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ABSTRACT

Industry 4.0 processes have often varying requirements. A service

robot and a team of service robots respectively represent a flexible

resource. That means, it possesses variability that can possibly be

configured in such a way that it is able to fulfill the requirements

of industry 4.0 processes. Determining whether that is the case and

how that has to happen is an important part of variability man-

agement. Based on a model-driven general method for variability

management in a robotics software ecosystem, we present here a

concrete use case (model) in which we allocate for an order picking

task with specific time requirements either a single fitting service

robot or a collaboration of two fitting service robots. Relevant prop-

erties of the service robots considered are both functional (are the

capabilities to execute the tasks available?) as well as non-functional

(the desired velocity parameterization while executing the individ-

ual navigation sub tasks limited by the respective maximum speed

of a service robot).
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1 INTRODUCTION

Service robots are software-intensive, multi-purpose and highly

flexible machines, that are expected to successfully and robustly

perform a variety of tasks even in open-ended environments. As

their flexibility and their capabilities foremost depend on software,

mastering the software engineering challenge for such universal
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machines in an economically feasible way is pivotal. Thereto, the

RobMoSys project has introduced a business ecosystem for robotics

[rob] based on separation of roles and on composition [SLLS21].

A robotic system is built by composing (software) components

that come with a model of relevant aspects from which finally

the entirety of provided system-level capabilities and properties is

determined.

Industry 4.0 serves as a useful and targeted approach to deal

with challenges like volatile markets and demands, required cus-

tomization, as well as decreasing product life cycles [KMAV17].

Thus, various tasks with individual requirements arise in the ev-

eryday life of a company which are to be fulfilled by the available

resources (including service robots).

The research question now is: how can we model, manage and

evaluate functional and non-functional properties of building blocks

and systems as well as of tasks to be performed while following

separation of roles and composition as these form the foundation of

a business ecosystem for robotics software? One particular aspect

of the general approach for variability management in a robotics

software ecosystem (shortly introduced in section 2) is the possi-

bility to get out of the composition process for a service robot a

model of its capabilities and properties, of its exploitable variation

points and of what the impact of configurations of its variation

points is on its capabilities. On the other hand, the very same mod-

eling elements for functional and non-functional properties can be

used in descriptions of tasks to be performed. Beyond only match-

ing which robot or team of robots is able to execute a task given

available capabilities, we can now determine suitable assignments

and individual configurations of variation points such that also

non-functional properties fulfill specified non-functional require-

ments e.g. minimize resource usage. The focus of this paper is on

a concrete use case in the domain of intralogistics to clarify the

principle and the resulting advantages. Sections 3 and 4 describe

the problem of our use case while section 5 implements the use

case using our model-driven tools that make the general approach

accessible within an ecosystem. Section 6 summarizes related work

and section 7 presents a short conclusion.

2 VARIABILITY MANAGEMENT IN A
ROBOTICS SOFTWARE ECOSYSTEM

A robotics software ecosystem is organized in three tiers (ecosystem

drivers, domain experts and ecosystem users). A tier must conform

to the structures defined by the next upper tier. Therefore tier 1
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Figure 1: Internal structure of tier 1 in a robotics software

ecosystem. Based on that structure, we developed a general

method for variabilitymanagement of composable building

blocks.

defines the most general structures and principles of a robotics

software ecosystem. Tier 1 is in turn organized in different levels

(see figure 1). The different composition structures conform to the

block-port-connector principle and the block-port-connector prin-

ciple in turn conforms to hypergraphs as the scientific grounding

(see [SLLS21]). Based on these structures we developed a general

method for variability management that allows to model building

blocks and the (composed) possible properties taking into account

their configuration variants and states of the environment in form of

dependency variability graph models. Knowing possible properties

of a building block is important to match it with the requirements,

to compare it with other building blocks and to determine resulting

(possible) properties of new compositions of building blocks in

which this building block is involved. Next to the modeling aspect,

the method also comes with a generic mechanism to resolve the

problem space described by a dependency variability graph model,

i.e. it determines the associated variants in dependence of the spec-

ified property requirements. Note that building block is a generic

term: A whole service robotic application can be considered as a

building block that is composed by several tasks, a task is composed

by different skills and a skill is composed by different software com-

ponents interacting with each other via services and executing

activities and functions. One approach to model robotic behavior

in a robotics software ecosystem is the use of hierarchical task-nets.

