skip to main content
10.1145/3526113.3545655acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

DeltaPen: A Device with Integrated High-Precision Translation and Rotation Sensing on Passive Surfaces

Authors Info & Claims
Published:28 October 2022Publication History

ABSTRACT

We present DeltaPen, a pen device that operates on passive surfaces without the need for external tracking systems or active sensing surfaces. DeltaPen integrates two adjacent lens-less optical flow sensors at its tip, from which it reconstructs accurate directional motion as well as yaw rotation. DeltaPen also supports tilt interaction using a built-in inertial sensor. A pressure sensor and high-fidelity haptic actuator complements our pen device while retaining a compact form factor that supports mobile use on uninstrumented surfaces. We present a processing pipeline that reliably extracts fine-grained pen translations and rotations from the two optical flow sensors. To asses the accuracy of our translation and angle estimation pipeline, we conducted a technical evaluation in which we compared our approach with ground-truth measurements of participants’ pen movements during typical pen interactions. We conclude with several example applications that leverage our device’s capabilities. Taken together, we demonstrate novel input dimensions with DeltaPen that have so far only existed in systems that require active sensing surfaces or external tracking.

References

  1. Adonit. 2010. Adonit Ink. https://www.adonit.net/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  2. Rodrigo Almeida and Pierre Cubaud. 2006. Supporting 3D Window Manipulation with a Yawing Mouse. In Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles (Oslo, Norway) (NordiCHI ’06). Association for Computing Machinery, New York, NY, USA, 477–480. https://doi.org/10.1145/1182475.1182541Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anoto. 2011. Anoto digital pen. https://www.anoto.com/cases/anoto-digital-pen/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  4. Apple. n.d.. Apple Pencil. https://support.apple.com/kb/SP740. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  5. Atakan Arasan, Cagatay Basdogan, and T. Metin Sezgin. 2013. Haptic stylus with inertial and vibro-tactile feedback. In 2013 World Haptics Conference (WHC). 425–430. https://doi.org/10.1109/WHC.2013.6548446Google ScholarGoogle ScholarCross RefCross Ref
  6. Atakan Arasan, Cagatay Basdogan, and Tevfik Metin Sezgin. 2016. HaptiStylus: A Novel Stylus for Conveying Movement and Rotational Torque Effects. IEEE Computer Graphics and Applications 36, 1 (2016), 30–41. https://doi.org/10.1109/MCG.2015.48Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ravin Balakrishnan, Thomas Baudel, Gordon Kurtenbach, and George Fitzmaurice. 1997. The Rockin’Mouse: integral 3D manipulation on a plane. In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems. 311–318.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Olivier Bau, Ivan Poupyrev, Ali Israr, and Chris Harrison. 2010. TeslaTouch: electrovibration for touch surfaces. In Proceedings of the 23nd annual ACM symposium on User interface software and technology. 283–292.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. François Bérard, Jessica Ip, Mitchel Benovoy, Dalia El-Shimy, Jeffrey R Blum, and Jeremy R Cooperstock. 2009. Did “Minority Report” get it wrong? Superiority of the mouse over 3D input devices in a 3D placement task. In IFIP Conference on Human-Computer Interaction. Springer, 400–414.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Xiaojun Bi, Tomer Moscovich, Gonzalo Ramos, Ravin Balakrishnan, and Ken Hinckley. 2008. An exploration of pen rolling for pen-based interaction. In Proceedings of the 21st annual ACM symposium on User interface software and technology. 191–200.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Robin Burgess-Limerick, Jonathan Shemmell, R Scadden, and A Plooy. 1999. Wrist posture during computer pointing device use. Clinical Biomechanics 14, 4 (1999), 280–286.Google ScholarGoogle ScholarCross RefCross Ref
  12. P. Buttolo and B. Hannaford. 1995. Pen-based force display for precision manipulation in virtual environments. In Proceedings Virtual Reality Annual International Symposium ’95. 217–224. https://doi.org/10.1109/VRAIS.1995.512499Google ScholarGoogle ScholarCross RefCross Ref
