sentence is probably not the start of a new topic,
since it refers to a person introduced previously in the story.

The features for the exponential model are chosen one at a time accord-
ing to the maximal gain criterion defined as follows. Let Bp and Bq be
binary valued random variables defined as

Bp~0! 5 1.0 2 p̃@ g#

Bp~1! 5 p̃@ g#

Bq~0! 5 1.0 2 q@ g#

Bq~1! 5 q@ g#

where p̃[ g] is the expected value of candidate feature g in the training data
and q[ g] is the expected value of g according to the current model q.
Having defined these variables, the maximal gain is computed as follows:

Ĝ 5 O
0, 1

BplogSBp

Bq
D

This is the Kullback-Leibler divergence of the current model with the
empirical model corresponding to the observed data. In other words, it is
the maximal degree to which the model can be improved by feature g. This
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is a greedy search in the sense that the gain is maximal using the current
values of the l vector. To find the feature with the real maximum gain, the
l vector would need to be reestimated, as described below, for each
candidate feature. The greedy algorithm avoids performance of the reesti-
mation algorithm for every candidate feature.

Once a feature has been chosen, it is assigned the value, â, defined as

â 5 logS p̃@ g#~1.0 2 q@ g#!

q@ g#~1.0 2 p̃@ g#
D

as an initial estimate for its l value where â is the closed form solution for
the value that produces the maximal gain. For the theoretical derivation of
Ĝ and â see Della Pietra et al. [1997].

After choosing a new feature and assigning the initial value of l for the
new feature, the entire l vector is reestimated by solving the following
equation for each l i:

q@ fiel i f ## 5 p̃@ fi#

where f# is the sum over the observed training data of the number of
features that are “on” for a given observation. As before, the square
brackets indicate the expectation of the variable under the indicated
distribution, where q refers to the distribution determined by the exponen-
tial model and p̃ is the empirical distribution of the feature in the training
data itself. The process of adding the maximal gain feature and then
reestimating is repeated until the maximal gain of all candidate features
falls below an empirically determined threshold.

1.4 Contents of the Paper

In the next section we give a brief review of the Binary Independence
Model (BIM) developed by Robertson and Sparck Jones. We also review the
Croft and Harper adaptation of the basic BIM idea to applications for which
no relevance judgments are presumed to be available. With this, we will be
prepared for the main purpose of the paper.

In Section 3, we show how the essence of the Binary Independence Model
can be derived from the Principle of Maximum Entropy. With the develop-
ment of the model established, we discuss the assumptions of the Binary
Independence Model in the light of the maximum entropy approach. In
particular, we show that linked dependence, which is assumed in the
Binary Independence Model is, in a sense, a consequence of the MAXENT
model in that it is a characteristic of the resulting probability distribution.
In Section 4 we go on to show how the work of Croft and Harper can also be
reproduced from the maximum entropy standpoint. Again we compare the
approach taken by the original authors to that adopted with MAXENT.

In Section 5, we discuss the two models we have developed with the
MAXENT approach. More specifically, we will discuss the differences
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between making assumptions concerning the probabilities of events and
constraining the probability distribution. We will review how constraints
have been chosen to reflect prior information in our models and, generally,
what kinds of prior information can be incorporated in a MAXENT distri-
bution.

2. BACKGROUND

2.1 Binary Independence Model

The Binary Independence Model (BIM), developed by Robertson and Sparck
Jones [Robertson and Sparck Jones 1977; van Rijsbergen 1979], adopts a
probabilistic approach to the development of a ranking formula. It is
designed to be applicable in an environment in which the relevance of some
of the documents will have been judged prior to the application of the BIM
ranking formula.

In the Binary Independence Model, the focus is on the odds of relevance,
conditioned on the occurrence pattern of the query terms that is observed
in a given document

O~rel ux1, . . . , xs! 5
p~rel ux1, . . . , xs!

p~rel ux1, . . . , xs!

where ( x1, . . . , xs) [ {0, 1}s are the values of (X1, . . . , Xs) corresponding
to the occurrences of the s query terms in a given document. For the
purposes of clarity of exposition, rel and rel shall be used interchangeably
with 1 and 0, respectively, for the values of the relevance variable, R. The
application of Bayes law in both the numerator and the denominator gives

O~rel ux1, . . . , xs! 5
p~ x1, . . . , xsurel !

p~ x1, . . . , xsurel!
z O~rel !. (3)

The key assumption in the Binary Independence Model is that query term
occurrences are independent in both the relevant and nonrelevant sets.
Formally:

@~ x1, . . . , xs! [ $0, 1%s: p~ x1, . . . , xsurel ! 5 P
i51

s

p~ xiurel ! (4)

p~ x1, . . . , xsurel! 5 P
i51

s

p~ xiurel! (5)
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From which, it immediately follows that

@~ x1, . . . , xs! [ $0, 1%s :
p~ x1, . . . , xsurel !

p~ x1, . . . , xsurel!
5 P

i51

s p~ xiurel !

p~ xiurel!
. (6)

William Cooper later emphasized that Eq. (6) is all that really needs to be
assumed [Cooper 1991]. This “linked dependence assumption” is weaker
than the pair of conditional independence assumptions, (4) and (5), and is a
fairer statement of the properties that need be assumed to hold, in order for
the application of the Binary Independence Model to be valid.

The product on the right of (6) can be reorganized into two separate
products: one over terms that do occur in the document and one over terms
that do not:

P
i51

s p~ xiurel !

p~ xiurel!
5 P

xi50

p~ xiurel !

p~ xiurel!
z P

xi51

p~ xiurel !

p~ xiurel!

By extracting p(Xi50 urel )/p(Xi50 urel) from each of the factors, we obtain
a formula that involves the multiplication of a value which is independent
of the term occurrence pattern by a term-dependent coefficient for each of
the terms occurring in a document:

P
i51

s p~ xiurel !

p~ xiurel!

5 P
xi50

p~xiurel !

p~xiurel!Yp~Xi 5 0urel !

p~Xi 5 0urel!
z P

xi51

p~xiurel !

p~xiurel!Yp~Xi 5 0urel !

p~Xi 5 0urel!
z P

i51

s p~Xi 5 0urel !

p~Xi 5 0urel!

5 P
xi50

p~Xi 5 0 urel !

p~Xi 5 0 urel!Yp~Xi 5 0 urel !

p~Xi 5 0 urel!
P
xi51

p~Xi 5 1 urel !

p~Xi 5 1 urel!Y
p~Xi 5 0 urel !

p~Xi 5 0 urel!
P
i51

s p~Xi 5 0 urel !

p~Xi 5 0 urel!

5 P
xi51

p~Xi 5 1 urel !

p~Xi 5 1 urel!

p~Xi 5 0 urel!

p~Xi 5 0 urel !
z P

i51

s p~Xi 5 0 urel !

p~Xi 5 0 urel!
(7)
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Under the linked dependence assumption (6), the expression (7) may be
substituted for the fraction in (3), giving

O~rel ux1, . . . , xs!

5 P
xi51

p~Xi 5 1 urel !

p~Xi 5 1 urel!

p~Xi 5 0 urel!

p~Xi 5 0 urel !
z P

i51

s p~Xi 5 0 urel !

p~Xi 5 0 urel!
z O~rel !. (8)

Taking the log of both sides yields

log O~rel ux1, . . . , xs! 5 O
xi51

log
p~Xi 5 1 urel !

p~Xi 5 1 urel!

p~Xi 5 0 urel!

p~Xi 5 0 urel !

