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ABSTRACT
The training of deep neural network models on large data remains

a difficult problem, despite progress towards scalable techniques.

In particular, there is a mismatch between the random but pre-

determined order in which AI flows select training samples and

the streaming I/O patterns for which traditional HPC data storage

(e.g., parallel file systems) are designed. In addition, as more data

are obtained, it is feasible neither simply to train learning mod-

els incrementally, due to catastrophic forgetting (i.e., bias towards

new samples), nor to train frequently from scratch, due to pro-

hibitive time and/or resource constraints. In this paper, we study

data management techniques that combine caching and stream-

ing with rehearsal support in order to enable efficient access to

training samples in both offline training and continual learning. We

revisit state-of-art streaming approaches based on data pipelines

that transparently handle prefetching, caching, shuffling, and data

augmentation, and discuss the challenges and opportunities that

arise when combining these methods with data-parallel training

techniques. We also report on preliminary experiments that evalu-

ate the I/O overheads involved in accessing the training samples

from a parallel file system (PFS) under several concurrency scenar-

ios, highlighting the impact of the PFS on the design of the data

pipelines.

CCS CONCEPTS
•Computer systems organization→Caching systems; Stream-
ing data; Training data; • Deep learning → Online deep learning.
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1 INTRODUCTION
Deep learning (DL) applications are rapidly gaining traction both

in industry and scientific computing, driven by the accumulation

of massive data. In science, for example, instruments that collect

data at GB/s and 100+ TB/day present a wide range of learning

opportunities. We thus see significant interest in deploying DL on

high-performance computing (HPC) systems in order to enable

rapid learning in various scientific areas, such as fusion energy

science, computational fluid dynamics, lattice quantum chromody-

namics, virtual drug response prediction, and cancer research.

Various approaches for training DL models on massive data have

been proposed: coarse-grain parallelization on multiple nodes us-

ing data-parallel [5], model-parallel [3], pipeline-parallel [12], and

hybrid techniques; fine-grain parallelization on many-core archi-

tectures by constructing and scheduling execution graphs at the

tensor level; and low-level optimizations of operators [7] and com-

munication primitives [2]. Most such work is targeted at alleviating

the computational overhead needed to perform the forward and

backward passes in DL training, as well as the communication costs

associated with synchronizing subtasks across devices and nodes.

However, as computation and communication become highly

optimized, another bottleneck begins to emerge that has seen com-

paratively less attention: the I/O operations needed to read training

data and feed them to the computational pipeline. This bottleneck

is particularly prominent at scale in large data centers and super-

computers that typically feature a large number of compute nodes

connected to a storage repository of relatively limited I/O band-

width (e.g., a parallel file system). Indeed, the limited I/O bandwidth

of parallel file systems is known to cause bottlenecks in general [19],

especially under concurrent access.

This I/O bottleneck is further exacerbated in the case of DL ap-

plications by a mismatch between the preferred access pattern of

parallel file systems (large non-overlapping reads from a few files)
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and the access pattern of DL training (small, pseudo-random reads

from many files). In fact, popular reference datasets such as Ima-

geNet [25], used to evaluate image classification DL models, feature

millions of small images, each of size 100 KB or less. Retrieving

these files is expensive because each file access incurs a double

latency cost, both at the level of metadata (to obtain the location of

a dataset) and data (I/O at offset within dataset). Unfortunately, par-

allel file systems are primarily optimized to deliver high throughput

at the cost of high latency, which explains the mismatch regarding

the preferred access pattern.

Once extracted from a remote repository, the raw input data

is only the beginning of a complex data ingestion pipeline that

involves decoding of training samples as tensors, augmentations

(e.g., stretching or shifting the color spectrum of images), pseudo-

random shuffling, grouping of samples into batches, etc. The data

ingestion pipeline is typically implemented in asynchronous fash-

ion though producer-consumer buffers that involve caching at each

stage. Using this approach, each DL training iteration overlaps with

the data ingestion, thereby hiding the overhead of I/O operations

and successive transformations in the pipeline, which reduces the

overall runtime.

