
WebAssembly as a Common Layer for the Cloud-edge Continuum
Jämes Ménétrey

james.menetrey@unine.ch

University of Neuchâtel

Switzerland

Marcelo Pasin

marcelo.pasin@he-arc.ch

HES-SO University of Applied Sciences

Switzerland

Pascal Felber

pascal.felber@unine.ch

University of Neuchâtel

Switzerland

Valerio Schiavoni

valerio.schiavoni@unine.ch

University of Neuchâtel

Switzerland

ABSTRACT
Over the last decade, the cloud computing landscape has trans-

formed from a centralised architecture made of large data centres

to a distributed and heterogeneous architecture embracing edge

and IoT units. This shift has created the so-called cloud-edge contin-
uum, which closes the gap between large data centres and end-user

devices. Existing solutions for programming the continuum are,

however, dominated by proprietary silos and incompatible tech-

nologies, built around dedicated devices and run-time stacks. In

this position paper, we motivate the need for an interoperable envi-

ronment that would run seamlessly across hardware devices and

software stacks, while achieving good performance and a high

level of security — a critical requirement when processing data off-

premises. We argue that the technology provided by WebAssembly

running on modern virtual machines and shielded within trusted

execution environments, combined with a core set of services and

support libraries, allows us to meet both goals. We also present

preliminary results from a prototype deployed on the cloud-edge

continuum.

CCS CONCEPTS
• Security and privacy → Trusted computing; • Computer
systems organization→Distributed architectures; • Software
and its engineering → Interoperability; Runtime environ-
ments.

KEYWORDS
WebAssembly, WASI, Trusted Execution Environments, Intel SGX,

Arm TrustZone, Cloud-edge Continuum

ACM Reference Format:
Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni. 2022.

WebAssembly as a Common Layer for the Cloud-edge Continuum. In

Proceedings of the 2nd Workshop on Flexible Resource and Application Man-
agement on the Edge (FRAME ’22), July 1, 2022, Minneapolis, MN, USA. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3526059.3533618

FRAME ’22, July 1, 2022, Minneapolis, MN, USA
© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the
2nd Workshop on Flexible Resource and Application Management on the Edge (FRAME
’22), July 1, 2022, Minneapolis, MN, USA, https://doi.org/10.1145/3526059.3533618.

1 INTRODUCTION
In the last decades, numerous Web applications have been devel-

oped to be accessed from anywhere, including personal computers

and smartphones. Many of these programs were later moved to

the cloud to be more practical or cheaper to maintain. Other ap-

plications were initially designed for the cloud for scalability and

availability, while relying on the cloud’s naturally distributed and

replicated nature. No matter the reason, cloud computing has be-

come one of the main infrastructures supporting applications today.

The cloud was not always big as it is today. It started simpler,

with a handful of providers and basic services such as virtual ma-

chines and virtual storage. Numerous cloud providers have come to

exist to supply today’s enormous cloud market demand. Nowadays,

some applications are built to exploit the cloud as a heterogeneous

environment. They can exploit it to obtain, for example, lower la-

tency, more resilience, or legal compliance. With a growing number

of multi-cloud applications, dealing with different cloud providers

and different cloud technologies has become a frequent issue.

Telecommunication companies started to deploy a more dis-

tributed infrastructure, with smaller, cloud-like clusters closer to the

consumers of network-based services, in order to improve latency

for their services. Local administrations and other infrastructure

providers such as energy and transportation followed suit, deploy-

ing small groups of rather powerful computing devices close to the

human activity they support. The use of these highly distributed

devices has been collectively named edge computing [31].

To complete today’s scenario, billions of sensing and actuating

devices have been deployed, as what is called the Internet-of-things,
or IoT. These devices are often tiny, with limited processing capabili-

ties. They execute a few simple tasks, such as sensing a temperature

or turning on and off a light bulb. Yet, they are connected to the

Internet, often coordinating their function using some edge device

and connecting users through a cloud service.

IoT, edge and cloud infrastructures form together what has been

called the cloud-edge continuum [7]. This collective infrastructure is

far from seamless today. They actually exist in separate silos, domi-

nated by proprietary solutions, as shown in Figure 1. Developers of

applications that span over the whole continuum must implement

specific solutions for each silo, which are often built using incompat-

ible software components. The absence of a seamless environment

makes it much harder to use the cloud-edge continuum.

Security has always been a component of applications shared

among multiple users. Traditional security used to deal with en-

cryption, authentication and access control, and many established

ar
X

iv
:2

20
6.