1 O
i51

s

log
p~Xi 5 0 urel !

p~Xi 5 0 urel!
1 log O~rel !. (9)

The Binary Independence Model supposes that relevance feedback informa-
tion is available and that the probabilities in (9) can be estimated from the
set of documents judged relevant and nonrelevant:

p~Xi 5 1 urel ! 5 j i

p~Xi 5 1 urel! 5 j# i

giving,

log O~rel ux1, . . . , xs! 5 O
xi51

log
j i~1 2 j# i!

j# i~1 2 j i!
1 O

i51

s

log
1 2 j i

1 2 j# i

1 log O~rel !.

(10)

The result is an additive formula for the calculation of the log-odds of
relevance, conditioned on the occurrence pattern of the query terms. The
increase in the log-odds in favor of a hypothesis, from log O(rel ) to
log O(rel ux1, . . . , xs) in this case, has been called “weight-of-evidence” by
Good [1960; 1950]. The formula allows the weight of evidence in favor of
relevance provided by the occurrence pattern of the query terms, relative to
that provided by a document in which no query terms are present, to be
calculated by adding

log
j i~1 2 j# i!

j# i~1 2 j i!
(11)
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for each query term that appears in the document. From a practical
standpoint, it is important that the calculation involves only terms that
appear in the document.

2.2 Croft and Harper Model Without Relevance Information

In 1979, Croft and Harper adapt the work of Robertson and Sparck Jones to
develop a probabilistic retrieval model that does not depend on the avail-
ability of relevance information. In the place of relevance feedback data
they use collection statistics to estimate the probability of a query term
appearing in a nonrelevant document. Croft and Harper rewrite the sum of
the BIM term weights, (11), as

O
xi51

s

log
p~Xi 5 1 urel !~1 2 p~Xi 5 1 urel!!

p~Xi 5 1 urel!~1 2 p~Xi 5 1 urel !!

5 O
xi51

s

log
p~Xi 5 1 urel !

1 2 p~Xi 5 1 urel !
1 O

xi51

s

log
1 2 p~Xi 5 1 urel!

p~Xi 5 1 urel!
(12)

They estimate the value of p(Xi 5 1 urel) as ni/N, where ni is the number
of documents in which term i appears, and N is the total number of
documents in the collection. They also assume that the probability of
appearing in a relevant document is the same for all terms in the query, an
assumption we will examine further later on. The first term of (12) is then
simply a constant, C, times the number of query terms that appear in the
document. Viewing this constant as a weighting factor, they conclude that
the best ranking function is a weighted combination

C z O
xi51

s

1 1 O
xi51

s

log
N 2 ni

ni

(13)

of a simple coordination match and a match using idf weights, which they
call combination match. They determine the value for C empirically, based
on the quality of the resulting retrieval performance. This formula suggests
a probabilistic justification of the use of inverse document frequency for the
weighting of terms, which was originally proposed by Karen Sparck Jones
[Sparck Jones 1972].

3. THE BIM-MAXENT RETRIEVAL MODEL

In this section, we derive a retrieval model based on the Principle of
Maximum Entropy. The model, which we shall refer to as BIM-MAXENT,
will be constrained in such a way as to be consistent with the assumptions
made in the Binary Independence Model of Robertson and Sparck Jones.
Our goal is to reproduce the ranking formula. Subsequently, we will
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analyze the constraints placed on the probability distribution in our maxi-
mum entropy model and compare them with the assumptions on which the
Binary Independence Model is based.

3.1 Basic BIM-MAXENT Model

Our goal is to maximize the entropy of the probability distribution

H~ p! 5 2 O
w[V

p~v!log p~v! (14)

where each v is an elementary element of the event space V 5 X 3 R.
Each elementary event corresponds to the observation of a document with
respect to a given query. Associated with each observation are the random
variables, X1, . . . , Xs, and R, where s is the number of terms in the query.
Each of these variables is binary, with Xi 5 1 corresponding to the
occurrence of term i in the document, and R 5 1 corresponding to the
document being relevant to the query. Hence, the sum in (14) is taken over
all possible (binary) assignments ( x1, . . . , xs, r) to (X1, . . . , Xs, R).

3.1.1 Constraints. In the maximum entropy model, the probability
distribution over these elementary events will be constrained in three
different ways:

● For each query term, the probability of its occurring in a document
known not to be relevant to the query will be constrained. These
probabilities may be constrained independently.

● For each query term, the probability of its occurring in a document
known to be relevant to the query will be constrained. As with the
probabilities conditioned on nonrelevance, the probability associated
with each query term may be constrained independently of the rest.

● The prior probability of relevance (i.e., the probability that an arbitrary
document is relevant before any of the term occurrence variables is
observed) will be constrained.

Formally these three constraints can be expressed as

p~Xi 5 1 uR 5 0! 5 j# i i 5 1, . . . , s (15)

p~Xi 5 1 uR 5 1! 5 j i i 5 1, . . . , s (16)

p~R 5 1! 5 r. (17)

The constraints given in (15) and (16) are analogous to probabilities that, in
the Binary Independence Model, are estimated as a result of relevance
feedback. There, the values j i and j# i are estimated from documents judged
to be relevant and nonrelevant respectively.

No attempt is made to estimate the value r in the Binary Independence
Model. The prior odds of relevance does enter into the odds of relevance
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conditioned on the term occurrence pattern given in (8). However, it is not
needed for the purposes of ranking. We include constraint (17) in order to
fully mimic the log-odds of relevance formula developed in the BIM model.
This constraint has something of a subordinate status in our model, also. If
no reasonable value for it can be assigned, it may be treated as a parameter
in the resulting probability distribution. We will see that, for the purposes
of ranking, the parameter may be left undetermined.

In order to “implement” the constraints discussed above, we focus on
certain features of the elementary events. These features are random
variables; functions associating a real number with every element of v. The
features we will need, defined in terms of the random variables, Xi and R
introduced at the beginning of this section, are

g# i~v! 5 H 1 if Xi~v! 5 1 ∧ R~v! 5 0
0 otherwise J i 5 1, . . . , s

gi~v! 5 H 1 if Xi~v! 5 1 ∧ R~v! 5 1
0 otherwise J i 5 1, . . . , s

gR~v! 5 R~v!

The desired constraints on the probability distribution can be effected by
constraining the expectations of these features such that

E@g# i~v!# 5 G# i ; j# i z ~1 2 r! i 5 1, . . . , s (18)

E@ gi~v!# 5 Gi ; j i z r i 5 1, . . . , s (19)

E@ gR~v!# 5 GR ; r. (20)

In (20) we constrain the probability p(R 5 1) to r directly,

E@ gR~v!# 5 r iff E@R# 5 r iff p~R 5 1! 5 r,

since the expected value of a binary variable is simply the probability that
the variable equals 1. In (18), we are effectively constraining p(Xi 5 1 uR 5
0) to j# i, since

E@g# i~v!# 5 j# i~1 2 r! iff p~Xi 5 1, R 5 0! 5 j# i z ~1 2 r!

iff p~Xi 5 1 uR 5 0! z p~R 5 0! 5 j# i z ~1 2 r!

iff p~Xi 5 1 uR 5 0! 5 j# i.