  13. Dapeng Chen, Aiguo Song, Lei Tian, Yuqing Yu, and Lifeng Zhu. 2018. MH-Pen: A Pen-Type Multi-Mode Haptic Interface for Touch Screens Interaction. IEEE Transactions on Haptics 11, 4 (2018), 555–567. https://doi.org/10.1109/TOH.2018.2826551Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Youngjun Cho, Andrea Bianchi, Nicolai Marquardt, and Nadia Bianchi-Berthouze. 2016. RealPen: Providing Realism in Handwriting Tasks on Touch Surfaces Using Auditory-Tactile Feedback. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY, USA, 195–205. https://doi.org/10.1145/2984511.2984550Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Martin Maechler Douglas Bates. 2022. lme4: Linear Mixed-Effects Models using ’Eigen’ and S4. https://cran.r-project.org/web/packages/lme4/index.html.Google ScholarGoogle Scholar
  16. Tobias Drey, Jan Gugenheimer, Julian Karlbauer, Maximilian Milo, and Enrico Rukzio. 2020. VRSketchIn: Exploring the Design Space of Pen and Tablet Interaction for 3D Sketching in Virtual Reality. Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376628Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hesham Elsayed, Mayra Donaji Barrera Machuca, Christian Schaarschmidt, Karola Marky, Florian Müller, Jan Riemann, Andrii Matviienko, Martin Schmitz, Martin Weigel, and Max Mühlhäuser. 2020. VRSketchPen: Unconstrained Haptic Assistance for Sketching in Virtual 3D Environments(VRST ’20). Association for Computing Machinery, New York, NY, USA, Article 3, 11 pages. https://doi.org/10.1145/3385956.3418953Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Andreas Fender and Jörg Müller. 2018. Velt: A Framework for Multi RGB-D Camera Systems. In Proceedings of the 2018 ACM International Conference on Interactive Surfaces and Spaces (Tokyo, Japan) (ISS ’18). Association for Computing Machinery, New York, NY, USA, 73–83. https://doi.org/10.1145/3279778.3279794Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Travis Gesslein, Verena Biener, Philipp Gagel, Daniel Schneider, Per Ola Kristensson, Eyal Ofek, Michel Pahud, and Jens Grubert. 2020. Pen-based interaction with spreadsheets in mobile virtual reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 361–373.Google ScholarGoogle ScholarCross RefCross Ref
  20. William I Grosky, Robert Zeleznik, Timothy Miller, Andries van Dam, Chuanjun Li, Dana Tenneson, Christopher Maloney, and Joseph J LaViola. 2008. Applications and issues in pen-centric computing. IEEE MultiMedia 15, 4 (2008), 14–21.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Vicki Ha, Kori M Inkpen, Regan L Mandryk, and Tara Whalen. 2006. Direct intentions: The effects of input devices on collaboration around a tabletop display. In First IEEE International Workshop on Horizontal Interactive Human-Computer Systems (TABLETOP’06). IEEE, 8–pp.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jaehyun Han, Seongkook Heo, Hyong-Euk Lee, and Geehyuk Lee. 2014. The IrPen: A 6-DOF Pen for Interaction with Tablet Computers. IEEE Computer Graphics and Applications 34, 3 (2014), 22–29. https://doi.org/10.1109/MCG.2014.19Google ScholarGoogle ScholarCross RefCross Ref
  23. Ken Hinckley. 2004. Fundamental States of Interaction for Pen, Touch, and Other Novel Interaction Devices.Google ScholarGoogle Scholar
  24. Ken Hinckley, Patrick Baudisch, Gonzalo Ramos, and Francois Guimbretiere. 2005. Design and analysis of delimiters for selection-action pen gesture phrases in scriboli. In Proceedings of the SIGCHI conference on Human factors in computing systems. 451–460.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ken Hinckley, Gonzalo Ramos, Francois Guimbretiere, Patrick Baudisch, and Marc Smith. 2004. Stitching: pen gestures that span multiple displays. In Proceedings of the working conference on Advanced visual interfaces. 23–31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Rodenhouse, Andy Wilson, Hrvoje Benko, and Bill Buxton. 2010. Pen + touch = new tools. In Proceedings of the 23nd annual ACM symposium on User interface software and technology. 27–36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Eve Hoggan, Stephen A Brewster, and Jody Johnston. 2008. Investigating the effectiveness of tactile feedback for mobile touchscreens. In Proceedings of the SIGCHI conference on Human factors in computing systems. 1573–1582.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. InvenSense. 2022. MPU 9250. https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/.Google ScholarGoogle Scholar