These arrange actions that are to be executed and that end up in

skills. These are realized by coordinated interplays of software com-

ponents which are situationally configured, started and stopped,

respectively. We use SmartTCL and its sequencer for task-net mod-

eling and execution [SS11]. Applications, tasks, skills, components,

activities and functions are therefore all building blocks at differ-

ent abstraction levels and have properties that must be explicated,

composed and associated with their variants in order to determine

requirement-related configurations. Hence, the provided method is

one more contribution in a robotics software ecosystem to further

simplify the process of developing and configuring service robotic

applications.
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Figure 2: OrderPicking (NotShared). GL =GotoLocation, DTS

= DockToStation, LFS = LoadFromStation, UFS = Undock-

FromStation, DO = DetectObjects, PAP = PickAndPlace, Pi

= Pick, Pl = Place, UTS = UnloadToStation
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Figure 3: OrderPicking (Shared). Synchronization between

the two task-trees by the actions W (Wait) and S (Signal).

DTR = DockToRobot. For the other abbreviations see figure

2.

3 THE ORDER PICKING USE CASE

We use the example of Order Picking throughout this paper to illus-

trate our approach. There are two models to realize Order Picking:

NotShared and Shared depending on whether the task is executed

by a single robot or by a collaboration of two robots. General rep-

resentations are shown in figures 2 and 3. A corresponding model

relevant for variability management is shown in figure 4. It refers

to the meta-model for modeling building blocks which is part of

our general approach. A behavior developer arranges such task

plots by reusing (already existing) other task plots. In this example,

a behavior developer might simply compose the topmost building

block OrderPicking that is of interest for the end user by reusing

the existing task plots NotShared and Shared and specifying that

these two building blocks are functional equivalent alternatives to

realize OrderPicking.

The root task OrderPicking as well as all other tasks in this model

have the property Time assigned. It is representing the estimated

time duration until the associated task is finished. OrderPicking also

has an input (NumberObjects) which is the number of objects to

be picked. The context Capacity represents the number of objects
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Figure 4: The building block model of the order picking use case utilizing composition and separation of roles. The arrows

with the solid lines define the decomposition structure (decomposition sequence (from left to right) and the respective decom-

position type(s)) of a building block. The arrows with the dotted lines point from building block instances to corresponding

building blocks of the same types that occur several times in the decomposition structure but that must bemodeled only once.

that can be transported by the allocated service robot. Note that all

orders with NumberObjects > Capacity are rejected.

3.1 NotShared

The hierarchical task-tree of NotShared describes the workflow of

actions to fulfill the order picking task by a single service robot. It is

a sequence of the tasks CollectBox, Commissioning and DeliverBox.

3.1.1 CollectBox. CollectBox is a sequence of the tasks GotoLoca-

tion, DockToStation, LoadFromStation and UndockFromStation.

The task GotoLocation is needed at several points in this example.

It represents the general service robot task of moving autonomously

from A to B. Therefore it has the input GoalPosition and the context

StartPosition. Furthermore, we also modeled a parameter Velocity

representing a discretized value range (real numbers) to choose

from before executing the task. The StartPosition of this specific

GotoLocation task instance is the current position of a service robot

candidate and the GoalPosition is a location in the warehouse where

a specific station is placed from where an empty transport box can

be fetched (FetchStation). DockToStation has the boolean context

HasCapability assigned, because we assume that not every service

robot resource available in our warehouse has the capability to

dock to specific stations used there. LoadFromStation describes

the process of receiving a transport box from the station. Finally,

UndockFromStation follows.