The last step follows because, having constrained p(R 5 1) to r, we have
constrained p(R 5 0) to 1 2 r. Similarly, (19) effects the desired constraint
on p(Xi 5 1 uR 5 1):
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E@ gi~v!# 5 jr iff p~Xi 5 1, R 5 1! 5 j i z r

iff p~Xi 5 1 uR 5 1! z p~R 5 1! 5 j i z r

iff p~Xi 5 1 uR 5 1! 5 j i

3.1.2 Probability of an Arbitrary Event. To maximize the entropy
subject to these constraints, we apply the Lagrange method of undeter-
mined multipliers [Chiang 1967]. Introducing the multipliers, l90; l# 1, . . . ,
l# s; l1, . . . , ls; and lR, the problem of maximizing H in conformance with
the constraints, (18)–(20), is transformed into the maximization of the
unconstrained function:

H9~ p! 5 2 O
v[V

p~v!log p~v! 1 l90 S O
v[V

p~v! 2 1D
1 l# 1S O

v[V

p~v!g# 1~v! 2 G# 1D 1 · · · 1 l# sS O
v[V

p~v!g# s~v! 2 G# sD
1 l1S O

v[V

p~v! g1~v! 2 G1D 1 · · · 1 lsS O
v[V

p~v! gs~v! 2 GsD
1 lRS O

v[V

p~v! gR~v! 2 GRD (21)

where the term, l90((p(v) 2 1), corresponds to the constraint, applicable
to any probability distribution, that the p(v) must sum to 1. Taking the
partial derivative with respect to p(v), for a specific event, v, gives



p~v!
H9 5 2 1 2 log p~v! 1 l90 1 l# 1 g# 1~v! 1 · · · 1 l# s g# s~v!

1 l1 g1~v! 1 · · · 1 ls gs~v!

1 lR gR~v!

Using l0 for l90 2 1 and setting the derivatives (one for each of the 2s11

possible values for v) equal to zero, we get

log p~v! 5 l0 1 S O
i51

s

l# i g# i~v!D 1 S O
i51

s

l i gi~v!D 1 lR gR~v!

p~v! 5 e @l01~(i51
s

l# ig# i~v!!1~(i51
s

ligi~v!!1lRgR~v!#

5 e @l01~(i51
s

l# ir#xi!1~(i51
s

lirxi!1lRr#

(22)
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where r is 1 if v corresponds to a relevant document and 0 otherwise; r# 5 (1 2
r) is 1 if v corresponds to a nonrelevant document; and for i 5 1, . . . , s: xi is 1
when term i occurs in the document and 0 otherwise. It is not difficult to prove
(see, for example, Chapter 4 of Tribus [1969]) that this solution will always be,
not only a maximum, but a global maximum for the entropy.

3.2 BIM-MAXENT Ranking Formula

As we saw in the introduction, the ranking formula developed for tradi-
tional probabilistic systems is based on the calculation of the odds of
relevance given the occurrence pattern of the query terms. Based on the
model developed in the previous section, the conditional odds of relevance
for the maximum entropy distribution can be calculated as

O~rel ux1, . . . , xs!

5
p~rel ux1, . . . , xs!

p~rel ux1, . . . , xs!
5

p~ x1, . . . , xs, rel !/p~ x1, . . . , xs!

p~ x1, . . . , xs, rel!/p~ x1, . . . , xs!

5
p~ x1, . . . , xs, rel !

p~ x1, . . . , xs,rel!
5

e ~l01(i51
s

lixi1lR!

e ~l01(i51
s

l# ixi!
5 e @~(i51

s
~li2l# i! xi!1lR#.

Therefore, the log-odds of relevance is given by

log O~rel ux1, . . . , xs! 5 S O
i51

s

~l i 2 l# i! xiD 1 lR 5 S O
xi51

~l i 2 l# i!D 1 lR.

(23)

This gives an expression for the log-odds of relevance in terms of the parame-
ters, l1, . . . , ls; l# 1, . . . , l# s; and lR. We will need to determine the values of
these parameters in terms of the constraining factors, j1, . . . , js; j#1, . . . , j#s;
and r, in order to transform this ranking formula to one in terms of parame-
ters that can be set from the data that will be available at the time of retrieval.

3.3 Characteristics of the BIM-MAXENT Distribution

To prepare for the determination of the values for the Lagrange multipli-
ers, we shall find it convenient to derive closed form solutions for the
following probabilities:

● O(Xi 5 1 uR 5 1): the odds of term occurrence given relevance.
● O(Xi 5 1 uR 5 0): the odds of term occurrence given nonrelevance.
● O(R 5 1): the prior odds of relevance.

3.3.1 Odds of Term Occurrences Given Relevance. Using the formula-
tion developed for each term in the previous section, the odds of occurrence
conditioned on relevance can be determined. For the sake of concreteness
we develop the odds for the occurrence of the first term. For an arbitrary
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assignment, x2, . . . , xs, of values to X2, . . . , Xs

p~1, x2, . . . , xs, rel !

p~0, x2, . . . , xs, rel !
5

e @l01l11~(i52
s

lixi!1lR#

e @l01~(i52
s

lixi!1lR#
5 el1.

We see that el1 expresses how many times more likely we are to find an
occurrence, as opposed to a nonoccurrence, of the first term, in a relevant
document that has an occurrence configuration for the remaining terms of
( x2, . . . , xs). That is,

p~1, x2, . . . , xs, rel ! 5 el1 p~0, x2, . . . , xs, rel !.

Since this is the case for an arbitrary configuration, ( x2, . . . , xs) [ {0,
1}s21, we may sum over all possible configurations:

O
x2, . . . , xs

p~1, x2, . . . , xs, rel ! 5 O
x2, . . . , xs

el1 p~0, x2, . . . , xs, rel !

5 el1 O
x2, . . . , xs

p~0, x2, . . . , xs, rel !

which is to say

p~X1 5 1, R 5 rel ! 5 el1 p~X1 5 0, R 5 rel !

and therefore

O~X1 5 1 urel ! 5
p~X1 5 1 uR 5 rel !

p~X1 5 0 uR 5 rel !
5

p~X1 5 1, R 5 rel !

p~X1 5 0, R 5 rel !

5 el1.

What we have shown for O(X1 5 1 urel ) holds equally well for all Xi:

O~Xi 5 1 urel ! 5
p~Xi 5 1, R 5 rel !

p~Xi 5 0, R 5 rel !
5 eli i 5 1, . . . , s (24)

3.3.2 Odds of Term Occurrences Given Nonrelevance. The analysis of
term occurrences given nonrelevance is very similar to that for relevance:

p~1, x2, . . . , xs, rel!

p~0, x2, . . . , xs, rel!
5

e @l01l# 11~(i52
s

l# ixi!#

e @l01~(i52
s

lixi!#
5 e l̄1

which leads to

O~Xi 5 1 urel! 5 el# i i 5 1, . . . , s. (25)
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3.3.3 Prior Odds of Relevance. We will derive the prior odds of rele-
vance in terms of the probabilities of relevance and nonrelevance. In order
to derive a closed form for the probability of relevance from the formula
given in (22), we can sum over all elementary events for which R 5 1:

p~rel ! 5 O
x1, . . . , xs

p~ x1, . . . , xs, rel !

5 O
x1, . . . , xs

e @l01~(i51
s

~l# ir#1lir! xi!1lRr# 5 e ~l01lR! O
x1, . . . , xs

e @(i51
s

lixi#

Considering that for each configuration ( x2, . . . , xs) there are two terms in
the summation, one with x1 5 0 and one with x1 5 1, we can write

p~rel ! 5 e ~l01lR! O
x2, . . . , xs

~e @l11(i52
s

lixi# 1 e @(i52
s

lixi#!

5 e ~l01lR!~el1 1 1! O
x2, . . . , xs

e @(i52
s

lixi#.