In addition to data ingestion pipelines, there is an increasing

for other data abstractions. For example, continual learning [16]

involves updating a DL model in near-real time, by linking the

data ingestion pipeline directly to a data stream rather than a stor-

age repository. However, it is not possible to simply incrementally

train the DL model with the new data, because this would lead to

catastrophic forgetting: a bias of the DL models towards the most

recent training samples at the expense of older ones, which effec-

tively causes them to reinforce new patterns and forget old ones.

A similar issue is also exhibited by reinforcement learning (RL) [8]

approaches, because the samples are generated by sequential ex-

ploration of the states of an environment, which may lead to an

excessive reinforcement of recent states at the expense of older ones.

A common approach to address the problem of catastrophic forget-

ting is rehearsal, i.e., mixing new training samples with previously

encountered, representative training samples in order to enable

incremental training without bias. Thus, there is a need to transpar-

ently store, retrieve and mix representative training samples with

regular training samples in the data ingestion pipeline.

In this context, there is a need for flexible data runtimes that are

capable of addressing a variety of data ingestion patterns (irregular

fine-grain I/O from storage repositories, direct streaming from data

sources, rehearsal, augmentations and other post-processing). In

addition, since the data ingestion pipeline is asynchronous, flex-

ibility is also needed with respect to resource allocation, such as

to dynamically respond to changes in the requirements of compu-

tational and I/O resources. This applies both to the interference

between the data ingestion pipeline and the training, as well as to

the interference between the different stages of the data ingestion

pipeline itself. In this paper, we study the challenges, trade-offs and

opportunities in the design of flexible data runtimes for both offline

and continual DL model training We summarize our contributions

as follows:

• We revisit state-of-art streaming techniques for feeding train-

ing samples to DL model training pipelines. We focus in

particular on the data pipeline abstraction used by Tensor-
Flow to enable transparent handling of prefetching, caching,

shuffling, and data augmentation. These methods may have

significant overheads, and thus data pipelines aim to overlap

their execution with DL training as much as possible. How-

ever, this overlapping generates contention for resources

(computational units, memory, network bandwidth) that in-

troduces non-trivial trade-offs (Section 3).

• Wediscuss several considerations that arisewhen data pipelines

are used at scale in conjunction with data-parallel and/or en-

semble training techniques. In this context, the data pipelines

constructed on each compute node are not independent of

each other, but rather share input data, intermediate data,

and/or resources (e.g., the data repository). This observation

leads us to identify several challenges and opportunities to

leverage synergies between the independent data pipelines

for both offline training and continual learning; in the latter

case, we advocate for extensions to facilitate transparent

rehearsal (Sections 4).

• We evaluate the I/O overhead of serving training samples to

DL models in several configurations (directly from a parallel

file system or cached on local storage) using TensorFlow data

pipelines for a representative DL application. Based on these

preliminary results, we discuss the observed bottlenecks and

their impact on the identified opportunities (Section 5).

2 RELATEDWORK
The challenging nature of the pseudo-random I/O access patterns

generated by DL training on small training samples is acknowl-

edged by several studies [1, 11]. One approach to addressing this

problem is to reorganize the training data. For example, the light-

weight Lightning Memory-Mapped Database (LMDB) maps content

directly into memory (thus taking advantage of OS-level I/O opti-

mizations) and uses B+-trees to index it (thus reducing metadata

overheads). However, Pumma et al. [17] have shown that this solu-

tion does not mitigate the problem sufficiently, as I/O overheads

still dominate training (up to 90%) even for only a small degree

of parallelism. Other approaches such as FanStore [26] provide

a global cache layer on node-local burst buffers in a compressed

format, allowing POSIX-compliant file access to the compressed

data in user space. Further optimizations explore prefetching with

perfect knowledge of future I/O based on fixing the seeds of pseudo-

random number generators [4]. Such approaches are limited in their

applicability to accelerating low-level I/O operations only.

Overlapping computations with I/O operations by prefetching

and caching training samples in the background is another popu-

lar direction [14, 13]. However, generic I/O optimizations are not

enough for this purpose, because specific operations such as shuf-

fling the training samples with various ordering guarantees and/or

complex transformations to augment the data are also needed before

the data can be passed to training pipelines. To this end, abstrac-

tions such as data loader [24], data pipelines [11] and DALI [15] are

becoming increasingly popular for both PyTorch and TensorFlow

ecosystems. However, current implementations of such approaches

provide only limited support for multi-node parallelism.