3.1.2 Commissioning. Commissioning is a sequence of the tasks

GotoLocation, DetectObjects and PickAndPlace. StartPosition of this

27



RoSE’22, May 9, 2022, Pittsburgh, PA, USA Blender and Schlegel

GotoLocation task instance is the location of the station from where

the transport box was fetched (FetchStation) and GoalPosition is a

location in the warehouse where the ordered objects to be picked

can be found (PickingPlace). DetectObjects orientates the camera

to the location of the objects to be picked and determines their

poses. We assume that the number of objects that can be recognized

there is at least as high as NumberObjects. PickAndPlace is a loop

of a sequence of Pick and Place where the number of iterations is

NumberObjects. Pick moves a manipulator from its current position

to an object pose from the set of detected object poses and finally

grasps the object. Place moves the manipulator from this pose

where the object was grasped to the place where the transport

box is located on the allocated service robot. PickAndPlace has the

boolean context HasCapability assigned, because we assume that

not every service robot resource available in our warehouse has

the capability to manipulate objects.

3.1.3 DeliverBox. DeliverBox is a sequence of the tasks GotoLoca-

tion, DockToStation, UnloadToStation and UndockFromStation. Start-

Position of this GotoLocation task instance is the location where

the ordered objects were picked (PickingPlace) and GoalPosition

is a location in the warehouse where a station is placed to which

the transport box containing the picked objects can be delivered

(DeliverStation).

3.2 Shared

The hierarchical task-tree of Shared describes the workflow of ac-

tions to fulfill the order picking task by a collaboration of two

service robots (a manipulation robot and a transportation robot).

First, there is a parallel execution of the tasks CollectBox and Ap-

proachAndDetect. CollectBoxwas already explained in theNotShared

part. ApproachAndDetect is a sequence of GotoLocation and Detec-

tObjects which were also already explained. StartPosition of this

GotoLocation task instance is the current position of a service robot

candidate and GoalPosition is a location in the warehouse where

the ordered objects to be picked can be found (PickingPlace). The

service robot assigned to the ApproachAndDetect task serves as the

manipulation robot in this collaboration and informs the transporta-

tion robot (the service robot assigned to CollectBox) about where to

dock to the manipulation robot after ApproachAndDetect is finished.

If the transportation robot is faster in the execution of its assigned

tasks, the transportation robot will wait until the docking pose is

received from the manipulation robot.

After the docking pose is received, the transportation robot exe-

cutes aGotoLocation task instancewhere StartPosition is the location

of the station from where the transport box was fetched and Goal-

Position is the received docking pose. After the docking pose is

reached by the transportation robot, the transportation robot exe-

cutes DockToRobot to approach the manipulation robot a bit closer

by executing relative movements. After that, the manipulation ro-

bot executes PickAndPlace that was already described previously.

Place now moves the manipulator from the pose where the current

object was grasped to the pose where the transport box is located

on the docked transportation robot. After the PickAndPlace task

is finished, the transportation robot executes the DeliverBox task

already described previously.

4 PROBLEM DESCRIPTION

Let us suppose that a OrderPicking task is commanded with a spe-

cific NumberObjects and 𝑅 = {𝑅1, .., 𝑅𝑛} service robots are cur-
rently available in our warehouse. The problem of this use case

is to allocate either a 𝑅𝑖 ∈ {𝑅1, .., 𝑅𝑛} to NotShared or 𝑅 𝑗 , 𝑅𝑘 ∈

{𝑅1, .., 𝑅𝑛} with 𝑗 ≠ 𝑘 to Shared by considering the required and

provided capabilities as well as a time requirement.