12
88

8v
1 

 [
cs

.D
C

] 
 2

6 
Ju

n 
20

22

https://orcid.org/0000-0003-2470-2827
https://orcid.org/0000-0002-3064-5315
https://orcid.org/0000-0003-1574-6721
https://orcid.org/0000-0003-1493-6603
https://doi.org/10.1145/3526059.3533618
https://doi.org/10.1145/3526059.3533618


Cloud Silo

Cloud
Infrastructure

Cloud
Applications

Cloud Data

Edge Silo

Edge
Infrastructure

Edge
Applications

Edge Data

IoT Silo

IoT
Firmware

IoT Data

GPS

Figure 1: Independent cloud, edge, and IoT silos.

tools exist. With the advent of the cloud, which is accessed through

the Internet, security has become a fundamental component of all

applications. Providers, developers and users must be able to trust

in the whole continuum — cloud, edge and IoT — in order to be

sure that their data is safe and their computations are correct.

In this paper, we advocate that the technology provided by

WebAssembly is adequate for implementing seamless applications

across most hardware devices and software environments of the

cloud-edge continuum, with the appropriate level of security. We

prove our claims by featuring a comparison of WebAssembly run-

ning benchmarks suites on two processor architectures. To the best

of our knowledge, this paper is the first to compare WebAssembly

performance on different CPU architectures. Modern hardware

allows running WebAssembly while achieving good performance

and a high level of security. Furthermore, when paired with trusted

computing, a technology that guarantees the confidentiality and

integrity of secure applications, WebAssembly abstracts the com-

plexity of software development while offering a trustworthy ex-

ecution environment. Nonetheless, many pieces are still missing

from a full-fledged cloud-edge continuum. Consequently, we also

shed some light on the work yet to be covered by the research and

industrial community.

In the following sections, we develop the current drawbacks

of existing software architectures in more detail. We then present

WebAssembly and its advantages for executing applications in the

cloud-edge continuum. We complement our presentation with a

preliminary performance comparison when executing selected ap-

plications using WebAssembly on two processor architectures to

prove our claims of cloud to edge viability. We conclude the paper

with a few ideas for future work on the subject.

2 BUILDING THE CLOUD-EDGE CONTINUUM
A typical cloud environment is a rather complex system, containing

numerous (and different) hardware components. Such components

are exploited using extensive collections of software, managed

by large engineering teams, and shared by many tenants. Adding

the edge (and IoT) to the picture pushes size and heterogeneity to

another dimension. An ideal seamless cloud-edge continuum should

offer a lightweight execution environment with a similar (or even

identical) software and hardware interface, allowing unmodified

code to be executed in any machine in the system.

Some initiatives already exist for a common environment for

cloud, edge and IoT silos. The Java VirtualMachine (JVM) [33] is one

of the first practical common environment implementations that

address the issue of having applications running on heterogeneous

underlying systems. To a considerable extent, the JVM is today

one of the most comprehensive choices, with implementations for

commodity servers to embedded devices. Still, the JVM supports

very few programming languages and adds substantial performance

overheads compared to the native execution of C programs. Java

programs depend on a vast number of class libraries, imposing a

large memory footprint for executing even the simplest of programs.

Containers appearedmore recently [5], as an alternative for running

applications in heterogeneous environments. Still, containers are

defined for specific architectures and a particular operating system

interface. One needs to rely on recompilation to obtain containers

that can run, for instance, on Intel and Arm devices (respectively

popular as cloud and edge devices).WebAssembly has the generality

of JVM and the lightness of containers, allowing to build multi-

platform software that can execute with negligible performance

losses and small memory footprints.

To automatically deploy applications in a distributed system, one

has to deal with aspects such as admission control and resource

management, as well as monitoring and optimising the use of the

devices to compute and communicate. We are unaware of any prac-

tical, specific tool spanning over the whole cloud-edge continuum,

but we assume it would be straightforward to adapt many of the

existing tools developed for the cloud [9], provided that the un-

derlying systems become more homogeneous. Also, a few authors

have already started working on models for integrating cloud and

edge devices into a seamless system [7, 4, 6]. We do not address

the issue in this paper. Instead, we propose to use a homogeneous

runtime model to close the gap at low-level.

As said, security has become an essential issue in cloud systems.

Application users need guarantees that their data’s confidentiality

and integrity are respected. These guarantees are hard to provide

in a multi-tenant system, where co-tenants may abuse the system’s

vulnerabilities to uncover (or infer) someone else’s application data.