Several approaches deal with catastrophic forgetting [16]. In-

spired by cognitive and neural science theories, rehearsal methods
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date back three decades [20]. The most straightforward approach is

to augment each minibatch with previously streamed training sam-

ples, called exemplars, that were selected randomly to be persisted

to the storage repository for the purpose of rehearsal. To improve

I/O performance, classification models such as iCARL [18] employ

a limited memory buffer that stores a fixed number of exemplars

for each class. However, this approach may lead to a decrease of

accuracy when the number of classes increases, because exemplars

from each class need to be dropped in order to make them all fit into

the memory buffer. Approaches such as Naive Incremental Learn-

ing (NIL) [10] simply use a random replacement policy without

considering classes. An alternative to storing exemplars is to train

a generative adversarial network (GAN) from the stream in order

to produce fake exemplars on demand that capture the patterns

needed for rehearsal [9]. However, such approaches suffer from

high overheads to train and keep the GAN up to date. Other ap-

proaches are based on regularization (i.e., estimating the relevance

of the DNN parameters and penalizing those that show significant

change from one task to another) or architectural changes that grow

subnetworks dynamically [21]. However, rehearsal remains one of

the most widely used techniques for mitigating catastrophic for-

getting, and thus the problem of caching and storage of exemplars

remains important.

In summary, state-of-art approaches are not sufficiently opti-

mized to stream efficiently from a parallel file system or directly

from an external data source into the DL training pipelines at scale

on multiple nodes, nor do they offer support for rehearsal. To the

best of our knowledge, we are the first to consider this combined

problem in a distributed setting.

3 DATA PIPELINES
Modern DL runtimes such as TensorFlow are beginning to acknowl-

edge the importance of optimizing the entire input data lifecycle,

from reading the training samples all the way to feeding them to the

training pipeline. To this end, abstractions such as data pipelines [11]
are becoming increasingly popular. In this section, we revisit data

pipelines, which will form the basis of our study.

In a nutshell, data pipelines abstract input data as a potentially

infinite sequence of elements that can be either tensors or composite

types (tuples, nested datasets, etc.). The elements can be accessed by

means of an iterator, which offers sequential access through a simple

API call: get_next(). The state of an iterator can be checkpointed

to a file by using save() and restore().
Since most DL training algorithms rely on mini-batch SGD (sto-

chastic gradient descent), training samples are not accessed individ-

ually, but rather in groups called mini-batches that are returned by

get_next(). The path from reading the input data all the way to

generating the mini-batches creates a complex producer-consumer

pipeline, as illustrated in Figure 1.

The entry point in the producer-consumer pipeline is a flexible

record enumeration abstraction that is responsible for exposing new

elements in a metadata queue. For example, in the case of a POSIX

filesystem, the metadata queue will hold file names. These metadata

are consumed by the readers, who are responsible for fetching the

content of the elements. A framework like TensorFlow provides

multiple types of readers, to support various data sources. The

readers can optionally pass the content to a pre-processing task
responsible for data augmentation, which can be defined by the

user by using a map() transformation. From there, the elements are

enqueued in a shuffle queue, from which the prefetcher extracts a
pseudo-random subset of the elements that it then assembles into

mini-batches. Finally, the mini-batches arrive in the batch queue,
from where they are consumed by get_next().

Data pipelines are highly customizable via composability. A basic

pipeline creates a one-to-one correspondence between the elements

of the dataset and the iterator. This version can be extended by

adding more intermediate stages, and parameterized through prim-

itives that return a new data pipeline, which in turn can be further

optimized. For example, to combine two different data sources (or

to parallelize I/O), two data pipelines ds and other_ds can be in-

terleaved with the statement: ds = ds.interleave(other_ds,
num_parallel_calls=2). Similar primitives allow for the defini-

tion and parameterization (number of threads, buffer size, batch size,

etc.) of map transformations, shuffling, prefetching, and batching.