Applying this same reasoning to each of the remaining xi, in turn,

p~rel ! 5 e ~l01lR!~el1 1 1!~el2 1 1! O
x3, . . . , xs

e @( i53
s

l ixi#

···

5 e ~l0 1 lR!P
i51

s

~eli 1 1! (26)

Similar analysis for the probability of nonrelevance yields

p~rel! 5 O
x1, . . . , xs

p~ x1, . . . , xs, rel! 5 el0 O
x1, . . . , xs

e @(i51
s

l# ixi#

5 el0 P
i51

s

~el# i 1 1!. (27)

The probabilities of relevance and nonrelevance given in (26) and (27) can
now be combined to give the odds of relevance:

O~rel ! 5
p~rel !

p~rel!
5

e ~l01lR!P i51
s ~eli 1 1!

el0 P i51
s ~e l̄i 1 1!

5 elR P
i51

s ~eli 1 1!

~el# i 1 1!
(28)
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3.4 Parameter Values for BIM-MAXENT

The Lagrange multipliers introduced in (21) become parameters of the proba-
bility distribution derived in (22). If we are to derive a specific distribution, we
must determine the values of these parameters. While the derivation of the
distribution was based on the form of the expressions to be constrained, as
given in (18)–(20), the actual values to which they must be constrained have
yet to play their role. We now turn our attention to these values.

3.4.1 The Values of l1, . . . , ls. From (24), we have li 5 log O(Xi 5
1 urel ), but p(Xi 5 1 urel ) has been constrained to j. Equivalently, p(X 5
O urel ) has been constrained to 1 2 j, and therefore

l i 5 log O~Xi 5 1 urel ! 5 log
p~Xi 5 1 urel !

p~Xi 5 0 urel !
(29)

5 log
j i

1 2 j i

.

3.4.2 The Values of l# 1, . . . , l# s. Similarly, from (25),

l# i 5 log O~Xi 5 1 urel! 5 log
p~Xi 5 1 urel!

p~Xi 5 0 urel!

5 log
j# i

1 2 j# i

. (30)

3.4.3 The Value of lR. The prior, p(rel ), has been constrained to r,
which is equivalent to O(rel ) being constrained to r/(1 2 r). Combining
this with the expression for O(rel ) given in (28)

elR P
i51

s eli 1 1

el# i 1 1
5

r

1 2 r

elR 5
r

1 2 r
P
i51

s el# i 1 1

eli 1 1

lR 5 logS r

1 2 r
P
i51

s el# i 1 1

eli 1 1D 5 log
r

1 2 r
1 O

i51

s

log
el# i 1 1

eli 1 1
.
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This, together with the expressions for l i and l# i, derived in (29) and (30),
gives

lR 5 log
r

1 2 r
1 O

i51

s

log

j# i

1 2 j# i

1 1

j i

1 2 j i

1 1

(31)

5 log
r

1 2 r
1 O

i51

s

log
1 2 j i

1 2 j# i

.

It is worth observing that lR is simply the log-odds of relevance of a
document for which none of the query terms occurs:

log O~rel u0, . . . , 0! 5 log
p~0, . . . , 0, rel !

p~0, . . . , 0, rel!
5 log

e @l01lR#

el0
5 lR (32)

3.4.4 The Value of l0. el0 is a factor in the probability of each elemen-
tary event, and l0 plays no other role. Hence, l0 is nothing more than the
log of the normalization constant which forces the probabilities over ele-
mentary events to sum to 1.

3.5 BIM-MAXENT Ranking Formula—Reprise

Substituting the values of the parameters derived in (29), (30), and (31) for
the conditional log-odds of relevance given in (23), we have

log O~rel ux1, . . . , xs! 5 S O
xi51

~l i 2 l# i!D 1 lR

5 S O
xi51

S S log
j i

1 2 j i

2 log
j# i

1 2 j# i
D D D 1 log

r

1 2 r

1 O
i51

s

log
1 2 j i

1 2 j# i

5 S O
xi51

log
j i~1 2 j# i!

j# i~1 2 j i!
D 1 S O

i51

s

log
1 2 j i

1 2 j# i
D 1 log

r

1 2 r

(33)
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This is the ranking formula, (10), of the Binary Independence Model.

3.6 Discussion of the BIM-MAXENT Model

To summarize the development presented in this section:

● we have imposed the set of constraints (18)–(20),

E@g# i~v!# 5 G# i ; j# i z ~1 2 r! i 5 1, . . . , s

E@ gi~v!# 5 Gi ; j i z r i 5 1, . . . , s

E@ gR~v!# 5 GR ; r;

● it was shown in (22) that for the maximum entropy distribution subject to
these constraints, the probability of an arbitrary event is given by

log p~v! 5 e @l01~(i51
s

l# ir#xi!1~(i51
s

lirxi!1lRr#;

● for this distribution, the log-odds of relevance conditioned on a given term
occurrence pattern was found in (23) to be

log O~rel ux1, . . . , xs! 5 S O
i51

s

~l i 2 l# i! xiD 1 lR 5 S O
xi51

~l i 2 l# i!D 1 lR;

● by applying the constraint values j i, j# i, r, values for the parameters
were determined in (29)–(31) as

l i 5 log
j i

1 2 j i

l# i 5 log
j# i

1 2 j# i

lR 5 log
r

1 2 r
1 O

i51

s

log
1 2 j i

1 2 j# i

● finally, in (33) we have the log-odds of relevance in terms of the con-
straint values:

log O~rel ux1, . . . , xs!

5 S O
xi51

log
j i~1 2 j# i!

j# i~1 2 j i!
D 1 S O

i51

s

log
1 2 j i

1 2 j# i
D 1 log

r

1 2 r
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Of the distributions that conform to the constraints, that with maximum
entropy is the distribution of the Binary Independence Model. Two points
are worthy of further discussion. First, we have not assumed independence
in any form. The linked dependence condition, while not assumed, can
however be shown to be a property of the derived maximum entropy
distribution. Also, we have included a constraint on the prior probability of
relevance. A value for this is not needed if the formula is only to be used for
ranking. Nonetheless, we might like to consider estimating this probability
in order to produce a ranking status value that can be interpreted probabi-
listically. We begin with a discussion of linked dependence.

3.6.1 Linked Dependence as a Consequence of Maximum Entropy. We
have not explicitly encoded the linked dependence assumption in the
development of the BIM-MAXENT model. It has not been necessary.
Rather than assume that the query term occurrences are conditionally
independent random variables, we have chosen a probability distribution
that maximizes entropy subject to a set of constraints.

We shall defer further discussion of the distinction between constraints
and assumptions for the moment. For now, we will show that although
independence has not been assumed, the form of the independence condi-
tions is a consequence of the Principle of Maximum Entropy. More precisely
stated, a property of the probability distribution that maximizes uncer-
tainty is equivalent to a property of the “physically real” probability
distribution that is assumed to hold in traditional models.

For an arbitrary configuration ( x1, . . . , xs) [ {0, 1}s

p~ x1, . . . , xsurel !

p~ x1, . . . , xsurel!
5

p~ x1, . . . , xs, rel !/p~rel !

p~ x1, . . . , xs, rel!/p~rel!

5
el01~(i51

s
lixi!1lR

el01~(i51
s

l# ixi!
/O~rel !

5
e ~(i51

s
lixi!2~(i51

s
l# i xi!1lR

O~rel !

5
e ~(i51

s
~li2l# i! xi!elR

O~rel !
(34)

Recalling the expression for O(rel ) derived in (28), we have

p~x1, . . . , xsurel !

p~x1, . . . , xsurel!
5

e~( i51
s

~l i2l# i! xi!elR

elR P
i51

s ~el i 1 1!

~el# i 1 1!

5 e~( i51
s

~l i2l# i! xi! z P
i51

s ~el# i 1 1!