  29. Daniel Keefe, Robert Zeleznik, and David Laidlaw. 2007. Drawing on Air: Input Techniques for Controlled 3D Line Illustration. IEEE Transactions on Visualization and Computer Graphics 13, 5(2007), 1067–1081. https://doi.org/10.1109/TVCG.2007.1060Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Daniel F. Keefe, Daniel Acevedo Feliz, Tomer Moscovich, David H. Laidlaw, and Joseph J. LaViola. 2001. CavePainting: A Fully Immersive 3D Artistic Medium and Interactive Experience. In Proceedings of the 2001 Symposium on Interactive 3D Graphics(I3D ’01). Association for Computing Machinery, New York, NY, USA, 85–93. https://doi.org/10.1145/364338.364370Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Seung-Chan Kim, Ali Israr, and Ivan Poupyrev. 2013. Tactile rendering of 3D features on touch surfaces. In Proceedings of the 26th annual ACM symposium on User interface software and technology. 531–538.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Russell Kruger, Sheelagh Carpendale, Stacey D Scott, and Anthony Tang. 2005. Fluid integration of rotation and translation. In Proceedings of the SIGCHI conference on Human factors in computing systems. 601–610.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ki-Uk Kyung and Jun-Young Lee. 2008. WUbi-Pen: Windows Graphical User Interface Interacting with Haptic Feedback Stylus. In ACM SIGGRAPH 2008 New Tech Demos (Los Angeles, California) (SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article 42, 4 pages. https://doi.org/10.1145/1401615.1401657Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Johnny C. Lee, Paul H. Dietz, Darren Leigh, William S. Yerazunis, and Scott E. Hudson. 2004. Haptic Pen: A Tactile Feedback Stylus for Touch Screens. In Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology (Santa Fe, NM, USA) (UIST ’04). Association for Computing Machinery, New York, NY, USA, 291–294. https://doi.org/10.1145/1029632.1029682Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yang Li, Ken Hinckley, Zhiwei Guan, and James A Landay. 2005. Experimental analysis of mode switching techniques in pen-based user interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems. 461–470.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhen Li, Michelle Annett, Ken Hinckley, Karan Singh, and Daniel Wigdor. 2019. HoloDoc: Enabling Mixed Reality Workspaces That Harness Physical and Digital Content(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300917Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Chunyuan Liao, François Guimbretière, and Corinna E. Loeckenhoff. 2006. Pen-Top Feedback for Paper-Based Interfaces. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (Montreux, Switzerland) (UIST ’06). Association for Computing Machinery, New York, NY, USA, 201–210. https://doi.org/10.1145/1166253.1166285Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Liping Lin, Yongtian Wang, Katsuhito Akahane, and Makoto Sato. 2012. Spidar-pen: A 2t1r pen-based interface with co-located haptic-visual display. In Transactions on Edutainment VIII. Springer, 166–177.Google ScholarGoogle Scholar
  39. Richard F Lyon. 1981. The optical mouse, and an architectural methodology for smart digital sensors. In VLSI Systems and Computations. Springer, 1–19.Google ScholarGoogle Scholar
  40. I. Scott MacKenzie, R. William Soukoreff, and Chris Pal. 1997. A Two-Ball Mouse Affords Three Degrees of Freedom. In CHI ’97 Extended Abstracts on Human Factors in Computing Systems (Atlanta, Georgia) (CHI EA ’97). Association for Computing Machinery, New York, NY, USA, 303–304. https://doi.org/10.1145/1120212.1120405Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Fabrice Matulic, Riku Arakawa, Brian Vogel, and Daniel Vogel. 2020. PenSight: Enhanced Interaction with a Pen-Top Camera. Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376147Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Microsoft. n.d.. Microsoft Surface Pen. https://www.microsoft.com/en-us/d/surface-pen/8zl5c82qmg6b?activetab=pivot:overviewtab. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  43. Pam A Mueller and Daniel M Oppenheimer. 2014. The pen is mightier than the keyboard: Advantages of longhand over laptop note taking. Psychological science 25, 6 (2014), 1159–1168.Google ScholarGoogle ScholarCross RefCross Ref
  44. Shinji Nabeshima, Shinichirou Yamamoto, Kiyoshi Agusa, and Toshio Taguchi. 1995. Memo-pen: A new input device. In Conference companion on Human factors in computing systems. 256–257.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Anh Nguyen and Amy Banic. 2015. 3DTouch: A wearable 3D input device for 3D applications. In 2015 IEEE Virtual Reality (VR). 55–61. https://doi.org/10.1109/VR.2015.7223324Google ScholarGoogle ScholarCross RefCross Ref
  46. Su-Min Park, Kwangyong Lee, and Ki-Uk Kyung. 2011. A new stylus for touchscreen devices. In 2011 IEEE International Conference on Consumer Electronics (ICCE). 491–492. https://doi.org/10.1109/ICCE.2011.5722700Google ScholarGoogle ScholarCross RefCross Ref
