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ABSTRACT
Humans are talented with the ability to perform diverse interactions
in the teaching process. However, when humans want to teach
AI, existing interactive systems only allow humans to perform
repetitive labeling, causing an unsatisfactory teaching experience.
My Ph.D. research studies Interactive Machine Teaching (IMT),
an emerging field of HCI research that aims to enhance humans’
teaching experience in the AI creation process. My research builds
IMT systems that exploit and guide user interaction and shows that
such in-depth integration of human interaction can benefit both AI
models and user experience.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; •Computingmethodologies→ Computer vision;Machine
learning.

KEYWORDS
interactive machine teaching, saliency map, deictic gestures, in-situ
annotation, dataset, data diversity

ACM Reference Format:
Zhongyi Zhou. 2022. Exploiting and Guiding User Interaction in Interactive
Machine Teaching. In The Adjunct Publication of the 35th Annual ACM
Symposium on User Interface Software and Technology (UIST ’22 Adjunct),
October 29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3526114.3558529

1 INTRODUCTION
Artificial Intelligence (AI) is changing the world by assisting
various applications that benefit humans’ life [10, 29, 30]. To
create new AI applications, researchers usually teach AI new
concepts [33] (e.g., what a cat looks like) by training Machine
Learning (ML) models [20, 25] on large-scale datasets labeled by
human annotators [4]. Despite the importance of data labeling,
I argue that it is only one of the massive interactions humans
are talented at performing during the teaching process. Humans’
teaching interaction provide rich information about the concept that
humanswant to teach, and thus such interaction should be exploited
and encouraged when humans interact with AI [24]. However, due
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to the lack of interactive technologies that support diverse teaching
behaviors, existing systems mainly constrained human teachers in
performing repetitive labeling, causing an unsatisfactory teaching
experience.

Interactive Machine Teaching (IMT) [16, 19] is an emerging
field of research in HCI that aims to enhance humans’ teaching
experience during the creation of Machine Learning (ML) models.
Different from developing models through data collection and
programming that require professional expertise, typical Vision-
based IMT (V-IMT) systems allow users to teach a model by
demonstrations, which are intuitive behaviors people perform in
teaching. For example, Teachable Machine [2] allows users to teach
vision-basedML classifiers by demonstrating the objects of different
classes in front of a camera. After the teaching process, the system
automates all machine learning processes, and the user can further
assess the created model, as well as decide whether they need to
perform another iteration of teaching-and-assessing processes [5].
Based on such standard system designs, recent studies show that
IMT systems should further engage non-experts by providing
guidance [11, 21] as well as exploiting more human interactions
beyond labeling [16, 24] during the teaching process. For example,
Fiebrink et al. [7] found that users wanted more information in
the assessment interface so that they could understand “where and
how the model was likely to make mistakes”. Hong et al. [11] further
highlighted the importance of guidance in supporting users to
decide “what to show in the teaching set”.

My Ph.D. research focuses on exploiting and guiding users’
teaching interaction in V-IMT systems. My first project provided
teaching guidance by enhancing users’ interpretation of the trained
models. I created an assessment interface with saliency map
visualization that explains what portions of the images the model
weighs heavily in the prediction. I further found that the model
created by standard V-IMT systems may easily misinterpret a
concept by highlighting unrelated features. My second project
summarized the cause of the issue as a lack of fine-grained
annotations of objects of interest that users want to teach. To
address this issue, I created a V-IMT system, called LookHere,
that integrates object annotations into the teaching process by
exploiting users’ deictic gestures towards objects of interest. The
user study shows that the in-situ object annotation achieved by
exploiting humans’ gestural interaction can significantly accelerate
the teaching process without a noticeable model accuracy drop.
In addition to exploiting user interaction, in my third (on-going)
project, I propose a V-IMT that guides users to perform informative
teaching. The teaching interface will visualize how different a given
view can be from the existing teaching set in real time, and thus
encourage users to cover a wide range of views in the teaching set.
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(a) The correct prediction with accurate highlights.

(b) The correct prediction with wrong highlights.
Figure 1: Example views of the model testing interface [31].
Bar visualization of confidence scores is shown on the right
side. A camera view with heat-map overlays that explains
the model prediction is shown on the left side. (a) shows an
example with a correct explanation while the explanation
in (b) is wrong.