~el i 1 1!
. (35)
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On the other hand, the odds of each individual term occurrence condi-
tioned on relevance was found in (24) to be el i. Similarly, the odds of term
occurrence conditioned on nonrelevance was found in (25) to be el# i. There-
fore,

p~Xi 5 1 urel ! 5
O~Xi 5 1 urel !

1 1 O~Xi 5 1 urel !
5

eli

1 1 eli

p~Xi 5 0 urel ! 5 1 2 p~Xi 5 1 urel ! 5
1

1 1 eli

p~Xi 5 1 urel! 5
O~Xi 5 1 urel!

1 1 O~Xi 5 1 urel!
5

el# i

1 1 el# i

p~Xi 5 0 urel! 5 1 2 p~Xi 5 1 urel! 5
1

1 1 el# i
.

These equations may be summarized as

p~Xi 5 xiurel ! 5
el i x i

1 1 eli

p~Xi 5 xiurel! 5
el# i x i

1 1 el# i
.

And so,

P
i51

s p~Xi 5 xiurel !

p~Xi 5 xiurel!
5 P

i51

s S el i x i

1 1 eliY el# i x i

1 1 el# iD
5 S P

i51

s

e ~li2l# i! xiD SP
i51

s 1 1 el# i

1 1 eliD
5 e ~(i51

s
~li2l# i! xi!SP

i51

s 1 1 el# i

1 1 eliD . (36)

This is equivalent to the expression given in (35), from which we may
conclude that

p~ x1, . . . , xsurel !

p~ x1, . . . , xsurel!
5 P

i51

s p~Xi 5 xiurel !

p~Xi 5 xiurel!
,
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which is the form of the linked dependence assumption discussed in Section
2.1.

Linked dependence, then, is not assumed. It is a property of the con-
strained maximum entropy distribution. There is, we believe, a significant
difference between making (possibly unwarranted) assumptions and con-
straining the distribution. The difference is discussed in greater detail in
Section 5.

3.6.2 Prior Probability of Relevance. The constraints imposed on the
BIM-MAXENT model include a constraint on the prior probability of
relevance, p(rel ) 5 r. It is important to note, however, that it is not
necessary for the system designer to actually set r to a particular value. If
the goal is simply to rank documents according to the probability of
relevance, without making any claims as to the interpretability of the
resulting ranking status value, the value assigned to r becomes irrelevant.
It can be ignored here, as it is in the Binary Independence Model, inasmuch
as the value used will not affect the order in which documents are ranked.

Even if we wanted to produce the system’s probability of relevance, as
opposed to a (for all intents and purposes noninterpretable) ranking score,
we might not include the constraint on the prior probability of relevance.
We would not include this constraint if we felt that we had no reason, a
priori, to distinguish between relevant and nonrelevant documents in any
way other than that which is incorporated in the constraints, (18) and (19),
regarding term occurrences. If after studying the characteristics of the
resulting probability distribution, we feel comfortable with what MAXENT
is telling us, there would be no motivation for including other constraints.

In the model with prior probability of relevance unconstrained, the prior
odds of relevance would be

O~rel ! 5 P
i51

s ~eli 1 1!

~el# i 1 1!
5 P

i51

s ~e log
ji

12ji 1 1!

~e log
j#i

12j#i 1 1!
5 P

i51

s

j i

1 2 j i

1 1

j# i

1 2 j# i

1 1

5 P
i51

s 1 2 j# i

1 2 j i

(37)

for the maximum entropy distribution. This might cause little consterna-
tion. It does not, on the surface, seem to conflict with any preconceived
notions we have concerning the relevance of documents. At first glance, a
need for constraining p(rel ), thereby constraining O(rel ), is not apparent.

We would also notice, however, that in the model without the p(rel )
constraint, the odds of relevance for a document with none of the query
terms occurring is

O~rel u0, . . . , 0! 5
el0

el0
5 1. (38)
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This is nettlesome. The system designer will likely feel that the probability
of a document in which none of the query terms are to be found is very far
below 1⁄2. This discrepancy is indicative of an underconstrained distribu-
tion. MAXENT is signaling that some pertinent knowledge has not been
incorporated into the model. If the goal is for the system to present its
probability of relevance to the user, and the system’s belief system is to
mirror the designer’s belief system, then some constraint must be added.

One obvious way to accomplish this, given that the weakness of the
model has become apparent in the value it gives for O(rel ux1, . . . , xs),
would be to constrain p(rel u0, . . . , 0) directly. This can be done, but it may
not be the best approach. In typical IR system design situations most
people would assign a very small value for p(rel u0, . . . , 0). The problem is
that humans are notoriously poor at dealing with very small ( p(. . .) ' 0)
and very large ( p(. . .) ' 1) probabilities.

Alternatively, an empirical approach might be taken. By studying a large
number of queries, the value given to the conditional probability, p(rel u0,
. . . , 0), can be based on statistics of the data. Unfortunately, the ex-
tremely small probability that a document with no query terms would be
found to be relevant comes to haunt us again. For such a small probability
a very large sample would be needed. If the sample is not large enough we
would not have much confidence in the resulting value of the statistic. For
example, even for a reasonably large sample of queries against a large
collection, there may well be no instance of a document containing none of
the query terms having been judged relevant.

A preferable approach is to estimate the prior probability of relevance
and utilize this as a constraint on the distribution as was done in BIM-
MAXENT with constraint (20). In the version of BIM-MAXENT with all
three constraints, this problem does not arise, since the odds of relevance
given no query terms is given by

O~rel u0, . . . , 0! 5 elR 5
r

1 2 r
P
i51

s el# i 1 1

eli 1 1
5

r

1 2 r
P
i51

s 1 2 j i

1 2 j# i

. (39)

Implicit in constraining p(rel ) is a constraint on O(rel u0, . . . , 0). Presum-
ably r and hence r/(1 2 r) will have been constrained to be small. We also
expect that, for each i, the constraints j i 5 p(Xi 5 1 urel ) and j# i 5 p(Xi 5
1 urel ) will be in the relation, j i . j# i, which would mean that (1 2 j i)/(1 2
j i) , 1, making O(rel u0, . . . , 0) smaller still. This conforms to the prior
knowledge that we desire to incorporate in our retrieval system. The
system designer may depend on her own subjective judgment, empirical
study, or some combination of the two. However it is done, constraining the
prior probability of relevance will be a better approach to incorporating the
knowledge that is felt to be missing in the two-constraint version of the
model, when we come to realize that this version would entail even odds for
a document with no query terms.
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4. THE CM-MAXENT RETRIEVAL MODEL

In the previous section, we developed a model based on the PME from
which we were able to derive the same ranking formula that results from
the Binary Independence Model. In this section, we derive a maximum
entropy retrieval model that will be constrained in such a way as to be
consistent with the assumptions made in the Combination Match Model
(CMM) of Croft and Harper. CMM adapts the Binary Independence Model
to situations where no relevance information is available. Our goal here is
to reproduce the CMM ranking formula.

4.1 Basic CM-MAXENT Model

The development of this model will be very similar to that of the BIM-
MAXENT model. The first and third BIM-MAXENT constraints, concerning
the probability of term occurrence conditioned on nonrelevance and the
prior probability of relevance, will be left as they were. The second
constraint concerning the probability of term occurrence in relevant docu-
ments will be eliminated. In its place, the number of query terms expected
to appear in a relevant document will be constrained.

Formally, the constraints will be

p~Xi 5 1 uR 5 0! 5 j# i i 5 1, . . . , s (40)

E~X#uR 5 1! 5 z where: X# 5 O
i51

s

Xi (41)

p~R 5 1! 5 r. (42)

The second constraint restricts the probability distributions under consid-
eration to those with a given value for the expected number of query terms
occurring in a relevant document. It will not be necessary that a value for
this expectation be explicitly specified, however. The constraint will result
in the inclusion of a parameter in the distribution, and, as we will see, a
number of alternatives for determining a value for this parameter will be
available.