  47. Penclic. n.d.. Penclic Mouse. https://penclic.se/the-penclic-mouse/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  48. Gary Perelman, Marcos Serrano, Mathieu Raynal, Celia Picard, Mustapha Derras, and Emmanuel Dubois. 2015. The Roly-Poly Mouse: Designing a Rolling Input Device Unifying 2D and 3D Interaction. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA, 327–336. https://doi.org/10.1145/2702123.2702244Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Ken Pfeuffer, Ken Hinckley, Michel Pahud, and Bill Buxton. 2017. Thumb+ Pen Interaction on Tablets.. In CHI. Citeseer, 3254–3266.Google ScholarGoogle Scholar
  50. Duc-Minh Pham and Wolfgang Stuerzlinger. 2019. Is the Pen Mightier than the Controller? A Comparison of Input Devices for Selection in Virtual and Augmented Reality. In 25th ACM Symposium on Virtual Reality Software and Technology (Parramatta, NSW, Australia) (VRST ’19). Association for Computing Machinery, New York, NY, USA, Article 35, 11 pages. https://doi.org/10.1145/3359996.3364264Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Pilot. n.d.. Pilot Pen. https://www.pilotpen.us/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  52. PJRC. 2022. Teensy 4.0. https://www.pjrc.com/store/teensy40.html. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  53. Ivan Poupyrev, Makoto Okabe, and Shigeaki Maruyama. 2004. Haptic Feedback for Pen Computing: Directions and Strategies. In CHI ’04 Extended Abstracts on Human Factors in Computing Systems (Vienna, Austria) (CHI EA ’04). Association for Computing Machinery, New York, NY, USA, 1309–1312. https://doi.org/10.1145/985921.986051Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. I. Poupyrev, N. Tomokazu, and S. Weghorst. 1998. Virtual Notepad: handwriting in immersive VR. In Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180). 126–132. https://doi.org/10.1109/VRAIS.1998.658467Google ScholarGoogle ScholarCross RefCross Ref
  55. Hugo Romat, Andreas Fender, Manuel Meier, and Christian Holz. 2021. Flashpen: A High-Fidelity and High-Precision Multi-Surface Pen for Virtual Reality. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR). 306–315. https://doi.org/10.1109/VR50410.2021.00053Google ScholarGoogle Scholar
  56. Enrique Rosales, Jafet Rodriguez, and Alla Sheffer. 2019. SurfaceBrush: from virtual reality drawings to manifold surfaces. arXiv preprint arXiv:1904.12297(2019).Google ScholarGoogle Scholar
  57. Samsung. 2022. Galaxy Tab S8. https://www.samsung.com/us/tablets/tab-s8/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  58. Dennis Schüsselbauer, Andreas Schmid, and Raphael Wimmer. 2021. Demonstrating Dothraki: Tracking Tangibles Atop Tabletops Through De-Bruijn Tori. In Mensch und Computer 2021. 590–592.Google ScholarGoogle Scholar
  59. Neo smartpen. n.d.. Neo smartpen N2. https://neosmartpen.com/product-n2/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  60. Hyunyoung Song, Tovi Grossman, George Fitzmaurice, François Guimbretiere, Azam Khan, Ramtin Attar, and Gordon Kurtenbach. 2009. PenLight: Combining a Mobile Projector and a Digital Pen for Dynamic Visual Overlay. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing Machinery, New York, NY, USA, 143–152. https://doi.org/10.1145/1518701.1518726Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Craig Stewart, Michael Rohs, Sven Kratz, and Georg Essl. 2010. Characteristics of Pressure-Based Input for Mobile Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery, New York, NY, USA, 801–810. https://doi.org/10.1145/1753326.1753444Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Ivan E. Sutherland. 1963. Sketchpad, a Man-Machine Graphical Communication System. Ph. D. Dissertation. Massachusetts Institute of Technology, Cambridge, MA.Google ScholarGoogle Scholar
  63. OTM Technologies. n.d.. Phree Pen. https://otmtech.com/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  64. Marc Teyssier, Gilles Bailly, and Éric Lecolinet. 2017. VersaPen: An Adaptable, Modular and Multimodal I/O Pen. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI EA ’17). Association for Computing Machinery, New York, NY, USA, 2155–2163. https://doi.org/10.1145/3027063.3053159Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Feng Tian, Lishuang Xu, Hongan Wang, Xiaolong Zhang, Yuanyuan Liu, Vidya Setlur, and Guozhong Dai. 2008. Tilt menu: using the 3D orientation information of pen devices to extend the selection capability of pen-based user interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems. 1371–1380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Johan Ullman, Nils Kangas, Pia Ullman, Fredrik Wartenberg, and Mats Ericson. 2003. A new approach to the mouse arm syndrome. International Journal of Occupational Safety and Ergonomics 9, 4(2003), 463–477.Google ScholarGoogle ScholarCross RefCross Ref