It is even more complex when the infrastructure provider is curious,

as it has all the administrative power needed to inspect all contents

in all physical machines. On the other hand, infrastructure providers

wish to be protected from malicious tenants, who may want to

exploit the infrastructure vulnerabilities for their own profit.

Edge computers are much more distributed when compared to

the cloud. They are installed in user buildings, shared infrastruc-

tures, or even next to roads, being impossible to maintain physical

control over the resources. Edge administrators have physical ac-

cess to the edge devices they manage, with similar powers to cloud

providers. On the other hand, users are in the proximity of the

edge devices and may even physically abuse them. Edge-based

infrastructure offers far fewer guarantees than the cloud.

Most recent versions of popular computer architectures include

some form of a trusted execution environment (TEE), a practical

solution for establishing trust. Such TEEs allow code execution

in a segregated hardware section, where access is architecturally

impossible from other software. A TEE can execute a program and

protect its data so that a machine administrator cannot access it.

Current hardware implementations may include an extra execution

mode in the processor, or even memory encryption for TEE data.

The most popular implementation of TEE today is Intel’s Secure



Guard Extensions (SGX) [21], for which commercial cloud services

such as Azure Confidential Computing [26] already exist. A similar

solution is necessary for edge deployments as well, where the most

popular architecture is Arm, which in turn offers TrustZone [2] as

a TEE. The existence of proprietary and incompatible solutions in

the underlying hardware makes it harder to reuse trusted software

from cloud to edge and vice versa.

Confidential containers could be a practical alternative for de-

ploying applications on the cloud-edge continuum, as proposed by

Scontain [3]. They are similar to traditional containers, except they

run entirely inside a trusted environment. However, like other con-

tainers, they are platform dependent. Also, they are costly in terms

of the resources needed in many cases, as they may incorporate

substantial amounts of operating system features.

Microsoft’s Azure Sphere [27] follows the same idea but offers a

unified programming model and support for certain trusted execu-

tion technologies. As a proprietary solution, it is heavily dependent

on other Microsoft services. It offers a high-level interface but only

supports a few programming languages.

By proposing WebAssembly as the execution model combined

with trusted execution environments, we can offer a seamless porta-

bility base for running trusted applications. The same base can be

used to deploy applications on edge or cloud devices, with similar

security guarantees. Besides, it has been shown that aWebAssembly

TEE enables a double-sided sandbox [13] providing better security

for the provider and the tenants.

Many different IoT infrastructures have been deployed and con-

tinuously generate data, feeding cloud applications worldwide.

Components in the application chains (IoT to edge to cloud) may be

updated independently, adding new functionalities and removing

vulnerabilities. Particularly in this application area, we observe the

growing use of federated machine learning, where edge devices col-

laborate to build a model without revealing all details of each user’s

data, helping to maintain data privacy. Besides, attestation [23]

plays a fundamental role in such a dynamic, distributed scenario. It

allows for establishing trust in specific pieces of software, verifying

their authenticity and integrity. Through remote attestation, one

can ensure to be communicating with a specific, trusted (attested)

program remotely. We believe that attestation plays an essential

role in building a fully trusted environment for running cloud-edge

continuum applications.

3 WEBASSEMBLY UNDER THE HOOD
This section describes how the cloud-edge continuum can leverage

WebAssembly as a unifying technology and the key benefits over

the current state-of-the-art solutions.

3.1 WebAssembly binary instruction format
WebAssembly (Wasm) [16, 30] is a novel and general-purpose vir-

tual instruction set architecture (ISA). In contrast to previous efforts

for platform-independent execution, such as Java from Oracle and

Microsoft .NET, Wasm is developed by a consortium of technol-

ogy companies from the beginning, such as Microsoft, Google and

Mozilla, among others. While it was initially designed to increase

the performance of Web applications, Wasm does not depend on

any Web-related features and is increasingly used for building

standalone applications. Wasm has many advantages to be used

as a unified execution unit for the cloud-edge continuum. First,

Wasm is a compilation target for a wide variety of programming

languages, enabling developers to write applications using their

favourite programming languages and deploy them across the con-

tinuum without adaptation. Second, contrary to Java and .NET,

Wasm is compact, has minimal dependencies, and offers additional

security benefits, such as sandboxing.