For this model, we will be concerned with the following features of the
elementary events:

g# i~v! 5 H1 if Xi~v! 5 1∧R~v! 5 0
0 otherwise J i 5 1, . . . , s (43)

g#~v! 5 H ~X1 1 · · · 1 Xs! if R~v! 5 1
0 otherwise J (44)

gR~v! 5 R~v! (45)
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which will be constrained by

E@g# i~v!# 5 G# i 5 j# i z ~1 2 r! i 5 1, . . . , s (46)

E@ g#~v!# 5 G# 5 z z r (47)

E@ gR~v!# 5 GR 5 r. (48)

In (47), we are effectively constraining E(X1 1 . . . 1 XsuR 5 1) to z, since

E@g#~v!# 5 O
v[V

p~v!g#~v! 5 O
R~v!51

p~v!~X1~v! 1 . . . 1 Xs~v!!

5 O
R~v!51

p~R 5 1! z p~vuR 5 1!~X1~v! 1 . . . 1 Xs~v!!

5 p~R 5 1! z E@X1 1 . . . 1 XsuR 5 1#,

and because this has been constrained to z z r, and p(R 5 1) 5 E[R] has
been constrained to r,

E@X1 1 . . . 1 XsuR 5 1# 5 z.

By introducing Lagrange multipliers, setting partial derivatives to zero,
and solving for p(v), we get

p~v! 5 e @l01~(i51
s

l# i r#x i!1l # x #r1lRr# (49)

where x# 5 ¥ i51
s xi.

Based on the probability distribution, (49), we can determine the odds of
relevance given a specific occurrence pattern:

O~rel ux1, . . . , xs! 5
e @l01l#x#1lR#

e @l01~(i51
s

l# ixi!#
5 el#x#1lR2(i51

s
l# ixi. (50)

And, therefore, a ranking formula based on the conditional log-odds of
relevance is

log O~rel ux1, . . . , xs! 5 l#x# 2 O
i51

s

l# ixi 1 lR 5 l#x# 2 O
xi51

l# i 1 lR. (51)

Here again lR is simply the log-odds of relevance conditioned on all query
terms being absent, log O(rel u0, . . . , 0). This is a constant term and can
be dropped for the purposes of ranking.
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4.2 Characteristics of the CM-MAXENT Distribution

As with the BIM-MAXENT model, we find it convenient to derive closed
form solutions for the odds of certain events. The reasoning employed here
closely follows that of Section 3.

4.2.1 Odds of Term Occurrences Given Relevance. For arbitrary values
x2, . . . , xs,

p~1, x2, . . . , xs, rel ! 5 e @l01~(i51
s

l# ir#xi!1l#~(i51
s xi!r1lRr#

5 e @l01l#~11(i52
s xi!1lR#

5 el# z e @l01l#~(i52
s xi!1lR#

5 el# z p~0, x2, . . . , xs, rel !.

Summing over all possible values for ( x2, . . . , xs) [ {0, 1}s21

p~X1 5 1, R 5 1! 5 O
x2, . . . , xs

p~1, x2, . . . , xs, rel !

5 O
x2, . . . , xs

el# z p~0, x2, . . . , xs, rel !

5 el# z p~X1 5 0, R 5 1!

which generalizes to arbitrary query terms, giving the conditional odds of
occurrence for term i as

O~Xi 5 1 urel ! 5 el#. (52)

We note here that el# is independent of the values of the Xi, and so the
probability of occurrence given relevance is the same for all query terms.
Equal probabilities are assumed in the CMM. But, as with linked depen-
dence for BIM, it appears as a property of the CM-MAXENT distribution as
a consequence of maximizing the entropy.

4.2.2 Odds of Term Occurrences Given Nonrelevance. The odds of a
query term occurring in a nonrelevant document are the same as for
BIM-MAXENT. For term 1, we have

O~X1 5 1 urel! 5
p~1, x2, . . . , xs, rel!

p~0, x2, . . . , xs, rel!
5

e @l01l# 11~(i52
s

l# ixi!#

e @l01~(i52
s

l# ixi!#
5 el# 1 (53)

which generalizes to arbitrary query terms.

4.2.3 Prior Odds of Relevance. We will derive the prior odds of rele-
vance in terms of the probabilities of relevance and nonrelevance. In order
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to derive a closed form for the probability of relevance from the formula
given in (49), we can sum over all elementary events for which R 5 1:

p~rel ! 5 O
x1, . . . , xs

p~ x1, . . . , xs, rel !

5 O
x1, . . . , xs

e @l01~(i51
s

~l# ir#xi!!1l#x#r1ler# 5 e ~l01lR! O
x1, . . . , xs

el#x#

This can be written as

p~rel ! 5 e ~l01lR! O
x1, . . . , xs

e @(i51
s

l#xi#

5 e ~l01lR! O
x2, . . . , xs

~e @l#1(i52
s

l#xi# 1 e @(i52
s

l#xi#!

5 e ~l01lR!~el# 1 1! O
x2, . . . , xs

e @(i52
s

l#xi#.

Applying the same reasoning for each xi

p~rel ! 5 e ~l01lR!~el# 1 1!2 O
x3, . . . , xs

e @(i53
s

l#xi#

···

5 e ~l01lR!~el# 1 1!s. (54)

The probability of nonrelevance is as before:

p~rel! 5 el0 P
i51

s

~el# i 1 1! (55)

giving, for the odds of relevance,

O~rel ! 5 elR P
i51

s ~el# 1 1!

~el# i 1 1!
. (56)

4.3 CH MAXENT Ranking Formula—Reprise

In (51) above, the following expression for the log-odds of relevance was
derived:

log O~rel ux1, . . . , xs! 5 l#x# 2 O
xi51

l# i 1 lR
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From (53) and constraint (40), we have that l# i 5 log j# i/(1 2 j# i). If,
following Croft and Harper, we use ni/N for j# i, where N is the total number
of documents in the collection, and ni is the number of documents in which
query term i occurs, we have

l# i 5 log
j# i

1 2 j# i

5 log

ni

N

1 2
ni

N

5 log
ni

N 2 ni

,

giving the formula

log O~rel ux1, . . . , xs! 5 l# z x# 2 S O
xi51

log
ni

N 2 ni
D 1 lR

5 l# z x# 1 S O
xi51

log
N 2 ni

ni
D 1 lR. (57)

The first term is just a constant, l#, multiplied by the number of terms that
occur in the document. Taking into consideration that the last term, lR, is
independent of the term occurrence variables and can be ignored for the
purposes of ranking, we have the equivalent of the Combination Match
Model formula.

4.4 Discussion of the CM-MAXENT Model

In the foregoing sections we have seen that by exchanging the constraints
on the probabilities of occurrence in relevant documents for a single
constraint on the expected number of terms appearing in relevant docu-
ments, we derive the probability distribution (49),

p~v! 5 e @l01~(i51
s

l# ir#xi!1l#x#r1lRr#

which leads to the CMM for document ranking,

O
xi51

n Sl# 1 log
N 2 ni

ni
D .