4.1 Functional Constraints

𝑅𝑖 ∈ {𝑅1, .., 𝑅𝑛} is a suitable candidate for a task 𝑇 if:

𝐶𝑟 (𝑇 ) ⊆ 𝐶𝑝 (𝑅𝑖 ) (1)

where 𝐶𝑟 (𝑇 ) is the set of required capabilities of a task 𝑇 and

𝐶𝑝 (𝑇 ) is the set of provided capabilities of a service robot 𝑅𝑖 . In our
example we assume that all service robots in our warehouse have

some basic capabilities such as navigation and object detection to

realize most of the tasks. But as stated previously, in our example

the tasks DockToStation and PickAndPlace can not be handled by

all service robots because not every service robot has a conveyor

belt mounted that can be docked to a corresponding station or has

a manipulator attached. Therefore, we need to check for all service

robot candidates 𝑅𝑖 ∈ {𝑅1, .., 𝑅𝑛}:

𝑅𝑁𝑖 =

{
𝑡𝑟𝑢𝑒 if 𝐷𝑜𝑐𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ∈ 𝐶𝑝 (𝑅𝑖 ) ∧ 𝑃𝑖𝑐𝑘𝐴𝑛𝑑𝑃𝑙𝑎𝑐𝑒 ∈ 𝐶𝑝 (𝑅𝑖 )

𝑓 𝑎𝑙𝑠𝑒 else

(2)

𝑅𝑆𝑇𝑖 =

{
𝑡𝑟𝑢𝑒 if 𝐷𝑜𝑐𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑖𝑜𝑛 ∈ 𝐶𝑝 (𝑅𝑖 )

𝑓 𝑎𝑙𝑠𝑒 else
(3)

𝑅𝑆𝑀𝑖 =

{
𝑡𝑟𝑢𝑒 if 𝑃𝑖𝑐𝑘𝐴𝑛𝑑𝑃𝑙𝑎𝑐𝑒 ∈ 𝐶𝑝 (𝑅𝑖 )

𝑓 𝑎𝑙𝑠𝑒 else
(4)

where 𝑅𝑁𝑖 /𝑅
𝑆𝑇
𝑖 /𝑅𝑆𝑀𝑖 denotes if the 𝑖-th service robot is a suit-

able candidate for NotShared/Shared (transportation part)/Shared

(manipulation part).

4.2 Non-Functional Constraints

The problem including the just described functional constraints

as well as an additional non-functional constraint in form of the

overall time can be formulated in two ways: Optimal or adequate.

The first variant determines the allocation with the minimum time

and the second variant is a constraint satisfaction problem where

we are satisfied with any first allocation able to fulfill a specific

constraint (a specific threshold value for time that should not be

exceeded). Equation 5 formulates the optimal case where 𝑡𝑁 (𝑅𝑖 ) is
the estimated time for the task NotSharedwhen executed by service

robot 𝑖 and 𝑡𝑆 (𝑅 𝑗 , 𝑅𝑘 ) is the estimated time for the task Sharedwhen
executed in collaboration by service robot 𝑗 (transportation part)
and service robot 𝑘 (manipulation part).

argmin
𝑖=1..𝑛,𝑗=1..𝑛,𝑘=1..𝑛

(
𝑡𝑁 (𝑅𝑖 ), 𝑡𝑆 (𝑅 𝑗 , 𝑅𝑘 )

)

where: 𝑅𝑁𝑖 ∧ 𝑅𝑆𝑇𝑗 ∧ 𝑅𝑆𝑀
𝑘

∧ 𝑗 ≠ 𝑘

(5)
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4.3 Composition of Time

The equations 6 - 17 show the composition of the overall time of the

OrderPicking task for its two variants NotShared and Shared based

on the time of the contained sub tasks. The time of the GotoLocation

task instances is a function of StartPosition, GoalPosition and the

Velocity variable with a finite domain. 𝑡𝐺𝑜𝑡𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑙 (𝑅𝑖 ) denotes
the estimated time of the 𝑙-th GotoLocation task instance executed

by service robot 𝑅𝑖 . Note that some time values of certain tasks

are assumed to be constant and therefore do not depend on the

allocated service robot 𝑅𝑖 .