Wasm interacts with the underlying operating system thanks

to the WebAssembly System Interface (WASI) [28], a specification

standardising a POSIX-like interface. WASI has been designed with

conciseness and portability, enabling the platforms to implement

the specifications with ease, ideal for constrained environments,

such as IoT and edge devices, as well as TEEs. It currently offers

a set of 46 functions, allowing applications to interact with files,

networking, and many other operating system functions. Popular

compilers for languages such as C and Rust seamlessly translate

POSIX calls toWASI calls. Additionally,WASI follows the concept of

capability-based security, a securitymodel where each resource (e.g.,
socket, file) access must be granted by the Wasm runtime, enabling

establishing a sandbox. For example, WASI restricts the application

to a subtree of the file system by introducing an abstraction layer

between the Wasm program and the operating system interface.

Finally, Wasm runtimes can have different memory footprints

depending on the execution model used, such as interpretation,

just-in-time compilation (JIT), or ahead-of-time compilation (AOT).

As an example, WAMR [37] is a micro runtime aimed for edge

devices that has a file size of 209 KiB when running AOT code and

230 KiB when interpreting, and 41MiB when executing JIT code. A

growing list of toolchains already support Wasm as a compilation

target for different source languages, including C, C++ and Rust.

Examples are LLVM [20], an entire compilation infrastructure, and

Emscripten [38], a source-to-source compiler. Support for other

programming languages, including C#, Go, Kotlin, Swift, and more

are under active development. For all these reasons, we believe

Wasm to be an excellent choice for the binary architecture of the

entire cloud-edge continuum.

3.2 Trusted execution environments
Trusted execution environments aim to provide safe and trustwor-

thy code execution on (remote) untrusted hardware. Hardware

manufacturers have provided TEE implementations more than a

decade ago, each one of them offering different features and guar-

antees. The most influential TEEs that are currently marketed are

Intel SGX [10], Arm TrustZone [2], and AMD Secure Encrypted

Virtualization (SEV) [11]. These technologies enable the processing

of data, contained in isolated memory areas that cannot be accessed

nor tampered with by more privileged software, such as the oper-

ating system or the hypervisor. Hence, cloud providers and edge

device owners with management rights or even physical control

cannot access the data and computation of a tenant, protecting the

confidentiality and integrity of their applications.

Cloud providers, such as Microsoft Azure and Google Cloud,

already market confidential computing, and we expect widespread

adoption of these services due to the demand driven by the cloud-

edge continuum [26, 14]. We observe that the rich ecosystem of



trusted environments largely varies in terms of security, threat

models, and implementation. However, defining a common basis for

trusted execution and making it widely available in both cloud and

edge environments is an essential need for the continuum, and for

the industry in general. For that reason, Arm, Intel, Microsoft and

others created the Confidential Computing Consortium (CCC) [8],

supporting open-source projects for trusted execution technology

under the umbrella of the Linux Foundation. A unified abstraction

for TEEs in the cloud-edge continuum must take support and shape

from such ongoing efforts. For that reason, the CCC is involved in

many projects such as Enarx [12] and Veracruz [34], which aim to

provide Wasm support in TEEs, independently from hardware.

In our previous work, we proposed a few solutions to execute

general-purpose Wasm applications within TEEs. We developed

Twine [24] to bring a Wasm runtime into Intel SGX enclaves, lever-

aging WASI to interact with the TEE facilities and the untrusted

operating system. More recently, we proposed WaTZ [25], a trusted

runtime for Arm TrustZone with added remote attestation. The

latter, an essential feature for providing trust for remote applica-

tions, is surprisingly missing in Arm’s architecture. We believe that

industrial versions of our prototypes will help paving the way to

build distributed applications on the cloud-edge continuum that

providers, developers and users can safely trust.

3.3 Live migration of applications
Migration is another need of the cloud-edge continuum that can

be helped with the homogeneity offered by Wasm. Migration may

be needed for a variety of reasons. Some applications have strict

latency constraints, andmay need tomigrate to keep close to mobile

users. Some applications temporarily require high processing power

and may need to migrate to powerful processors in the clouds.

Some applications may also move closer to where data is collected,

because of legal regulations, because users want to process their

private data locally, or simply because it is faster to process it

closer to their sources. Migration is much more of a challenge if

the underlying environment is as heterogeneous as the continuum.

Previous work covered the needs and solutions to hand off vir-

tual machines [15], requiring transferring large amounts of data

representing memory or even disk images. Transferring Intel SGX

enclaves [1] not only is bound to a specific TEE technology, but

also depends on the application help to provide its state, since

the operating system cannot access enclave memory. In contrast,

Wasm offers a great environment to migrate running applications,

thanks to its linear memory design and sandboxing mechanism.