Croft and Harper point out that CMM is a generalization of the inverse
document frequency weighting scheme originally proposed by Sparck
Jones. It is interesting to note what happens if we ease the constraints on
our probabilities in the CM-MAXENT model. In this section we will show
how we can get a pure idf ranking formula by eliminating the constraint
with respect to term occurrence in relevant documents. We will also show
that elimination of the constraint on term occurrence in the nonrelevant
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documents can be compared to the observation made by Croft and Harper
that, in essence, a coordination match formula results from assuming, in
their model, that the probability of a term occurring in a relevant document
is very large. We continue in this section with a discussion of how
assumptions in the CMM are properties of the CM-MAXENT model. This is
analogous to the situation in the Binary Independence Model, where the
linked dependence assumption turns out to be a property of the BIM-
MAXENT version of the model. Finally, we discuss the constraint in
CM-MAXENT on the expected number of query terms for relevant docu-
ments and approaches to associating a value with the constraint.

4.4.1 A MAXENT Version of idf Weighting. If we eliminate constraint
(47) respecting the expected value of the number of terms to be found in a
relevant document, the probability of an arbitrary event would be

p~v! 5 e @l01~(i51
s

l# ir#xi!1lRr#, (58)

and the conditional log-odds of relevance would be

log O~rel ux1, . . . , xs! 5 S O
xi51

2 l# iD 1 lR.

For all occurrence patterns ( x2, . . . , xs) [ {0, 1}s21

p~1, x2, . . . , xs, rel ! 5 p~0, x2, . . . , xs, rel ! 5 e @l01lR#,

and therefore the odds of occurrence of the first term given relevance are
even, which can be generalized to arbitrary terms:

O~Xi 5 1 urel ! 5 1 (59)

The odds of term occurrence given nonrelevance would be the same as
before:

O~Xi 5 1 urel! 5 el# i (60)

And the prior probability of relevance would be

p~rel ! 5 O
x1, . . . , xs

e @l01lR# 5 2s z e @l01lR#.

Combining this with the prior probability of nonrelevance, which is the
same as before (55), gives

O~rel ! 5
2s z e @l01lR#

el0P i51
s ~el# i 1 1!

5 elR z P
i51

s 2

~el# i 1 1!
.
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This leads to parameter values of

l# i 5 log
j# i

1 2 j# i

lR 5 log
r

1 2 r
1 O

i51

s

log
2

1 2 j# i

.

And finally we have the ranking formula:

log O~rel ux1, . . . , xs! 5 S O
xi51

log
1 2 j# i

j# i
D 1 S O

i51

s

log
2

1 2 j# i
D 1 log

r

1 1 r

(61)

Since the two terms at the right are constant over all documents, (61) is
equivalent to ranking by summing weights associated with each of the
occurring query terms. If, as above, ni/N is used for j# i, this is equivalent to
the weighting scheme originally proposed by Sparck Jones with the minor
difference that log (N 2 ni)/ni is used in place of log N/ni for the term
weights. The Sparck Jones weighting formula can therefore be interpreted
as the maximum entropy distribution constrained only so that p( xiurel) 5
j# i.

4.4.2 A MAXENT Version of Coordination Matching. In a similar
fashion, we can consider a model in which knowledge concerning term
occurrences in the collection as a whole is not used to constrain the
distribution. In the absence of the constraints specified in (46) the following
properties of the MAXENT distribution would hold:

p~v! 5 e @l01l#x#r1lRr# (62)

giving conditional log-odds of relevance:

log O~rel ux1, . . . , xs! 5 l#x# 1 lR

In this formula, both l# and lR are constant, and both can be ignored for
the purpose of ranking. The formula, a linear function of the number of
query terms appearing in a document, is equivalent to coordination match
ranking.

4.4.3 Assumptions of the Combination Match Model. As with the Bi-
nary Independence Model, no assumptions have been made in the MAX-
ENT version of the combination match model. Neither the linked depen-
dence assumption nor the Croft and Harper assumption of equal
probabilities of occurrence in relevant documents is made in CM-MAXENT.
Here, as before, the properties assumed in the classic models turn out to be
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true of the derived MAXENT probability distributions. The essence of the
arguments given in favor of linked dependence in Section 3.6.1 holds for the
CMM. Also, we have seen that the odds of occurrence in a relevant
document is

O~Xi 5 1 urel ! 5 el#

and hence is the same for all query terms. The property of equal probabil-
ities of occurrence, assumed in the classical combination match model, is
shown to be a property, as well, of the maximum entropy distribution.

4.4.4 The E[ g#(v)] Constraint. In Section 3.6 we saw that the con-
straint on the probability of relevance was unnecessary for the purposes of
ranking. We also discussed what steps might be taken if a ranking status
value that can be interpreted as a probability is desired. The constraint on
the expected value of the number of terms appearing in the relevant
documents is somewhat different. Its value must be determined for rank-
ing. Nonetheless, the constraint need not be specified explicitly. The Croft
and Harper approach can be taken. The parameter l# can be left undeter-
mined in the ranking formula and set as the result of empirical testing so
as to yield the best possible retrieval results.

The MAXENT approach provides an interesting alternative. If there is
data on which to base the setting of the constant, l#, based on retrieval
experiments, this same data could be used to estimate E[X#urel] directly.
The same document collection, query set, and relevance judgments that are
used to analyze retrieval performance can be used to estimate the expected
number of query terms appearing in relevant documents. An interesting
option here is that E[X#urel] might be estimated as a function of query
characteristics, yielding a query-specific probability distribution on which
conditional probabilities of relevance are calculated. A characteristic which
comes immediately to mind in this regard is the number of terms in the
query.

5. DISCUSSION

We have shown that both the Binary Independence Model and the Combi-
nation Match Model can be derived from the maximum entropy approach
with appropriate constraints. In this section we analyze in further detail
the difference between the maximum entropy approach and the classical
approaches based on a priori assumptions. We attempt to signal both the
philosophical and practical importance of this distinction to the conduct of
IR research. We emphasize that constraining a distribution is not the same
as making, possibly unwarranted, a priori assumptions. This becomes most
clear in the case of the assumption of equal probabilities of occurrence in
relevant documents made in the CMM. We assert in this section that
thinking in terms of constraints results in greater adaptability when we
encounter previously uncontemplated sources of knowledge that can be
applied to document ranking. A unifying thread running through all of the
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following discussion is the notion that the probabilities manipulated by
probabilistic retrieval systems cannot reasonably be construed as frequen-
cies. We begin with a discussion of difficulties inherent in the interpreta-
tion of the Probabilistic Ranking Principle.

Probability Ranking Principle. In Robertson [1977], Robertson gives a
formal statement of the Probability Ranking Principle as originally put
forth in an unpublished memorandum by William Cooper:

If a reference system’s response to each request is a ranking of the
documents in the collection in order of decreasing probability of usefulness
to the user who submitted the request, where the probabilities are esti-
mated as accurately as possible on the basis of whatever data has been
made available to the system for this purpose, then the overall effective-
ness of the system to its users will be the best that is obtainable on the
basis of that data.

Use of the phrase “probabilities are estimated as accurately as possible,”
as well as the nature of the arguments in the body of the paper, indicates
that a frequentist interpretation of probability is intended. But then we are
cautioned that the estimation is to be made on the basis of “whatever data
has been made available.” This is problematic.

Let us recall momentarily the case of the die that has been tossed
millions of times with an average of 5.0. This is certainly knowledge
“available to the system”; it has a bearing on the probability of the next
toss revealing a 4.

The situation is the same in IR. Suppose we have a substantial theory,
based on the study of extensive retrieval data. Let us suppose furthermore
that this theory permits us to produce a well-calibrated [DeGroot and
Feinberg 1982; Marshall and Oliver 1995; Dawid 1989] estimate of the
probability of relevance of a document to a query containing a term as a
function of collection and document statistics with respect to the term. Now
what do we do if we have a two-word query? Our theory provides us with
two probability estimates. Both are correct. The Probability Ranking Prin-
ciple counsels us to use all evidence.