2 MODEL ASSESSMENT VIA SALIENCY MAPS
The model assessment interface is a critical component of the IMT
system. Using the interface, the user can be informed of the model
performance, which decides whether and how they will teach the
model to correct errors. Existing designs for model assessment
mainly present confidence scores of each class as assistant data
when the user interacts with the camera. Despite its usefulness, I
argue that there is a lack of support for the user to interpret why the
model makes each prediction. Intuitively, when a human teacher
wants to assess whether a human student has fully understood a
concept, the teacher may not only care about the student’s final
answer but also whether the student can answer with appropriate
reasons. In this work, I enhanced the model assessment interfaces
in V-IMT through real-time saliency map visualizations.

Figure 1 illustrates an example view of my model assessment
interface. In addition to the confidence scores shown on the right
side, the interface also presents saliency maps in real time on
the left side. The saliency maps help the user interpret why the
model predicts a target category (the default is the one with the
highest confidence score, i.e., “cup” in Figure 1a&1b). By examining
the highlighted regions, the user can validate whether the ML
model has correctly understood each concept by visualizing the
correct regions. For example, in Figure 1a, the model provides a
correct explanation of what “cup” is, whereas the model in Figure 1b
mistakenly highlights the masked human face as the “cup”, showing
the learning failure. Interestingly, both models show similarly high
confidence (∼ 70%) for the prediction, implying that the user may
trust the model if there is no assistance from my saliency maps.

Such a case when the model is highly confident of a correct
prediction but uses a totally wrong reference is not rare. This
reveals a potential risk in prior V-IMT systems: the model created
from the simplified teaching experience may not precisely learn a
target concept. The main reason is that when the user demonstrates
the object in front of a camera, the camera view may inevitably
include other visual data than the target object. Therefore, what the
user defines as, for instance, “cup”, is the full scenes of the images
instead of portions of the images that represent “cup”. This reveals
a teaching ambiguity issue in existing V-IMT systems, and future
work should investigate how to support the user better clarify the
object to teach.

3 GESTURE-AWARE TEACHINGWITH
IN-SITU ANNOTATIONS

One naïve approach to address the teaching ambiguity issue is
to let the user annotate the object of interest in each teaching
sample, emphasizingwhich object themodel should learn. Although
existing research on interactive annotation provided simplified
interaction for the annotation process (e.g., by clicking [15,
22], sketching [17, 28], or mouse dragging [3], such post-hoc
annotations inevitably bring extra workload that may diminish
human teachers’ user experiences.

Can V-IMT systems integrate object annotations into teaching
so that the user can express in-situ annotations through simple
interaction? In this project, I exploited humans’ deictic gestures for
achieving such integration and built a gesture-aware V-IMT system,
called LookHere. The main intuition behind the system design is
that humans can naturally interact with the object using deictic
gestures in the teaching process. For example, during the teaching
process, the user may hold the object or point at the object. Such
gestures explicitly provide important cues on where the object of
interest is. My system, LookHere, can intelligently capture such
cues embedded with humans deictic gestures and achieves in-situ
annotations in the teaching process.

3.1 LookHere
The key characteristic of LookHere is that it integrates the
annotation process into human teaching by leveraging the user’s
deictic gestures. Figure 2 shows an example view of the teaching
interface in LookHere. Other than standard functions in other
V-IMT systems [2, 8] (e.g., visualizing counts of teaching samples in
each category), LookHere includes a function called object highlights
to inform the user what regions of the camera view the system
considers as the object to learn. The object highlights work in real
time at approximately 28.3 fps using one GTX 2080Ti GPU. After the
user clicks on the camera icon on the bottom-left corner of Figure 2,
LookHere saves an image-label pair, as well as a segmentation mask
which is visualized as object highlights on the teaching interface.

3.2 Gesture-aware Object Highlights
LookHere achieves the in-situ annotation using our gesture-aware
object segmentation algorithm. To support real uses in V-IMT, the
segmentation algorithm ought to be object-agnostic (i.e., without
the constraints of what object can be segmented) because V-IMT
systems allow users to teach a wide range of daily objects. LookHere
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Figure 2: LookHere [32]. The camera view with object
highlights is presented on the left side of the visualization
of the count of teaching samples in each category.