𝑡𝑁 (𝑅𝑖 ) = 𝑡𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝐵𝑜𝑥 (𝑅𝑖 ) + 𝑡𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔 (𝑅𝑖 ) + 𝑡𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝐵𝑜𝑥 (𝑅𝑖 )

(6)

𝑡𝑆 (𝑅 𝑗 , 𝑅𝑘 ) = max(𝑡𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝐵𝑜𝑥 (𝑅 𝑗 ), 𝑡𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝐴𝑛𝑑𝐷𝑒𝑡𝑒𝑐𝑡 (𝑅𝑘 ))+

𝑡𝐺𝑜𝑡𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛5 (𝑅 𝑗 ) + 𝑡𝐷𝑜𝑐𝑘𝑇𝑜𝑅𝑜𝑏𝑜𝑡 + 𝑡𝑃𝑖𝑐𝑘𝐴𝑛𝑑𝑃𝑙𝑎𝑐𝑒 (𝑅𝑘 )+

𝑡𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝐵𝑜𝑥 (𝑅 𝑗 )

(7)

𝑡𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝐵𝑜𝑥 (𝑅𝑖 ) = 𝑡𝐺𝑜𝑡𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛1 (𝑅𝑖 ) + 𝑡𝐷𝑜𝑐𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑖𝑜𝑛+

𝑡𝐿𝑜𝑎𝑑𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑡𝑈𝑛𝑑𝑜𝑐𝑘𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑖𝑜𝑛
(8)

𝑡𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑛𝑔 (𝑅𝑖 ) = 𝑡𝐺𝑜𝑡𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛2 (𝑅𝑖 ) + 𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑂𝑏 𝑗𝑒𝑐𝑡𝑠+

𝑡𝑃𝑖𝑐𝑘𝐴𝑛𝑑𝑃𝑙𝑎𝑐𝑒 (𝑅𝑖 )
(9)

𝑡𝑃𝑖𝑐𝑘𝐴𝑛𝑑𝑃𝑙𝑎𝑐𝑒 (𝑅𝑖 ) = 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 · (𝑡𝑃𝑖𝑐𝑘 (𝑅𝑖 ) + 𝑡𝑃𝑙𝑎𝑐𝑒 (𝑅𝑖 ))

(10)

𝑡𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝐵𝑜𝑥 (𝑅𝑖 ) = 𝑡𝐺𝑜𝑡𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛3 (𝑅𝑖 ) + 𝑡𝐷𝑜𝑐𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑖𝑜𝑛+

𝑡𝑈𝑛𝑙𝑜𝑎𝑑𝑇𝑜𝑆𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑡𝑈𝑛𝑑𝑜𝑐𝑘𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑖𝑜𝑛
(11)

𝑡𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝐴𝑛𝑑𝐷𝑒𝑡𝑒𝑐𝑡 (𝑅𝑘 ) = 𝑡𝐺𝑜𝑡𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛4 (𝑅𝑘 ) + 𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑂𝑏 𝑗𝑒𝑐𝑡𝑠
(12)

𝑡𝐺𝑜𝑡𝑜𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑙 (𝑅𝑖 ) = 𝑓 (𝑠𝑝𝑙 (𝑅𝑖 ), 𝑔𝑝𝑙 , 𝑣𝑙 (𝑅𝑖 )) (13)

𝑠𝑝1 (𝑅𝑖 ) = 𝑠𝑝4 (𝑅𝑘 ) = Current location of 𝑅𝑖/𝑅𝑘 (14)

𝑔𝑝1 = 𝑠𝑝2 = 𝑠𝑝5 = Location of 𝐹𝑒𝑡𝑐ℎ𝑆𝑡𝑎𝑡𝑖𝑜𝑛 (15)

𝑔𝑝2 = 𝑠𝑝3 = 𝑔𝑝4 = 𝑔𝑝5 = Location of 𝑃𝑖𝑐𝑘𝑖𝑛𝑔𝑃𝑙𝑎𝑐𝑒 (16)

𝑔𝑝3 = Location of 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑆𝑡𝑎𝑡𝑖𝑜𝑛 (17)

4.4 Complexity Analysis

This section provides additional insights about the described prob-

lem by analyzing the complexity depending on the number of avail-

able and suitable service robots.