Indeed, Wasm’s memory is stored in a contiguous memory seg-

ment, where references in code are relative to its starting address.

Moving the linear memory to another address or machine does not

involve any changes to the references in the application state. Fur-

thermore, the opened resources are tracked by the Wasm runtime

with WASI, enabling the reproduction of external dependencies.

Jeong et al. [18] studied the live migration of Wasm applications

loaded in browsers by replicating the linear memory. Nonetheless,

migrations of Wasm applications with opened dependencies from

cloud to edge machines are yet to be demonstrated. The process

of migrating executing software depends on the underlying sys-

tem and its dependencies (e.g., opened files, sockets). We believe

future work will enable applications to be seamlessly deployed and

moved across the cloud-edge continuum, regardless of the devices’

processor architecture, TEE technologies and operating systems.

3.4 Technological limitations and pitfalls
While we presented many advantages of Wasm, limitations also

exist. One first challenge is simply compiling applications in Wasm.

Even though compilers are mature enough to translate source code

into Wasm bytecode (e.g., LLVM), the support offered by WASI for

surfacing system calls remains limited. Lifting this limitation by

extending WASI to match POSIX fully would probably restrict the

ability to execute Wasm applications in various environments, such

as Web browsers or TEEs. Also, the behaviour of WASI diverges

from POSIX by adding sandboxing. One alternative is to avoid

using WASI, as done by Emscripten, which compiles and defines

the import section of Wasm applications with POSIX functions

and system calls directly. While this helps running legacy Wasm

programs with only a few changes on POSIX systems, it reduces

portability for platforms without POSIX, such as other OSes (e.g.,
Windows) and restricted environments (e.g., TEEs or IoT devices).

ExecutingWasm code imposes a performance overhead, as it hap-

pens with all intermediary representations. As we demonstrate in

Section 4, Wasm programs may be up to 3× slower when compared

to their native version, depending on the type of workload. This

is explained by many factors, such as increased register pressure,

additional branch instructions, increased code size, stack overflow

checks and indirect call checks. While some of these issues can

be compensated by allowing compilers to spend more time gen-

erating better code, other factors are a consequence of the design

constraints of Wasm, which would require changes in the Wasm

specifications to be solved at the cost of complicating the imple-

mentation of the compilers and the way Wasm operates [17].

Another less perceptible limitation is the size of the allocatable

volatilememory forWasm applications.Wasmuses a linearmemory

to store the heap of an executing program. The linear memory is

measured in pages, where each page has 65 536 B (2
16
). A linear

memory instance can contain up to 65 536 pages, for a total of

4 GiB (2
32
). Besides, Wasm memory instructions’ indices are 32-

bit unsigned integers. While most software does not require more

than 4GiB of linear memory, this may restrict some applications of

Wasm, such as training sizeable deep learning models or keeping

large databases in memory. Fortunately, recent proposals [22] aim

to extend this limitation by increasing the number of allocatable

pages to 2
48
, pushing the theoretical memory cap to 16 EiB (2

64
).

Finally, Wasm is still young and improving through community

proposals. Its second major version has been recently released [30],

introducing many features, such as reference types, bulk memory

and SIMD instructions. Future contributors may proposeWasm and

WASI extensions to relax the limitations or extend the capabilities of

the specifications. For example, wasi-nn is a proposal to add a WASI

module for machine learning to facilitate model inferences [35].

In conclusion, we expect that the current limitations of Wasm

will recede with respect to software compilation and deployment

for the cloud-edge continuum, thanks to advances in compilation

toolchains, extensions of the specifications, and better support of

Wasm for all types of devices and environments, including TEEs.



de
r
tr
i nu

s
mv
t co

r
ge
s
co
v
ge
v lu gr

a
ch
o
3m
m
bi
c
s2
d
2m
m
ad
i
lu
d
tr
m
do
i sy

m
fl
o
at
a

0.8

1

1.2

1.4

N
or
m
a
li
se
d

ru
n
ti
m
e

◀
b
et
te
r

s2
k sy

r
du
r
f2
d
j1
d ge

m
j2
d
h3
d

1
1.5
2

2.5
3

Native (= 1) Wasm: x86 Arm

Figure 2: Relative performance of Polybench/C benchmarks.