Hand 
Segmentation

U-Net

RGB

Figure 3: The workflow of the gesture-aware object-agnostic
object segmentation algorithm [32]. The object highlights
are created by using a U-Net and inputting the original RGB
image attached to its hand segmentation result.

addresses this challenge through a gesture-aware algorithm as well
as our customized dataset. Figure 3 summarizes the workflow of
our algorithm. LookHere first performs a hand segmentation with
a given RGB image. It can then feeds both the RGB image and the
hand segmentation mask into U-Net, which predicts a segmentation
mask of the object specified by deictic gestures. The main intuition
of algorithm design is that the hand segmentation should provide
informative cues onwhere the object specified by the users’ gestures
is, making it possible to perform object-agnostic segmentation.

3.3 HuTics
The most related dataset to the use case of LookHere is TEgO [13],
and thus I tried training the algorithm on TEgO with augmented
labels. The results show that the trained model is not robust
enough to accurately various daily objects. Therefore, in this work,
I collected a customized dataset, called HuTics, which included 2040
images collected from 170 people using human deictic gestures to
interact with diverse daily-life objects. To cover a wide range of
deictic gestures that humans may perform, I refer to Sauppe et al.’s
taxonomy [18] and divide deictic gestures into four categories (i.e.,
exhibiting, pointing, presenting and touching). Each participant was
required to use these four kinds of deictic gestures to interact with
daily-life objects and took 12 photos in total (i.e., three photos for
each kind of deictic gesture). I highly encouraged them to interact
with a wide range of daily-life objects in their 12 photos. I then
recruited five annotators to label the segmentation of the object.

We further used the data from 80% of the participants in
HuTics (i.e., 1632 images from 136 people) for training and 20%

Table 1: The mean values and standard deviations of the
task completion time and accuracies (classification and
segmentation) across the four interface conditions.

LookHere NaïveIMT Click Contour

Time [s] 104
(44)

67
(10)

1,197
(228)

1,483
(407)

Acc. Cls. 0.824
(0.158)

0.847
(0.190)

0.880
(0.141)

0.833
(0.159)

Seg. 0.605
(0.153)

0.139
(0.095)

0.716
(0.167)

0.732
(0.151)

for testing. We found that the accuracy of our gesture-aware
algorithm (Figure 3) trained on HuTics is 0.718. The accuracy
of the same algorithm trained on TEgO with augmentation is
0.368, showing a large accuracy drop. Please see our full paper for
details of the algorithm choice [32]. This demonstrates that HuTics
plays a critical role in powering my object-agnostic segmentation
algorithm compared to directly using other related datasets with
augmentation.

3.4 Evaluations
To evaluate LookHere, we conducted a user study with 12
participants. None of them has experience in studying or working
in the fields related to AI or ML. The purpose of this study is to
understand the benefits of LookHere by comparing it with three
baseline interface designs:
• NaïveIMT : This represents the most common design in current
V-IMT systems [2, 8], in which participants only perform object
demonstration without annotation.

• Contour: In addition to the teaching process with the naïve
IMT system, this condition would involve a manual annotation
procedure, using a contour-based tool [1], in a post-hoc manner.

• Click: This condition replaces the contour-based tool in the
“Contour” condition with a click-based annotation method [23]
to represent a simplified annotation process.

Participants were required to teach a vision-based classification
model under each given interface condition, and we measured
three kinds of metrics in the study: 1) time consumption; 2) model
accuracy; 3) NASA-TLX [9]. Note that the model accuracy includes
both classification accuracy as well as segmentation accuracy,
aiming to test whether the model can not only predict correctly but
also explain the prediction accurately.

Table 1 summarizes the results of time consumption and two
types of accuracies. The results reflect that LookHere can enable
a fast model creation experience without significantly sacrificing
the model accuracy. NASA-TLX results (see detailed data in the full
paper [32]) further show LookHere causes a lower cognitive burden
compared to two conditions that require post-hoc annotations.
Therefore, our user study demonstrates that LookHere can achieve
a good balance between accuracy and workload for V-IMT due to
our system designs that integrate annotations into teaching.

