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Heterogeneous multi-processor system-on-chip (MPSoC) smartphones are required to offer increasing per-
formance and user quality-of-experience (QoE), despite comparatively slow advances in battery technology.
Approaches to balance instantaneous power consumption, performance and QoE have been reported, but
little research has considered how to perform longer-term budgeting of resources across a complete battery
discharge cycle. Approaches that have considered this are oblivious to the daily variability in the user’s desired
charging time-of-day (plug-in time), resulting in a failure to meet the user’s battery life expectations, or else
an unnecessarily over-constrained QoE. This paper proposes QUAREM, an adaptive resource management
approach in mobile MPSoC platforms that maximises QoE while meeting battery life expectations. The pro-
posed approach utilises a model that learns and then predicts the dynamics of the energy usage pattern and
plug-in times. Unlike state-of-the-art approaches, we maximise the QoE through the adaptive balancing of the
battery life and the quality of service (QoS) for the duration of the battery discharge. Our model achieves a
good degree of accuracy with a mean absolute percentage error of 3.47 % and 2.48 % for the energy demand
and plug-in times respectively. Experimental evaluation on an off-the-shelf commercial smartphone shows
that QUAREM achieves the expected battery life of the user within 20–25% energy demand variation with
little or no QoE degradation.
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1 INTRODUCTION
Smartphones have become pervasive, with over 3.5 billion users worldwide [6]. Growing reliance
on smartphones and a demand for improved Quality of Experience (QoE), defined as the degree
of users’ perceivable satisfaction to services provided on a device, have resulted in the creation
and exploitation of complex hardware platforms. These platforms typically contain heterogeneous
multi-processor system-on-chips (MPSoCs) from different chip manufacturers [39]. Though various
factors influence smartphone QoE [28], prior studies have found that quality of service (QoS)
and battery life have the greatest impact [58]. Typically, QoS refers to objective performance
measures obtained on a system or its underlying infrastructure [11, 40] without or with indirect
consideration for the user of the service or infrastructure. Conversely, QoE refers to the degree
of delight or annoyance experienced by a user of an application, service, or system as a result of
it meeting expectations while taking into account their current state and personality [40]. While
modern heterogeneous MPSoCs offer tremendous performance benefits, complex and interactive
applications with diverse QoS requirements are on the increase. The advancement and ubiquity of
smartphones have made them a pervasive enabler for human activity to go mobile, ranging from
smart wallets and homes to connected social lives and jobs. This increases the impact on daily life
(convenience) when devices are unavailable or have to be charged [37, 46]. Despite advances in
chip fabrication and exponential performance improvements, energy and power management have
continued to be a severe bottleneck to the seamless operation of battery operated smartphones
[50, 58]. Today’s sophisticated and computationally powerful smartphones rely on comparatively
slow-paced developments on battery technology, for which capacity only doubles over a decade [48].
Therefore, improvements in resource management are imperative if users’ QoE is to be maximised.

Considerable effort has been made by industry and academia to ensure efficient use of battery
energy in smartphones. In industry, power-efficient processors that have power management
(PM) such as idle state and dynamic voltage and frequency scaling (DVFS) capabilities, as well as
new schedulers that are tightly coupled with DVFS governors, have evolved [48]. State-of-the-art
academic research efforts have considered approaches to balance instantaneous power consumption
and QoS in order to improve QoE [9, 11, 15, 22, 57, 58]. However, little research has considered
how to perform longer-term budgeting of resource [17, 33, 51, 52] and, approaches that have, miss
potential QoE maximisation because they are oblivious to the user’s desired plug-in time (regarded
as the time of the day when the user normally charges the device) and/or energy demand. This
results in techniques that either fall short of users’ battery life expectations (i.e., the number of
hours a user uses their device before charging) or over-constrain the DVFS governor. Therefore,
there is a need for resource management techniques that work with knowledge of the user’s plug-in
time in budgeting resources across complete battery discharge cycles and, in turn, maximise the
user’s QoE.