10
0

11
0

12
0

13
0

14
0

14
2

14
5

16
0

16
1

17
0

18
0

19
0

21
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

32
0

40
0

41
0

50
0

51
0

52
0

98
0

99
0

1
1.5
2

2.5
3

N
or
m
a
li
se
d

ru
n
ti
m
e

◀
b
et
te
r

Native (= 1) Wasm: x86 Arm

Figure 3: Relative performance of SQLite Speedtest1 benchmarks.

4 PERFORMANCE
This section shows how Wasm scales across the continuum, going

from cloud to edge devices using different hardware configurations.

While recent research demonstrates the performance of Wasm in

general, we are the first to compare two benchmark suites on differ-

ent processor architectures. Our goal here is to show that Wasm is

viable for running code on a variety of devices for similar workloads,

without suffering from significant performance overheads.

As an example of cloud server, we use a Supermicro 5019S-M2,

equipped with an Intel Xeon E3-1275 v6 (3.8GHz). We settled for

an off-the-shelf NXP MCIMX8M board as an edge device, equipped

with an Arm Cortex-A53 (1.5GHz). While TEEs are not demon-

strated in this work, these two platforms support trusted execution,

namely Intel SGX for the former and Arm TrustZone for the latter.

We already illustrated how Wasm could be embedded within SGX

and TrustZone in our previous work [24, 25].

We opted for WAMR as a Wasm runtime for its small size and

portability across operating systems and constrained environments,

such as TEEs. The Wasm benchmarks are compiled into Wasm

format using Clang, then compiled again ahead-of-time into a native

format using the compiler provided by WAMR (i.e., wamrc). Time is

measured using the POSIX function clock in all the benchmarks

and averaged using the median.

4.1 PolyBench/C micro-benchmarks
PolyBench/C [29] is a CPU-bound benchmark suite comprised of

various mathematical experiments and commonly used to evaluate

the performance of Wasm applications and runtimes [17, 13, 24].

The name of the experiments have been abbreviated in this paper

for conciseness. We assessed 30 PolyBench/C experiments and com-

pared the performance overheads Wasm introduced on x86 and

Arm architectures, relative to each of their native versions (plain

x86-64 and Arm ELF binaries). As such, these measurements com-

pare howWasm applications perform depending on the deployment

target (i.e., cloud or edge machines).

In Figure 2, we observe a similar slowdown between the Wasm

experiments on both architectures. Indeed, Wasm on x86 and Arm

architectures both achieve a slowdown relative to native of 1.3×.

We identify and summarise the following groups based on the test

performance results: (1) the run time ofWasm and native are similar

(e.g., lu, gra, adi), (2) the run time of Wasm are similar, but slower

than native (e.g., s2k, f2d, j1d) (3) the run time of Wasm is faster

than native (e.g., der, tri, nus), and (4) the run time of x86 Wasm

are significantly slower than Arm Wasm and native (e.g., j2d, h3d).
Wasm is naturally slower than native because of the increasing

of register pressure and code size and the presence of extra branch

statements, as discussed in previous work [17]. In some rare cases,

Wasm may be faster than native thanks to a reduced number of

cache misses, as we observed in our previous work [24]. Finally,

some workloads are not well optimised when compiled in Wasm

and then recompiled ahead-of-time into native code, as can be

observed for the Arm versions on the left-hand side of Figure 2.

4.2 SQLite macro-benchmarks
SQLite [19] is a widely used full-fledged embeddable database.

Thanks toWASI, we showcase the versatility of Wasm by compiling

and running SQLite outside of a browser. As such, we diverted the

operating system calls made by the database engine to be handled

by WAMR. For this purpose, we implemented a shim OS layer as

the minimum set of POSIX functions in WASI necessary to support

SQLite’s in-memory databases. We assessed SQLite performance us-

ing its official benchmark suite (Speedtest1 [32]), running 29 out

of the available 32 tests, covering a large spectrum of scenarios (we

excluded 3 experiments because of issues with our shim layer). Each

Speedtest1 experiment targets a single aspect of the database, e.g.,
selection using joins, or the update of indexed records.

Figure 3 presents our evaluation, where we compare the execu-

tion speed of Wasm, using both x86 and Arm architectures, and

again normalise against the native run time. Overall, the Wasm

slowdown relative to native is 2.7× for x86 and 2.1× for Arm. Most

of the experiments located on the right-hand side of the figure,

which are slower, are related to inserting, updating or deleting

data (i.e., 100-120, 180, 190, 230-250, 270-300, 400, 500). The remain-

ing experiments are related to data reading (i.e., 130-145, 160, 161,
260, 320, 410, 510, 520) and housekeeping (i.e., 980, 990). Therefore,



we correlate an increasing impact on the performance of write-

intensive operations. Finally, when preparing the experiments for

this paper, we noticed a performance improvement in WAMR’s

ahead-of-time compiler compared to our results from 2020. Indeed,

in our previous work on Twine [24], we measured similar native

performance on the same x86 hardware and a considerable worse

performance when using WAMR (was 4.1×). This strengthens the
perspective of using Wasm as a universal, lightweight, yet versatile

bytecode to enable platform independence across the continuum.