This decoupled design allows data pipelines to achieve efficient

overlapping of tasks, not only of a data pipeline with the training

pipeline itself, but also of multiple intermediate stages within the

data pipeline. However, such overlapping also leads to contention

for resources (computational units, memory, network bandwidth),

which introduces non-trivial trade-offs. For example, memory can

be split between the data pipeline and training pipeline in different

ways: metadata queue, shuffle queue, and prefetch queue. Compu-

tational units must similarly be shared between DL training and

threads allocated to the data pipeline. Thus, fine-tuning a data

pipeline is challenging.

To address this issue, data pipelines combine a series of opti-

mizations that are applied both statically and dynamically. Static

optimizations can benefit from the fact that composability allows

the expression tree of a data pipeline to be inspected and updated

at runtime to use more efficient methods where such exist. For

example, if the iterator produces mini-batches, then it would be

inefficient to apply a map() transformation individually to each

training sample; instead, it can be applied in bulk after assembling

an entire mini-batch. This is an example of a fusion operation.

Opportunities for dynamic arise because there are many vari-

ables that are known only at runtime: properties of the training

samples (e.g., image size) and available resources (e.g., computa-

tional units, memory, network bandwidth). Thus, data pipelines

implement an auto-tuning mechanism that redistributes resources

among the intermediate stages so as to minimize the expected la-

tency of producing an element that is obtained by get_next().
Specifically, the performance of each intermediate stage (obtained

from the expression tree) is constantly monitored at runtime in

order to build and update an analytical model for it. Analytical

models are composed and optimized using gradient descent, in a

manner similar to the actual DL training. Using this approach, the

entire end-to-end pipeline can be optimized. This aspect is essen-

tial, because global resource contention inevitably leads to cases in

which locally optimal decisions are suboptimal. For example, they

may employ excessive parallelism and buffering, which in turn lead

to inefficient thread scheduling, memory utilization, and caching

locality.
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Figure 1: The data pipeline abstraction as implemented in TensorFlow. It exposes an iterator that returns the next mini-batch
to be used by the training process with each invocation. The pipeline is implemented as an asynchronous producer-consumer
workflow with intermediate buffers where the training samples are read from the repository, encoded as tensors, optionally
transformed using custom augmentation functions, shuffled and finally assembled as mini-batches.

4 CHALLENGES AND OPPORTUNITIES
4.1 Collaborative producer-consumer queues
Data pipelines are designed to be used individually on each compute

node. As a consequence, they are unaware of each other and may

perform sub-optimally at large scale. For example, in a data-parallel

training scenario in which many identical model replicas average

their gradients, input data are typically shuffled and partitioned

among multiple model replicas, each of which then visits a different

set of training samples. To this end, each model replica could create

a data pipeline for its assigned partition. However, after one epoch,

a reshuffling and repartitioning is necessary in order to preserve

the global randomness of sampling. Unaware that most input data

are already cached, pre-processed, shuffled, and batched on other

nodes, the data pipelines will start from scratch, thereby incurring

redundant overheads (I/O contention to the parallel file system,

resource contention due to overlapping with the training pipeline)

that may slow DL training.

This effect is even more pronounced for ensemble learning, neu-

ral network architecture search and hyper-parameter optimization,

where a large number of model variations need to be explored

concurrently. In this case, the different data pipelines incur redun-

dant overheads even during the same epoch, because the training

data needed by one model variation may be cached by another

model variation. An opportunity in this context is to allow the data

pipelines to be aware of each other’s producer-consumer queues

and to share their content in order to optimize their performance

and scalability as a group. Unlike state-of-art collaborative caching

approaches, this approach would expose not only input data but

also intermediate data (e.g., training samples after they were trans-

formed by map()), which may further reduce redundant overheads.

However, this approach also requires that data pipelines be able

to discover new intermediate data dynamically as they become

available, which introduces the need for advanced metadata man-

agement techniques.

4.2 Adaptive streaming with rehearsal support
When, as in continual learning, input data are streamed directly

from a data source without being accumulated on a storage repos-

itory, it is not sufficient simply to minimize the time required to

access data pipeline iterators. It is also important to adapt to the

rate at which training samples arrive. Specifically, if the stream

generates input data more slowly than are consumed by the itera-

tor, then the overall training pipeline will be slowed down. On the

other hand, if the stream generates data more rapidly than the can

be consumed by the iterator, we encounter the difficult question of

what to do with the excessive input data. Should we simply drop

them at random, or alternatively buffer them under the assumption

that the production/consumption rate will change in the future?