This paper proposes QUality of experience-aware Adaptive REsource Management (QUAREM),
a mechanism for maximising a user’s QoE of a mobile MPSoC platform during the full duration of
a battery discharge (the time from plug-out to the next plug-in). It does this by identifying the QoS
and energy balancing goals that maximise user satisfaction within the constraints of the expected
battery life. The proposed approach consists of a model that learns and then predicts the user’s
energy usage pattern and plug-in times. By monitoring and predicting this at regular intervals,
it enables the mechanism to perform DVFS, maximising the QoE for the duration of the battery
discharge.

QUAREM makes the following contributions:

(1) A study of individual users’ energy usage patterns and plug-in times while running applica-
tions, indicating considerable variation from the users.
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Fig. 1. Average daily plug-in status of ≈ 50 smartphone users over a period of one year. A plug-in status of 1.0
means that all 50 users had their smartphones plugged in, whereas a plug-in status of 0.0 means that all were
unplugged.

(2) An exploration of energy consumption, QoS and different DVFS settings on mobile embedded
devices while executing widely used real mobile applications rather than benchmarks.

(3) A model to predict the energy demand and plug-in (charging) times, with a mean absolute
percentage error of 3.47 % and 2.48 % respectively.

(4) An online mechanism that monitors and performs adaptive resource management through
DVFS to maximise the QoE.

(5) Evaluation on a commercial smartphone shows that our technique achieves average QoE
improvement when compared with the state-of-the-art while meeting the expected battery
life.

The rest of the paper is organized as follows: Section 2 presents the motivation and related
works. The system architecture, prediction model and the optimisation mechanism are presented
in Section 3. We present the experimental setup and the evaluation technique employed in Section
4. Section 5 presents the result with extensive experiments and show the benefit of the proposed
approach in comparison to existing approaches. Finally, Section 6 concludes this paper.

2 MOTIVATION AND RELATEDWORKS
2.1 Motivation
To motivate this work and to show the potential benefit of QUAREM in maximising users’ QoE, we
consider the wide range of different usage patterns and plug-in times experienced by individual
users. State-of-the-art approaches have failed to incorporate these in their approach. We conduct
a time series analysis on the Sherlock dataset [38]: real mobile data collected from ≈50 volunteer
smartphone users over a three-year period. We found the dataset suitable for our analysis as it
provides time-series information of host software and hardware sensors available on smartphones
that can be acquired without root privileges, such as local and global application statistics and
battery information. In addition, the span of years the study was conducted and its recentness (in
terms of mobile device and software used) makes the data reliable compared to previous studies
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Fig. 2. Different energy usage patterns and plug-in (charging) times experience by a single user.

carried out within a short time (mostly a month or less), which is atypical to user usage and modern
devices.

Fig. 1 shows the average daily plug-in status of ≈ 50 smartphone users over a period of one year
as obtained from the Sherlock dataset. We group the Sherlock dataset per day (Monday to Sunday)
per hour (00 to 23) for the whole year and then find the average of the battery plug-in status. In
the dataset, all the charging options (AC, USB, wireless, etc.) are considered plugged-in (charging)
and denoted with a value 1, while a value 0 denotes the device is unplugged (discharging). If more
than 50 % of the users within an hour of a day, e.g. on Monday at 00 hr have an average battery
plug-in status > 0.5, that hour of the day is considered plugged-in (charging). Similarly, if the
average battery plug-in status of more than 50 % of the users at that time of the day over the year
is < 0.5, then it is considered unplugged (discharging). In the context of the reviewed data (which
is Israel), the standard work week starts from Sunday to Thursday, with Friday as a short working
day and Saturday as the weekend. It can be observed from Fig. 1 that > 85 % of the users plug in
their device to charge once at ≈ 22 hours with an average usage time of ≈ 15 hours on weekdays
and vary on weekends as shown by the average daily plot. This indicates that users’ plug-in time
and usage are influenced significantly by context, such as location and time [7]. Some users exhibit
erratic charging behaviour (charging inconsistently or multiple times) during the day, however,
this represents < 10 % of the users and hence, not the majority. The effect of such erratic behaviour
on the operation of the QUAREM approach is discussed in Section 5.4. Besides, such disruptive
charging cycles can reduce the lifetime of the battery [18], thus, the need for longer battery hours
management that enables both energy-saving and regular charging cycles. In addition, we also
discovered that none of the users failed to utilise one of the charging options (AC, USB, etc.) within
a day, i.e., users with no plug-in activity during the day do not exist except if the user’s data is
missing entirely for the day. It is against these backgrounds that we have decided to consider the
user group who charge their devices once a day.
On further exploration of the data, we discovered wide range of different charging times and