5 CONCLUSION
We envision the cloud-edge continuum as an interoperable, scalable

and distributed system, where software may be located to any peer,

regardless of the underlying platform. This practice will transform

the development lifecycle of future applications, enabling devel-

opers to focus on the business value instead of dealing with the

complexity of each different piece of infrastructure. Wasm is a per-

fect fit for that task, thanks to its abstraction from the operating

system, device type, programming language, and the added security

guarantees it can provide using TEEs.

We presented some performance measurements showing that

Wasm is a viable alternative to native execution, with acceptable

overheads. We covered many aspects of how Wasm can be suc-

cessfully adopted for the cloud-edge continuum, such as trusted

computing, which enforces the applications’ confidentiality and

integrity, and live migrations, diminishing the latency or increasing

the computation power by relocating running software seamlessly.

Remaining challenges concern enhancing the interoperability

with the existing programming languages towards Wasm, while ex-

tendingWASI to increase the capabilities of hosted applications. For

example, recent initiatives are bringing neural networks [35] and

parallelisation [36] into the WASI specifications. Building middle-

ware software that connects all the spectrum of the cloud-edge con-

tinuum, based on many factors (e.g., latency, computation power)

to ease the deployment and migration of Wasm applications is yet

another milestone to reduce the gap between the cloud and the edge

worlds. We are confident that Wasm and trusted computing can

serve as the foundation for software development for large-scale

systems in the years to come.

Acknowledgements. This publication incorporates results from

the VEDLIoT project, which received funding from the European

Union’s Horizon 2020 research and innovation programme under

grant agreement No 957197.

REFERENCES
[1] Fritz Alder, Arseny Kurnikov, Andrew Paverd, et al. 2018. Migrating SGX en-

claves with persistent state. In 48th IFIP International Conference on Dependable
Systems and Networks (DSN ’18). IEEE.

[2] Arm. 2019. Introducing Arm TrustZone. https : / / developer. arm . com / ip -

products/security-ip/trustzone.

[3] Sergei Arnautov, Bohdan Trach, Franz Gregor, et al. 2016. SCONE: secure Linux

Containers with Intel SGX. In 12th Symposium on Operating Systems Design
and Implementation (OSDI ’16). USENIX.

[4] Daniel Balouek-Thomert, Eduard Gibert Renart, Ali Reza Zamani, et al. 2019.

Towards a computing continuum: enabling edge-to-cloud integration for data-

driven workflows. The International Journal of High Performance Computing
Applications, 33, 6, 1159–1174.

[5] Gaurav Banga and Jeffrey C. Mogul. 1999. Resource containers: a new facility

for resource management in server systems. In 3rd Symposium on Operating
Systems Design and Implementation (OSDI ’99). USENIX.

[6] L. Baresi, D. F. Mendonça, M. Garriga, et al. 2019. A unified model for the

mobile-edge-cloud continuum. ACM Trans. Internet Technol., 19, 2, Article 29.
[7] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, et al. 2018. The Internet of

things, fog and cloud continuum: integration and challenges. Internet of Things,
3, 134–155.

[8] Confidential computing consortium. https://confidentialcomputing.io/projects/.

[9] Breno Costa, Joao Bachiega Jr, Leonardo Rebouças de Carvalho, et al. 2022.

Orchestration in fog computing: a comprehensive survey. ACM Computing
Surveys (CSUR), 55, 2, 1–34.

[10] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. IACRCryptology
ePrint Archive, 86.

[11] Advanced Micro Devices. 2019. Secure Encrypted Virtualization API: Technical

Preview. Technical report 55766. Advanced Micro Devices.

[12] Enarx. https://enarx.io.

[13] David Goltzsche,Manuel Nieke, Thomas Knauth, et al. 2019. AccTEE: aWebAssembly-

based two-way sandbox for trusted resource accounting. In 20th International
Middleware Conference. ACM.

[14] Google. Confidential computing. https : / / cloud . google . com/confidential -

computing.