Let 𝑅𝑆𝑇 /𝑅𝑆𝑀 be the set of service robots suitable for the trans-

portation/manipulation part of task Shared because they can Dock-

ToStation/PickAndPlace and 𝑅𝑁 the set of service robots suitable for

NotShared because they can both DockToStation and PickAndPlace.

𝑅𝑆𝑇 = 𝑅𝑆𝑇 \𝑅𝑁 and 𝑅𝑆𝑀 = 𝑅𝑆𝑀 \𝑅𝑁 respectively is then the set of

service robots that can DockToStation but not PickAndPlace and vice

versa. The number of possible allocations is then given by equation

18 if |𝑅𝑁 | = 1 (|𝐴=1 |) and by equation 19 if |𝑅
𝑁 | > 1 (|𝐴>1 |).

|𝐴=1 | =
(
|𝑅𝑆𝑇 | · |𝑅𝑆𝑀 |

)
+
(
|𝑅𝑆𝑇 | · |𝑅𝑁 |

)
+
(
|𝑅𝑆𝑀 | · |𝑅𝑁 |

)
+ |𝑅𝑁 |

(18)

|𝐴>1 | = |𝐴=1 | +
|𝑅𝑁 |!

( |𝑅𝑁 | − 2)!
(19)

Equation 20 then indicates the worst case overall number of

possible velocity combinations for the GotoLocation task instances

of OrderPicking that must be considered if the whole variability

problem space must be explored. The term 𝑣𝑚𝑎𝑥 denotes the highest

possible translational velocity considering all potential candidates

𝑅𝑖 and 𝑑 is a discretization constant. Hence, if all potential service

robot candidates have the same maximum translational velocity,

the equation gives the exact number of possible combinations.

|𝑉 | =

(
|𝑅𝑁 | ·

( 𝑣𝑚𝑎𝑥

𝑑

)3)
+

(
( |𝐴| − |𝑅𝑁 |) ·

( 𝑣𝑚𝑎𝑥

𝑑

)4)
(20)

5 REALIZATION AND RESULTS

This section illustrates how the problem described previously can

be realized by a dependency variability graph model that considers

composition and separation of roles as part of our general approach.

Figure 5 presents the dependency variability graph model for the

building block OrderPicking of figure 4. The figure already shows

the complete composed model where the modeler was able to reuse

the existing dependency variability graph models of Shared and

NotShared to represent the new problem space easily without the

need to design everything from scratch again. The concrete avail-

able service robot candidates and their properties are retrieved

from the corresponding service robot models and are connected to

the dependency variability graph model either at design-time or

dynamically at run-time (3 service robots in our example shown

in the lower part of the model). The generic solver that is finally

applied to the described problem space makes sure that only valid

assignments are produced, is able to go through all possible valid

combinations if desired and can determine the bindings of modeled

variants that fulfill the specified requirements.

The 3 service robot candidates available for evaluation in this

experiment are shown in figure 6. Their properties are listed in

table 1. The estimation function 𝑓 (𝑠𝑝𝑙 (𝑅𝑖 ), 𝑔𝑝𝑙 , 𝑣𝑙 (𝑅𝑖 )) for the time
of the GotoLocation task instances in this example is optimistic as

equation 21 shows. Depending on the obstacle configuration in the

environment, this estimation function can be inaccurate. However,

better estimation functions could be applied (e.g. asking a path

planner, a function approximated by machine learning). As soon as

they are available, they can be easily applied with the help of our

tooling to improve the accuracy.

Based on table 1 and equation 18 (because |𝑅𝑁 | = 1), the number

of possible allocations is 4. Table 2 lists all the possible allocations

and table 3 shows the constant values we use for this example.
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Figure 5: The dependency variability graph model of the OrderPicking building block model (figure 4) utilizing composition

and separation of roles. The requirement specified in this model is minimizing time.