energy usage pattern exhibited by an individual. Fig. 2 shows the different energy usage pattern
and charging times exhibited by a user on four different days of the week. The percentage variation
reveals up to 15 % for weekdays and 25% on weekends when compared with the average values
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obtained for the week respectively. Based on the time-series descriptive analysis conducted on the
generalised Sherlock dataset, we make the following observations:
(1) Individuals in the same user group with similar routines tend to have similar average plug-in

times.
(2) Even though the average plug-in times of individuals within same user group can be similar,

each user is different, and thus, tend to have unique energy usage patterns and plug-in times.
Since users’ behaviour will not always be the same even for the same application use [15], we

try to learn and predict these changes to provide longer-term budgeting of the constrained energy
accordingly. This ensure battery life expectancy of the user is achieved within the required QoS
and thus, maximising the QoE.

2.2 Related Works
Prior studies have considered the trade-off between performance and energy in mobile MPSoC
platforms [16, 23, 30, 43, 44, 49]. The techniques have considered either mapping and task migration
[10, 26, 31], or mapping and thread partitioning of applications [29, 45, 53] on these platforms.
Similarly, imitation learning (IL) frameworks for dynamic power and performance management
of applications in heterogeneous MPSoCs have also been considered [35, 36]. In [36], the authors
utilise an IL-based control algorithm built at design-time from known applications to perform
resource management at runtime. In [35], the authors leverage the offline policy in [36] as the
starting point to bootstrap the learning of optimal policies for new applications at runtime. These
approaches do not consider both battery life and user satisfaction in the resource optimisation,
which are paramount to maximising QoE. Additionally, the unavailability or inaccessibility of
most of the hardware performance counters and sensors utilized by these approaches makes it
practically infeasible to implement on real commercial devices as they are often implemented on
developmental platforms

QoE has been quantified in mobile device and exploited in trading-off energy consumption and
QoS [22, 57, 59]. In Gaudette et al. [22], the QoE is improved by providing a satisfiable level of QoS
while minimising the energy consumption using a probabilistic QoS technique. The approach in
[57] focuses on mobile devices with low state of charge, which dynamically scales the cpufreq
governor in a QoE-aware fashion whenever the device is at low state. Authors in [59] proposed
QoS Per-Energy (QPE) metric, which quantifies the trade-off between energy and QoS and used
it to explore the energy-efficient QoS for web-browser. Aside the fact that these models are built
using mean opinion scores obtained from interviews, they are used for generalised QoE conditions
and thus do not factor user specific data and behavioural pattern of battery usage.

To address the user specific optimisation, [58], [51] and [33] presented a model using a weighted
combination of QoS and/or energy to manage system resources for each individual user. [58]
provided a customised mechanism to achieve trade-off between QoS and energy toward enhancing
user experience. In this approach, a novel definition of QoS based on responsiveness and display
quality was first presented, then the QoE model was built (which is based on energy and QoS) and
the trade-off is performed depending on the user’s preference. Shamsa et al. [51] leveraged on the
same model while incorporating individual’s battery state of charge (SOC) for the trade-off. Lee et
al. [33] exploited the non-trivial relationship between users’ battery-life goal and QoE in addition
to the battery status and QoS towards maximising user experience. The approach first implements
a dynamic QoS scaling system that considers the battery state (termed BUQS1). Secondly, due to
the inability of BUQS1 to guarantee the battery-life of user’s heavy usage, a QoE model accounting
for users’ varying and battery- dependent QoS expectations (BUQS2) is proposed. Finally, BUQS3
improved upon BUQS1 and BUQS2 by considering learning and prediction of user behaviour for
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Table 1. Summary of existing approaches compared to the proposed QUAREM approach

Reference Perf/QoS Power Energy DVFS Battery Plug-in Energy Real mobile
time demand Smartphone

