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Figure 1: HapticLever is a design concept for large-scale VR haptics which passively transforms a small-scale constraint into
a stiff, realistic, large-scale render.

ABSTRACT
HapticLever is a new kinematic approach for VR haptics which
uses a 3D pantograph to stiffly render large-scale surfaces using
small-scale proxies. The HapticLever approach does not consume
power to render forces, but rather puts a mechanical constraint on
the end effector using a small-scale proxy surface. The HapticLever
approach provides stiff force feedback when the user interacts with
a static virtual surface, but allows the user to move their arm freely
when moving through free virtual space. We present the problem
space, the related work, and the HapticLever design approach.

CCS CONCEPTS
• Human-centered computing → Virtual reality; Haptic de-
vices.
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1 INTRODUCTION AND RELATEDWORK
Rendering large-scale, high-stiffness shapes and surfaces remains
a challenge in haptics. Most of today’s haptic devices are hand-
held [10, 16, 17] or focus on hand and finger haptics [2, 7, 8, 18].
Those which attempt to render a net force on the user [6, 11, 14]
are unable to render stiff interactions. Haptic devices designed for
large-scale interactions either use a force-based dynamics approach
or a force-independent kinematics approach. Dynamics approaches
to haptics are concerned with the forces on the user, whereas Kine-
matics approaches are concerned with the user’s allowed motion.
Large-scale, high-stiffness physical interactions such as a hand on a
tabletop can be better represented as a degree of freedom reduction
of the hand, rather than as a time-series of applied forces.

Large-scale dynamics approaches [1, 3, 24] shake and oscillate
when rendering stiff surfaces, must consumer power to render any
force, and encumber the user with a constant resistance. These
devices shake and oscillate because of the cantilever effect on their
serial links and because they use a feedback control system which
interfaces with the unpredictable, unmodellable human user. The
maximum force these devices can apply is limited by the actuator
strength, and if users exceed this limit then the device will oscillate
or break. Because these devices directly actuate the mechanism
joints directly, they must consume power to engage a force, to
sustain a force, and often to compensate for gravity even when
not rendering a force. These devices constantly resist the user’s
motion because of acturator back-torque, in the case of impedance
control, or active motor pushback, in the case of admittance control.
The advantages of the dynamics approach are that it needs only to
provide an on-demand touchpoint for the user and that it is versatile
and can be programmed to render many different interactions.

Kinematics approaches primarily take the form of reconfigurable
proxies at large-scale and mechanical constraints at small-scale.
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These function as feed-forward positional control, in contrast to
the force-in-the-loop feedback control of dynamics systems. Large-
scale approaches [4, 5, 20–23, 25, 26] aim to reconfigure props and
proxies in the physical environment in order to provide haptic
sensations. The user is free to engage with or disengage from the
touchpoint, and the control system is only concerned with repre-
senting the virtual objects, rather than reacting to the user. While
interacting with full-sized proxies is realistic and can provide stiff
interactions, they have high space requirements. Small-scale kine-
matics approaches [7, 9, 12, 13, 15] use mechanical constraints to
restrict the motion of the user’s hands or fingers, giving the user the
freedom to apply light, heavy, or variable forces with no displace-
ment. While these small-scale approaches can serve as inspiration,
their mechanical constraints typically limit the user to zero or one
degree of freedom, rather than the three degrees of freedom that a
hand on a 2D surface has.

HapticLever is an interface which can provide large-scale haptic
interactions using a 3D pantograph to scale-up the mechanical
constraint of a small-scale proxy.

2 DESIGN
This section introduces a new pantograph-based approach to pro-
viding stiff, transparent, large-scale haptic experiences.

The design must:
• Provide instant, stiff, passive force feedback when the user
interacts with a static virtual surface.

• Allow the user to move their arm naturally, without resis-
tance, when moving through free virtual space.

Figure 2: A 2D pantograph with the HapticLever labels.

The pantograph design, shown in Figure 2, acts as a virtual
lever in which the load (constraint) and effort (interface) nodes
can change their absolute radial position, but remain at proportion-
ally constant radial positions relative to one another. The panto-
graph design means that the constraint and interface nodes follow
scaled paths, and therefore share scaled positional constraints. Hap-
ticLever, shown in Figure 3, extends the pantograph mechanism
into 3D by adding a vertical rotational joint at the base node.

The primary tradeoff is the advantageously smaller workspace
of the constraint node versus the unfavourably larger forces at the

Figure 3: A labelled image of our implementation.

constraint node. The pantograph scaling factor means that a small
constraint at the constraint node corresponds to a large constraint
at the interface node.

Because they are rigidly connected, any force felt by the con-
straint node is transferred passively through the links to the in-
terface node. The force tolerance of the system is limited by the
mechanical strength of the linkage, rather than the strength of any
actuator. Therefore, HapticLever can withstand higher forces than
the direct actuation counterparts. If the proxy surface or object is
rigidly connected to the base node, therefore forming a rigid loop
between the base and constraint nodes, then HapticLever does not
consume any energy to transform the force from the constraint
node to the interface node. Therefore, in the current implemen-
tation, the base surface underneath the constraint node is moved
using self-locking lead screws. Because no actuators are directly
attached to the pantograph mechanism, the user can transparently
move the interface node free of resistance whenever the constraint
node is not providing force feedback.

Figure 4: HapticLever demonstrations. A: Vertical walls at a
corner. B: Drawing on a surface with a stabilized hand. C: An
irregular surface. D: A flat horizontal plane.
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The demonstrations shown in Figure 4 include vertical walls at
a corner, drawing on a surface with a stabilized hand, exploring an
irregular surface, and a horizontal plane. These different renderings
correspond to custom proxy objects. Users can press lightly on
the rendered surface, press heavily on the rendered surface, slide
their hand along the rendered surface, or hit the surface with an
impact—and in all cases the surface will respond like a real table.

In the implementation, the weight of the pantograph linkage
is 1.68kg, the weight of the entire HapticLever system including
the base is 9.89kg, and the weight on hand which the user feels is
0.91kg. The rotatable handle at the interface node gives the system
five degrees of freedom. The workspace of the interface node is a
portion of a spherical shell with inner radius 342mm, outer radius
722mm, and solid angle 2.33 steradians. This workspace is large
enough to prototype body-scale haptic interactions. The average
force downwards force tolerance on the interface node is 64N, and
the average downwards impulse tolerance on the interface node is
7.3kg·m/s.

3 FUTUREWORK
HapticLever can be developed further in the following ways: While
the current design tranfsers linear force through the pantograph,
future work could investigate transferring rotational moments. A
HapticLever pantograph is not limited to a base node, one con-
straint node, and one interface node; adding another parallelogram
to the linkage would create a second constraint node. These two
constraint nodes could simultaneously render different constraints,
such as intersecting walls. The future work of turning HapticLever
into a portable, wearable device entails redesigning for weight
and comfort, and ensuring that the reaction forces are appropri-
ately grounded on the user’s torso. Replacing the small-scale proxy
with actuators or a shape display like shapeShift [19] would en-
able HapticLever to change the position, orientation, or shape of
the constraint. To maintain stiffness via the mechanical constraint,
such actuators or shape display should be mechanically self locking.
HapticLever behaves stiffly when encountering the small-scale con-
straint and moves without resistance when not encountering the
small-scale constraint. HapticLever lays a groundwork for promis-
ing future large-scale haptic devices that provide stiff and natural
interactions.
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