Table 1: Properties of our service robot candidates.

Robot DockToStation PickAndPlace Max Vel.

Robotino true false 1200.0

Larry false true 1000.0

Macy true true 1000.0

𝑓 (𝑠𝑝𝑙 (𝑅𝑖 ), 𝑔𝑝𝑙 , 𝑣𝑙 (𝑅𝑖 )) =

√
(𝑔𝑝𝑥

𝑙
− 𝑠𝑝𝑥

𝑙
(𝑅𝑖 ))2 + (𝑔𝑝

𝑦
𝑙
− 𝑠𝑝

𝑦
𝑙
(𝑅𝑖 ))2

𝑣𝑙 (𝑅𝑖 )
(21)

Table 2: The possible task allocations in this example based

on the available service robots (table 1).

Allocation 𝑅𝑆𝑇 𝑅𝑆𝑀 𝑅𝑁

1 - - Macy

2 Robotino Larry -

3 Robotino Macy -

4 Macy Larry -
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Figure 6: The service robot candidates available in this ex-

ample. In the left figure: Larry (left) and Robotino (right). In

the right figure:Macy (MiRplatformwithUR5 and conveyor

belt). See the video https://youtu.be/Zz66I4NVtNU to get an

idea of the execution of Larry and Robotino in real-world

scenarios.

Table 3: Constant values in the example

Names Values

NumberObjects | FetchStation 5 | (6.0, 7.0)

PickingPlace | DeliverStation (5.0, -10.0) | (-3.0, 6.0)

𝑡𝐷𝑜𝑐𝑘𝑇𝑜𝑆𝑡𝑎𝑡𝑖𝑜𝑛 | 𝑡𝐿𝑜𝑎𝑑𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑖𝑜𝑛 3.0 | 2.0

𝑡𝑈𝑛𝑙𝑜𝑎𝑑𝑇𝑜𝑆𝑡𝑎𝑡𝑖𝑜𝑛 | 𝑡𝑈𝑛𝑑𝑜𝑐𝑘𝐹𝑟𝑜𝑚𝑆𝑡𝑎𝑡𝑖𝑜𝑛 2.0 | 2.0

𝑡𝐷𝑒𝑡𝑒𝑐𝑡𝑂𝑏 𝑗𝑒𝑐𝑡𝑠 | 𝑡𝐷𝑜𝑐𝑘𝑇𝑜𝑅𝑜𝑏𝑜𝑡 10.0 | 5.0

𝑡𝑃𝑖𝑐𝑘 | 𝑡𝑃𝑙𝑎𝑐𝑒 8.0 | 8.0

5.1 Experiments

5.1.1 Minimizing Time. The decision about the final allocation

depends on the maximum velocity of the service robot candidates

and their current positions when an order is placed. We carry out

3 different experiments with varying start positions for the ser-

vice robots (table 4, figures 7, 8 and 9). Since we want to minimize

time here, it is clear that the velocity assignment for the different

GotoLocation task instances will be always the maximum possible

velocity of the corresponding service robot candidate. Hence, to

reduce the computational complexity, we can model the variability

spaces of our velocity parameters as constants here. In experiment

1, Robotino and Larry are relatively far away from the first locations

they have to approach (FetchStation and PickingPlace respectively).

Macy is much closer and therefore, although Robotino has a higher

maximum velocity, the allocation with the minimum time is 1 (see

table 2) in which the NotShared task is allocated by Macy on its

own. In experiment 2, we swap the start positions of Robotino

and Macy and we move Larry closer to PickingPlace. Hence, the

determined allocation is 2 (Shared by Robotino and Larry). Finally,

in experiment 3, we use the start positions from experiment 1 for

Robotino and Macy and the start position from experiment 2 for

Larry. Because Larry is now closer to PickingPlace as in experiment

1, the determined allocation is 4 (Shared by Macy and Larry). In

that case, the collaborative execution is faster than the execution by

Macy only because Larry now faster finishes ApproachAndDetect

than Macy CollectBox. In contrast to the execution by Macy only,

Macy does not need to execute DetectObjects after arrival at the

PickingPlace, because that was already done by Larry while Macy

was executing CollectBox. Finally, the used constant time of Dock-

ToRobot that must be executed in the collaborative execution is low

enough to not change the final outcome here.