[15] Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, et al. 2017. You can teach elephants

to dance: agile VM handoff for edge computing. In 2nd Symposium on Edge
Computing (SEC ’17). ACM/IEEE.

[16] Andreas Haas, Andreas Rossberg, Derek L. Schuff, et al. 2017. Bringing the web

up to speed with WebAssembly. In 38th Conference on Programming Language
Design and Implementation (PLDI ’17). ACM SIGPLAN.

[17] Abhinav Jangda, Bobby Powers, Emery D. Berger, et al. 2019. Not so fast:

analyzing the performance of WebAssembly vs. native code. In USENIX Annual
Technical Conference (ATC ’19).

[18] Hyuk-Jin Jeong, Chang Hyun Shin, Kwang Yong Shin, et al. 2019. Seamless

offloading of web app computations from mobile device to edge clouds via

HTML5 web worker migration. In Symposium on Cloud Computing (SoCC ’19).

ACM.

[19] Lv Junyan, Xu Shiguo, and Li Yijie. 2009. Application research of embedded

database SQLite. In International Forum on Information Technology and Appli-
cations (IFITA’09). IEEE.

[20] Chris Lattner and Vikram S. Adve. 2004. LLVM: a compilation framework for

lifelong program analysis & transformation. In International Symposium on
Code Generation and Optimization (CGO ’04). IEEE.

[21] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, et al. 2013. Innovative

instructions and software model for isolated execution. In 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy (HASP
’13). ACM.

[22] Memory64 proposal. https://github.com/WebAssembly/memory64.

[23] Jämes Ménétrey, Christian Göttel, Anum Khurshid, et al. 2022. Attestation

mechanisms for trusted execution environments demystified. In 22nd IFIP
International Conference on Distributed Applications and Interoperable Systems
(DAIS ’22). Springer.

[24] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, et al. 2021. Twine: an embedded

trusted runtime for WebAssembly. In 37th International Conference on Data
Engineering (ICDE ’21). IEEE.

[25] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, et al. 2022. Watz: a Trusted

WebAssembly runtime environment with remote attestation for TrustZone. In

38th International Conference on Distributed Computing Systems (ICDCS ’22).
IEEE.

[26] Microsoft. Azure confidential computing. https://azure.microsoft.com/en-

us/solutions/confidential-compute/.

[27] Microsoft. Azure Sphere. https://azure.microsoft.com/en-us/services/azure-

sphere/.

[28] Mozilla. 2019. Standardizing WASI: a system interface to run WebAssembly

outside the web. https://hacks.mozilla.org/2019/03/standardizing-wasi- a-

webassembly-system-interface/.

[29] Louis-Noël Pouchet et al. 2018. PolyBench/C the polyhedral benchmark suite.

[30] 2022. WebAssembly Core Specification. Version 2.0. W3C.

[31] Weisong Shi, Jie Cao, Quan Zhang, et al. 2016. Edge computing: vision and

challenges. IEEE Internet of Things Journal, 3, 5, 637–646.
[32] SQLite, Speedtest1. https://sqlite.org/cpu.html.

[33] Bill Venners. 1998. The Java virtual machine. Java and the Java virtual machine:
definition, verification, validation.

[34] Veracruz. https://veracruz-project.com.

[35] Wasi-nn proposal. https://github.com/WebAssembly/wasi-nn.

[36] Wasi-parallel proposal. https://github.com/WebAssembly/wasi-parallel.

[37] WebAssembly micro runtime. https://github.com/bytecodealliance/wasm-

micro-runtime.

[38] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In International
Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion (OOPSLA ’11). ACM.

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://confidentialcomputing.io/projects/
https://enarx.io
https://cloud.google.com/confidential-computing
https://cloud.google.com/confidential-computing
https://github.com/WebAssembly/memory64
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/services/azure-sphere/
https://azure.microsoft.com/en-us/services/azure-sphere/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://sqlite.org/cpu.html
https://veracruz-project.com
https://github.com/WebAssembly/wasi-nn
https://github.com/WebAssembly/wasi-parallel
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime

	Abstract
	1 Introduction
	2 Building the cloud-edge continuum=0pt
	3 WebAssembly under the hood
	3.1 WebAssembly binary instruction format
	3.2 Trusted execution environments
	3.3 Live migration of applications
	3.4 Technological limitations and pitfalls

	4 Performance
	4.1 PolyBench/C micro-benchmarks
	4.2 SQLite macro-benchmarks

	5 Conclusion