If buffering is feasible, where can it be done? There are multiple

choices, each with its own trade-offs: (1) a sufficiently large storage

repository can be used as a buffer, with the caveat that subsequent

reads will incur I/O overheads; (2) spare capacity in the queues of

other data pipelines can be used for buffering, although this may

interfere with their own optimizations.

A related problem is how to store the exemplars needed for

rehearsal, as discussed in Section 1. If exemplars are persisted in

the storage repository, then more can be accumulated for better

diversity (especially when considering that the same exemplar can

be augmented by the data pipeline in different ways). However,

exemplars are then more costly to access and process. Another

approach is to introduce an additional queue (e.g., rehearsal queue)

to mitigate this problem, at the expense of complicating the data

pipeline and introducing more resource contention.

4.3 Decoupled design
Efforts to build data pipelines are not limited to the Tensorflow

ecosystem. For example, NVIDIA’s DALI (The NVIDIA Data Load-

ing Library) [15] aims to provide highly optimized building blocks

for loading and processing image, video and audio data for DL appli-

cations. The key focus is on portability: it can be used as a drop-in
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replacement for built in data loaders and data iterators of popular

DL frameworks, including Tensorflow data pipelines. DALI sup-

ports a wide range of data formats and augmentations, while taking

advantage of vendor-specific optimizations, such as leveraging a

direct data path between storage and GPU memory (using GPUDi-

rect). As a consequence, the native data pipelines provided by the

DL frameworks, while offering better integration with the data-

flow graphs, may not always be the preferred choice of users. Thus,

optimizations such as collaborative producer-consumer queues and

streaming with rehearsal support should ideally be abstracted as

a separate layer that can integrate with more than a single data

pipeline effort.

Fortunately, efforts such as DALI rely on a similar architecture

as the Tensorflow data pipelines, sharing the same principle of

chaining producer-consumer queues. Thus, an opportunity in this

context is to provide a unified API to manage generic objects that

are cached collaboratively in the queues of multiple compute nodes.

For example, given the pseudo-random nature of I/O accesses and

other operations in general, the interactions with the queues and

caches are deterministic. Therefore, given a fixed caching algorithm

and a fixed seed used by the pseudo-random number generator of

each compute node, the availability of data and even memory offset

on a remote compute node can be determined without additional

metadata that needs to be exchanged between the compute nodes.

Such capabilities can be encapsulated and exposed as a separate

layer for use with Tensorflow pipelines, DALI and potentially other

frameworks.

5 PRELIMINARY EVALUATION
5.1 Experimental Setup
Our experiments were performed on Argonne’s ThetaGPU cluster,

a testbed specifically optimized for training DNN models at scale.

It comprises 24 NVIDIA DGX A100 nodes, each with eight NVIDIA

A100 Tensor Core GPUs and two AMD Rome CPUs. Memory-wise,

each node is equipped with 1 TB of DDR4 memory and 320 GB

GPU memory, for a total of 24 TB DDR4 and 7.6 TB GPU memory.

The nodes are interconnected using 20 Mellanox QM9700 HDR200

40-port switches wired in a fat-tree topology. External storage is

provided by a Lustre parallel file system deployment with aggregate

250 GB/ bandwidth, mounted using POSIX (referred to as the PFS).
In terms of software, we use TensorFlow 2.5.0 and Horovod 0.20.3.

Communication between nodes is facilitated by OpenMPI 4.1.1,
which is used by Horovod.

5.2 Methodology
In order to quantify the limitations of the TensorFlow data pipelines,

we study both the I/O overheads and the impact of those overheads

on overall training duration under various data-parallel training

scenarios. To enable data-parallelism, we rely on the Horovod [22]

runtime library. Specifically, Horovod hides the details of paral-

lelization by wrapping around the optimizer normally instantiated

by a Keras DL application. Using this approach, Horovod augments

the data-flow graph transparently to average the local gradients of

all workers using an all-reduce collective communication pattern

(e.g., as provided by MPI implementations) before proceeding with

the weight updates.