The Probability Ranking Principle does not, however, advise on how this
is to be done. The problem that arises for two-word queries is exacerbated
for three-word queries, more so for four-word queries, and more so for
20-word queries. Perhaps further study of retrieval data will result, at a
later date, in a more sophisticated model that will offer guidance as to how
best to assess the probability of relevance based on statistical characteris-
tics of all the query terms collectively. In the meantime “as accurate as
possible a” probability of relevance must be estimated in the absence of
such a theory. We appear to be at an impasse.

We have two estimates; both are as accurate as possible; we are enjoined
to use all of the data at our disposal; we have no estimate at all based on all
of the data. Our conclusion is that (1) if we are to exploit all of the data, we
are obliged to abandon the frequentist notion that the objective is the
estimation of a true physical probability; (2) the alternative is to view the
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objective as the generation of a subjective probability—the system’s belief
that a document is relevant; (3) a guiding principle must be adopted for the
determination of this probability based on knowledge possessed by the
system; (4) the Principle of Maximum Entropy is a very reasonable candi-
date.

Constraints Are Not Assumptions. The Binary Independence Model
assumes that occurrence of query terms is independent in both the relevant
and nonrelevant documents. Both intuition and experimental evidence
imply that such an assumption is unwarranted. There is little reason to
believe these assumptions are even approximately correct. Unfortunately,
attempts to model term dependence have been disappointing [van Rijsber-
gen 1977; Harper and van Rijsbergen 1978; Smeaton and van Rijsbergen
1983]. The problem is generally attributed to the inability to produce
accurate probability estimates due to insufficient sample sizes. So, we
return to the independence assumptions. But, what is the justification for
basing a model on assumptions in which we have so little faith?

We suggest that “independence” in the Binary Independence Model
should not really be thought of as an assumption at all. Rather, incorporat-
ing independence is an attempt to make the most reasonable use of the
information that is available, accepting that there is information that could
be very useful if only we had access to it, except that we do not. The
MAXENT approach makes this explicit. In BIM-MAXENT, there is no
assumption of independence. In place of assumptions, we have constraints.

A constraint is not an assumption. Nothing is being assumed to be “true.”
No “physically real” population is presumed to exist, so there is nothing we
can “assume” about it. When we constrain the probability of term occur-
rence in a relevant document to j i, we are not saying that this is an
estimate of the proportion of relevant documents that contain the term in
some superpopulation of documents. We are saying that based on the
evidence we have, a probability distribution for which p(Xi 5 1 uR 5 1) 5
j i is the most reasonable distribution for us to accept, given what we know.

The probability produced by the BIM-MAXENT model is not an estimate
of a true physical probability. It is a subjective probability. It is the
system’s subjective probability that the document will be judged relevant
by the user. Again we turn to the analogy of the dice. When, after learning
that the average of a large number of tosses of the die is 5.0, MAXENT
assigns a probability of 0.136 for a die coming up 4 on the next throw; it is
not producing an estimate. An estimate of what could it be? Perhaps, an
estimate of the fraction of tosses in the universe of dice with expected
values of 5.0 that come up 4:

# u$t ut is toss of a die d ∧ E@d# 5 5.0 ∧ value of t is 4% u

# u$t ut is toss of a die d ∧ E@d# 5 5.0% u

Even if we were willing to contemplate such a population, on what basis
would we estimate the fraction involved?
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The frequentist may complain that the interpretation that we give to the
probability, 0.136, is unscientific, or even less charitably, meaningless. We
are not unsympathetic with regard to this reaction. But, then it seems that
the frequentist is forced to conclude that there is no basis at all on which to
rank the dice. We prefer to forge ahead, in spite of the difficulties involved.

We assert that it is misleading to conceptualize as estimates the proba-
bilities on which the Binary Independence Model is based. If the design
objective is to produce an estimate, it becomes very difficult to understand
why an assumption of something known not to hold, even approximately,
would be used to improve the estimation procedure.

Our goal in this paper has not been to develop a new model. The goal has
explicitly been to reproduce BIM and CMM. We propose the MAXENT
formalism as a clearer conceptualization of the thought processes and
research posture underlying these models.

Equal Probabilities Assumption of CMM. Croft and Harper state that,

prior to relevance feedback, we have no information about the relevant
documents and we could therefore assume that all the query terms had
equal probabilities of occurring in the relevant documents [Croft and
Harper 1979, p. 287].

They are certainly not assuming this is true in a frequentist sense. They
clearly state that they can assume equal probabilities because they have
“no information.” They cannot mean that the absence of information
implies something concrete, and very specific, about the material universe.

We take the liberty here of speaking for them, rephrasing what they said
based on our perception of what they had in mind: “we have no information
and therefore we should adopt the probability distribution that best ex-
presses our uncertainty.” The Principle of Maximum Entropy asserts that
our uncertainty is best expressed by the distribution with greatest entropy
subject to constraints embodying knowledge we feel we do possess. The
development of the CM-MAXENT model presented in this paper clarifies,
we believe, the conceptual position of the original authors.

Flexibility of Constraints. An advantage of the MAXENT approach is
that it naturally accomodates the introduction of added constraints. As-
sumptions such as linked independence in BIM, and the equal probabilities
of term occurrences conditioned on relevance in CMM, have been shown to
exist in the corresponding MAXENT versions in the form of properties of
the constrained distribution. We may decide to bring more information to
bear in the MAXENT models, and as a result, these properties may no
longer hold.

For example, suppose that based on a study of retrieval data, we are able
to develop a reliable model of the distributions of document length for both
relevant and nonrelevant documents. This is pertinent knowledge. Even
though we have no knowledge of these distributions for the particular
query in question, knowledge, albeit general knowledge, can and should be
brought to bear.
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It is not immediately clear how knowlege such as this can be integrated
into models such as BIM and CMM. The MAXENT approach, on the other
hand, guides us as to how to proceed. What we would do is incorporate the
information we had discerned concerning the two conditional distributions
as further constraints on our overall probability distribution. While the
mathematical difficulties that may be involved must not be minimized, the
maximum entropy approach does provide a theoretical foundation for how
best to proceed.

6. SUMMARY

In this paper, we have adopted a probabilistic attitude with respect to
information retrieval, where probability is understood as the system’s
judgment that a document will be relevant based on all information it has
available to it. We have argued that previous work is best conceptualized in
this way and that a frequentist view of probability as a fraction of an
existing population is untenable. If a system is to rank a document
according to the probability that the document is relevant to the query, it
must adopt a probability distribution of relevance conditioned on the
evidence it considers. Probabilities will have to be determined in the
absence of total knowledge concerning all aspects of the distribution.
Available knowledge constrains the distribution, but does not leave it fully
determined. The Principle of Maximum Entropy provides, in our opinion,
the most reasonable methodology for fully determining the otherwise
underconstrained distribution.

In support of our position, we have shown how both the Binary Indepen-
dence Model and Combination Match Model may be understood in terms of
the PME. We have shown that the linked dependence assumption in the
case of BIM and the assumption of equal probability of term occurrence in
relevant documents in the case of CMM are consequences of the Principle of
Maximum Entropy. We have seen how the PME can guide us as to how best
to assign a prior probability of relevance and how both pure coordination-
match ranking and pure idf weighting can result from different ways of
constraining the probability distribution.

The difference between constraints to be applied to a subjective probabil-
ity distribution and assumptions concerning the characteristics of frequen-
cies in a supposedly existing population has been emphasized, and we have
argued that this difference has important philosophical and practical
ramifications for research in information retrieval.
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