5.1.2 Staying Below a Time Limit. Minimizing timemay not always

be desired. Let us assume that there is a time limit in which the

order must be completed. Then it is fully satisfying if it is completed

within that time limit. From this point of view, the variant with the

minimum time is as useful as any other variant with a time below

the time limit. However, if we consider a further property Energy in

our allocation problem, one may conclude that the optimal variant

in presence of a time limit is the variant that fulfills the time limit

with the minimum energy consumed. If we assume, that the energy

consumption increases with the driven velocity and distance, the

assignment of velocities to the different GotoLocation task instances

should be as low as possible in that case. It is possible to model and

solve these aspects with our dependency variability graph method.

However, for reasons of space we can not present it here. In [BS20]

we show a similar use case based on the same method but only

for a single service robot executing an order picking task. Note

that in contrast to minimizing time, velocities can not be constants

anymore but need to be defined as variables with the corresponding

maximum velocities of the different service robots as the upper

limits. Therefore, the complexity of the problems minimizing time

and staying below a time limit are hard to compare and is out of

scope of this paper.

Table 4: Varying start positions for the service robots in the

different experiments

Experiment Robotino Larry Macy

1 (-11.0, -14.0) (3.0, 12.0) (1.0, 1.0)

2 (1.0, 1.0) (-2.0, -8.0) (-11.0, -14.0)

3 (-11.0, -14.0) (-2.0, -8.0) (1.0, 1.0)

1) Robotino

DeliverStation

FetchStation

PickingPlace
1) Larry

1) Macy

+x

10

+y
10

-10

-10

Figure 7: Experiment 1: Allocation 1 (blue) is the variant

with the minimum time.
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2) Macy

DeliverStation

FetchStation

PickingPlace

2) Robotino

2) Larry

+x

10

+y
10

-10

-10

Figure 8: Experiment 2: Allocation 2 (blue) is the variant

with the minimum time.

3) Robotino

DeliverStation

FetchStation

PickingPlace

3) Macy

3) Larry

+x

10

+y
10

-10

-10

Figure 9: Experiment 3: Allocation 4 (blue) is the variant

with the minimum time.

6 RELATEDWORK

The works in [SLL+15] and [LIRS+14] illustrate examples for vari-

ability management in service robot systems by relying on model-

driven tools. The general approach of including particular solvers

at decision points of task-trees at run-time containing modeled vari-

ability at design-time is similar to here. However, we now focus on

composition of building blocks and their properties. Variability man-

agement plays an important role in all kinds of software-intensive

systems and is therefore a very complex domain. A comprehensive

survey of different approaches and their classification is given in

[KBR+18] for the domain of self-adaptive systems. Overlaps can

also be found in the area of dynamic software product lines for

which [GSSC15] and [BBD17] provide detailed examinations and

categorisations. Also the work [ABG+13] presents a thorough liter-

ature review of software architecture optimization methods, whose

collected approaches partially correlate in motivation and method-

ology with the approaches from the aforementioned references.

7 CONCLUSION

We presented a concrete order picking use case with specific re-

quirements for which suitable service robots and teams of service

robots must be determined depending on their properties. The use

case is realized based on a general approach for variability manage-

ment in a robotics software ecosystem. The general approach does

not only allow that now service robot resources can be determined

automatically according to specified requirements of tasks but also

reduces the modeling effort of these problems significantly by uti-

lizing composition and separation of roles. In the future, we will

extend and further generalize the models of the presented use case

by removing some made assumptions.
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