To measure the I/O overheads, we use Darshan [23], an I/O

profiling tool that transparently intercepts all POSIX system calls

in order to generate statistics (number of calls, durations, sizes,

etc.). The impact on the training duration is non-trivial to measure,

because the data pipelines overlap the sample pre-pocessing with

the mini-batch training. Thus, we rely on an indirect method that

compares two data storage strategies: (1) the dataset is shared by

all model replicas of the data-parallel training via the PFS; (2) the

dataset is cached in-memory on each compute node by using the

/dev/shm mount point, which features a tmpfs filesystem. In the

case of (2), the I/O overheads are negligible. Thus, by measuring the

difference between the end-to-end runtimes of (1) and (2), we can

infer by how much time the data pipelines stall the training process

due to the I/O overheads of the PFS. As we shall see, we find that

the I/O overheads of the PFS and the duration of the stalls are high,

thereby justifying the opportunities mentioned in Section 4.

Application: ResNet-50. We use ResNet-50 [6] as a representa-
tive DL model that is frequently used as a DL benchmark. Specifi-

cally, it is a family of DNN where the layers learn residual functions

with reference to the input layers, instead of learning unreferenced

functions. This allows ResNet to train extremely deep neural net-

works with 150+ layers. For the purpose of this work, we focus on

the variant with 50 layers, which has a reference implementation

for use with Keras and Horovod. Although ResNet-50 is deep, its

overall size is relatively small (i.e., in the order of MiB). Therefore,

the model and its intermediate computational states can be cached

in the GPU memory and does cause any I/O related interference

that may influence the study of the data pipelines.

Datasets: ImageNet and Tiny-ImageNet. As input to ResNet-

50, we have chosen two standardized datasets. ImageNet is a widely

used dataset in the evaluation of DL models for image classifica-

tion. It comprises 1.28 million training images and 50,000 validation

images, most with a size of between 10 KB and 100 KB, and each

assigned to one of 1000 classes. Tiny-ImageNet is similar to Ima-

geNet, but smaller, with just 200 image classes, a training dataset

of 100,000 images, a validation dataset of 10,000 images, and a test

dataset of 10,000 images. All images are of size 64×64.

5.3 Results
Wefirst examine the I/O overheads captured by Darshan for the case

when the dataset is shared via the PFS. We study strong scaling

in two scenarios: (1) increasing number of GPUs per node (Fig-

ure 3a); and (2) increasing number of nodes with eight GPUs/node

(Figure 3b).

Figure 2 confirms that DNN training is a read-intensive scenario

in which each process predominantly performs independent read

operations; the independent write operations incur only minimal

overhead (cached Python JIT compiled code and temporary files).

The figure also shows there are no shared read or write operations,

which confirms the data pipelines do not produce intermediate

temporary files that shared and potentially subject to concurrency

control. Note that the read amount per process decreases with

increasing number of GPUs, due to partitioning.
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Figure 2: Amount of I/O (independent reads, independent writes, shared reads, shared writes) per process during ResNet-50
training. The Y axis aggregates all I/O amounts performed by all I/O operations.
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(b) ImageNet.

Figure 3: Duration of PFS I/O operations (reads, writes, metadata queries) per process as a percentage of the total runtime for
an increasing number of GPUs (up to eight per node).

Table 1: End-to-end runtime and cumulative duration of read
and metadata I/O operations, in seconds, per process when
training Resnet-50 on Tiny-Imagenet.

GPUs
1 4 8 16 32 64

PFS reads 322 52.7 24.5 12.4 4.93 3.3

PFS metadata 121 31.6 15.6 10.5 6.8 5.0

PFS runtime 1473 421 275 221 171 160

Cached runtime 985 362 269 217 168 157

Table 2: End-to-end runtime and cumulative duration of read
and metadata I/O operations, in seconds, per process when
training Resnet-50 on Tiny-Imagenet.