  67. Peter Vandoren, Luc Claesen, Tom Van Laerhoven, Johannes Taelman, Chris Raymaekers, Eddy Flerackers, and Frank Van Reeth. 2009. FluidPaint: An Interactive Digital Painting System Using Real Wet Brushes. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces (Banff, Alberta, Canada) (ITS ’09). Association for Computing Machinery, New York, NY, USA, 53–56. https://doi.org/10.1145/1731903.1731914Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Peter Vandoren, Tom Van Laerhoven, Luc Claesen, Johannes Taelman, Chris Raymaekers, and Frank Van Reeth. 2008. IntuPaint: Bridging the gap between physical and digital painting. In 2008 3rd IEEE International Workshop on Horizontal Interactive Human Computer Systems. 65–72. https://doi.org/10.1109/TABLETOP.2008.4660185Google ScholarGoogle ScholarCross RefCross Ref
  69. Philipp Wacker, Oliver Nowak, Simon Voelker, and Jan Borchers. 2019. ARPen: Mid-Air Object Manipulation Techniques for a Bimanual AR System with Pen and Smartphone. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300849Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Wacom. n.d.. Art Pen. https://estore.wacom.com/en-AU/art-pen.html. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  71. Wacom. n.d.. Wacom Tablets. https://www.wacom.com/. (Accessed: April 3, 2022).Google ScholarGoogle Scholar
  72. Qinglong Wang, Xiangshi Ren, Sayan Sarcar, and Xiaoying Sun. 2016. EV-Pen: Leveraging Electrovibration Haptic Feedback in Pen Interaction(ISS ’16). Association for Computing Machinery, New York, NY, USA, 57–66. https://doi.org/10.1145/2992154.2992161Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. John Wann and Ian Nimmo-Smith. 1991. The control of pen pressure in handwriting: A subtle point. Human Movement Science 10, 2 (1991), 223–246. https://doi.org/10.1016/0167-9457(91)90005-IGoogle ScholarGoogle ScholarCross RefCross Ref
  74. Gerold Wesche and Hans-Peter Seidel. 2001. FreeDrawer: A Free-Form Sketching System on the Responsive Workbench. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (Baniff, Alberta, Canada) (VRST ’01). Association for Computing Machinery, New York, NY, USA, 167–174. https://doi.org/10.1145/505008.505041Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Eva Wiese, Johann Habakuk Israel, Achim Meyer, and Sara Bongartz. 2010. Investigating the learnability of immersive free-hand sketching. In Proceedings of the seventh sketch-based interfaces and modeling symposium. 135–142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Anusha Withana, Makoto Kondo, Yasutoshi Makino, Gota Kakehi, Maki Sugimoto, and Masahiko Inami. 2011. ImpAct: Immersive Haptic Stylus to Enable Direct Touch and Manipulation for Surface Computing. Comput. Entertain. 8, 2, Article 9 (dec 2011), 16 pages. https://doi.org/10.1145/1899687.1899691Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Po-Chen Wu, Robert Wang, Kenrick Kin, Christopher Twigg, Shangchen Han, Ming-Hsuan Yang, and Shao-Yi Chien. 2017. DodecaPen: Accurate 6DoF Tracking of a Passive Stylus. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA, 365–374. https://doi.org/10.1145/3126594.3126664Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Yizhong Xin, Xiaojun Bi, and Xiangshi Ren. 2011. Acquiring and pointing: an empirical study of pen-tilt-based interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 849–858.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Xing-Dong Yang, Tovi Grossman, Daniel Wigdor, and George Fitzmaurice. 2012. Magic Finger: Always-Available Input through Finger Instrumentation. Association for Computing Machinery, New York, NY, USA, 147–156. https://doi.org/10.1145/2380116.2380137Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Brandon Yee, Yuan Ning, and Hod Lipson. 2009. Augmented reality in-situ 3D sketching of physical objects. In Intelligent UI workshop on sketch recognition, Vol. 1. Citeseer.Google ScholarGoogle Scholar

Index Terms

  1. DeltaPen: A Device with Integrated High-Precision Translation and Rotation Sensing on Passive Surfaces

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          UIST '22: Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology
          October 2022
          1363 pages
          ISBN:9781450393201
          DOI:10.1145/3526113

          Copyright © 2022 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 28 October 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate842of3,967submissions,21%

          Upcoming Conference

          UIST '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format