4 TEACHING GUIDANCE BY VISUALIZING
DATA DIVERSITY IN REAL TIME

LookHere solves the issue of clarifying what (regions in the camera
view) the user wants to teach by exploiting gestural interaction. In
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Figure 4: Example images with visualization in HuTics dataset. HuTics covers four kinds of deictic gestures to objects:
exhibiting (top-left), pointing (top-right), presenting (bottom-left) and touching (bottom-right). The hands and objects of
interest are highlighted in blue and green, respectively. Note that there is no human annotation of hand segmentation, and
the blue regions are from the prediction of Li et al.’s method [14].

(a) Low data diversity. (b) High data diversity.
Figure 5: Example views of visualization in the teaching
interface. (b) describes a distribution of teaching data that
has higher data diversity than (a).

addition to exploiting human interaction, I argue that IMT research
should also motivate human interaction by guiding users how to
perform informative teaching. In practice, it is highly challenging
to guide users’ teaching behaviors in real time because it usually
takes time for a system to judge whether the data are valuable for
training or not. To compute the data value [27], a system needs to
train a back-end model on the data, which is a very time-consuming
procedure, particularly for deep learningmodels. Fails and Olsen [6]
also highlighted this issue when they first introduced interactive
machine learning research. They further argued that researchers
should use lightweight models like decision trees (DTs) as the back-
end models instead of Neural Networks (NNs) so that users can
receive rapid feedback on their teaching behaviors.

In this on-going project, I plan to create a system that provides
real-time teaching guidance when the user is teaching a deep
learning model. To achieve this goal, this study challenges a widely
acknowledged design principle that the system provides feedback
after the model finishes training on the full training set [2, 31].
Instead, I argue that the quality of teaching data can be computed
before the time-consuming training process, which overcomes the
main bottleneck of rapid feedback designs in IMT research. This
work considers data diversity as a key factor that can boost the
informativeness of teaching, which is a commonly acknowledged
heuristic that can benefit ML models [12]. Compared to the data
value, data diversity is much easier to compute. More importantly,
the computation of data diversity is independent of the choice of
back-end models, making it possible for the real-time feedback in
IMT system that trains deep models at the back end.

Figure 5 illustrates two examples of how I plan to visualize the
data diversity in the teaching interface when the user teaches a
three-way classifier. Each rectangle in the visualization represents
an image recorded in the system, and the color represents its
classification label. The circle highlighted by the red edge is the
image that the user is currently teaching, which moves in real time
with the change of the camera view. By continuously interacting
with the circle, the user is encouraged to build each cluster to be as
large and sparse as possible (i.e., Figure 5b is better than Figure 5a).
For example, both circles in Figure 5b&5a are not ideal teaching
data to be added to the teaching set since both fail to expand the
coverage of the purple categories. I envision that such real-time
visualization can motivate the users to present diverse views of the
target objects, benefiting the machine learning process.

5 DISCUSSION AND FUTUREWORK
User interaction beyond labeling during the teaching process
require more in-depth studies to benefit both user experience and
AI models. My research studies user interaction in IMT systems by
exploiting deictic gestures and guiding users’ object demonstration
processes. In reality, humans use many interactions in the teaching
process, and therefore more user interactions than those covered
by this paper should be exploited and guided to enhance human-AI
collaboration. For example, future work can study how to exploit
gaze and verbal interaction that also contain rich information on
the concepts users want to teach. On the other hand, users still
encounter many challenges in which they have no idea how to
perform effective teaching [11, 26]. Future work should study how
to guide user interaction in these challenging scenarios (e.g., how
systems can support users to correct a model that misinterprets a
concept other than simply labeling more data).

It is important to note that this paper assumes that there is
only one human teacher in the human-AI interaction. However,
in practice, multiple users may teach models collaboratively.
With more users engaged in the teaching process, new types of
teaching interactions may emerge, bringing new research questions
that requires investigation. Future research should observe these
interactions and further study how the interactions can be exploited
and guided to enhance collaboration.
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