GPUs
1 4 8 16 32 64

PFS reads 19473 3441 1502 859 449 217

PFS metadata 1233 326.7 211.1 145.2 108.9 73.1

PFS runtime 36247 8345 4298 2709 1744 1209

Cached runtime 15263 3852 1975 1038 576 364

There are several interesting observations with respect to the

read overheads, depicted in Figure 3. For a single node, despite no

concurrent access to the PFS, the read overheads are high. For a

single GPU, they reach up to 25% of the total runtime for Tiny-

ImageNet and 50% for ImageNet. The metadata overheads are also

non-trivial, reaching up to 5% of total runtime. With an increasing

number of GPUs per node (4 and 8), both the read and metadata

overheads begin to decrease due to OS-level caching. However,

this is only possible because our nodes are equipped with 1 TB

of main memory and ResNet-50 is a relatively small model. With

increasing model complexity, there will be less free memory avail-

able for OS-level caching and therefore diminished benefits. For an

increasing number of nodes (more than eight GPUs), the read and

metadata overheads keep decreasing for Tiny-ImageNet, which is

expected because different nodes can read from different I/O servers

in parallel, therefore achieving a higher aggregated I/O bandwidth.

However, the decrease of the I/O overheads is much slower for

ImageNet, which means the PFS is experiencing I/O bottlenecks

under concurrency, even for a small number of nodes.

To explain these findings better, we depict in Figure 4 the number

of read operations broken down by size ranges. We see that the

total number of read operations in the 0–100 bytes range equals

the number of files for each dataset. This is due to the fact that the

data pipeline needs to read the header of each image to determine

its size and allocate the corresponding tensors before following up

with a subsequent read of the content. Since there are many files
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Figure 4: Bytes per read operation when training Resnet-50. Each label on the X axis represents a different size range, while the
Y axis counts the number of read operations in each range.
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Figure 5: PFS impact measured as percent increase of end-to-end runtime over in-memory caching. The X-axis labels refer to
the number of GPUs used for training with the tiny (T) or full (I) ImageNet dataset. Lower is better.

in each dataset, the resulting aggregate metadata overhead is high.

Furthermore, since each file is small, most read operations involve

less than 10 KB in the case of Tiny-ImageNet and are in the order

of 100 KB in the case of ImageNet. The PFS was not optimized for

this pattern, which leads to an overall throughput in the order of a

few MB/s per node—two orders of magnitude less than the peak

I/O throughput.

For completeness, we show in Tables 1 and 2 the actual mea-

surements of the end-to-end runtime and cumulative duration of

read and metadata I/O operations. The cached runtime corresponds

to the case when the full dataset is cached in memory on each

compute node (on the /dev/shm).
Figure 5 depicts the percent increase in runtime due to reading

from the PFS vs. the cached runtime. For Tiny-ImageNet, the in-

crease in runtime is high when using a single GPU (up to 50%), but

it drops sharply for an increasing number of GPUs. Thus, we can

conclude that despite large read overheads, the data pipelines suc-

cessfully mask them without causing stalls. However, the situation

is reversed for ImageNet: the increase in runtime is much higher

(up to 200%) and it only drops slightly from one GPU to four and

eight GPUs, but then goes up again much faster. This confirm our

hypothesis that a PFS is likely to become a significant bottleneck

both at small scale and large scale.

Furthermore, another important observation can be made: the

relative increase in runtime of PFS vs. cached is much higher than

the PFS I/O overhead (reads and metadata operations) to PFS run-

time ratio. Thus, we can conclude that the stalls caused by the slow

PFS read operations are augmented further down the data pipelines,

which means it will not suffice to make the read operations faster.

6 CONCLUSIONS
We have reviewed the challenges and opportunities of designing

efficient data pipelines for data-parallel training of DNN models,

which is essential in the design of flexible AI runtimes deployed on

HPC systems. Based on a preliminary evaluation of Tensorflow data

pipelines on several nodes and GPUs, we highlighted a significant

I/O overhead due to both data ingestion and metadata operations

that involve a parallel file system, which can cause up to 200% in-

crease in execution time. Based on this preliminary evaluation, we

plan to pursue future work that enables data pipelines to collaborate

and cache training samples as a group, both with respect to raw

input data and intermediate transformations. Such an approach

aims to minimize expensive I/O interactions with parallel file sys-

tems and other external repositories, thereby reducing observed

I/O overheads. Furthermore, streaming training data for continual

learning and/or reinforcement learning often involves rehearsal of

representative historic training samples and/or learning patterns,

which can be implemented in a distributed fashion by leveraging

collaborative caching. Finally, the rising popularity of a variety of

data loading and preprocessing frameworks makes it important to

focus on a decoupled design that expose a unified API that can be

leveraged in such frameworks.
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