[24] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓
[25] ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✓
[4] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓
[43] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

[9] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
[33] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗

[51], [58] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

[52] ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

QUAREM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

the purpose of continuous rebalancing of the energy within the mobile device. These approaches
do not consider individual user plug-in times thus, missing potential opportunity to maximise the
QoE by either falling short of the battery life goal or over constraining the cpufreq governor. In
addition, a recent study [7] and our analysis have shown that there is significant variation in users’
usage pattern and mostly dependent on context (such as time and location) as against the fixed
hours and SOC levels utilised in BUQS [33] and [51] respectively.
Recent work [52] has considered user preference and user plug-in/out pattern in maximising

QoE and battery cycle life (BCL) by minimizing the energy consumption when the state of charge
(SOC) is low and plug-in event is not soon. The approach does not consider minimising the total
energy to meet the user battery life expectancy in all situations thus, making the approach agnostic
to energy demand or budget for the predicted plug-in time. In this paper, we maximise the QoE
by adaptively allocating resources at runtime taking into consideration the plug-in time and the
energy demand of the user based on the historic and current usage pattern. Table 1 shows the
summary of the existing works in comparison to the different metrics considered. The symbol
✓against a metric shows that the approach considered the metric while the symbol ✗ denotes that
the metric is not considered in the approach. As shown in Table 1, QUAREM approach considers
all the metrics in the table while other approaches do not consider all and/or are implemented on
generational developmental platforms rather than state-of-the-art devices.

Several QoE models based on users’ mean opinion scores (MOS) with the QoS measure have been
presented due to the diversity of QoS perspectives and the need to consider the user’s perspective.
Popular among the proposed models is the exponential Interdependency of Quality-of-eXperience
and quality-of-service (IQX) [19], which works well with accurate insight to interruptions in system-
level QoS. In the model, QoE is divided into three distinct regions using 𝑋1, and 𝑋2 (optimum and
minimum points, respectively). The regions include constant optimal QoE (𝑄𝑜𝑆 < 𝑋1) where QoE
is maximum; acceptable QoE (𝑋1 ≤ 𝑄𝑜𝑆 < 𝑋2) where the QoE can be tolerated by the user, and the
unacceptable region (𝑄𝑜𝑆 ≥ 𝑋2) where the QoS becomes unbearable and the service is given-up
by the user. More recent QoE models or improvements have evolved either considering aspects
fundamental to the user (e.g., battery life) or the user’s characteristics and context influencing
factors. For example, Lee et al. [33] improved the IQX model [19] to incorporate the battery state
and award a penalty to show user dissatisfaction as a result of total battery discharge with web-page
loading time as the QoS metric. They also exploited different 𝑋2 values based on the users’ varying
and battery dependent QoS expectations, since the model allows 𝑋2 to be varied relatively large
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Fig. 3. Proposed system overview of the QoE-aware adaptive resource management methodology showing
its position on the MPSoC platform (left) and the adaptive mechanism (right).

compared to the other model parameters. We leverage this improved IQX model and applied a
penalty of 0 rather than -100, to show users’ dissatisfaction when battery life expectation is missed.
However, rather than considering web-page loading time, we utilise frame rate janks [8, 48] as our
QoS measure, an important metric for interactive systems, which refers to the number of frame
deadlines missed (dropped frames), since most mobile applications are interactive in nature. The
model is thus expressed as follows:

𝑄𝑜𝐸 =


𝑄𝑜𝐸𝑚𝑎𝑥 if 𝑄𝑜𝑆 < 𝑋1 .

𝛼 · 𝑒−𝛽 ·𝑄𝑜𝑆 + 𝛾 if 𝑋1 ≤ 𝑄𝑜𝑆 < 𝑋2 .

0 if 𝑋2 ≤ 𝑄𝑜𝑆 𝑜𝑟 if battery is fully depleted.
(1)

where 𝛼 , 𝛽 , and 𝛾 are 85.96, -0.347, and 27.8, respectively [33]. Similarly, 𝑄𝑜𝐸𝑚𝑎𝑥 , and 𝑋1, are
defined as 100, and 0.5, respectively. However, for the 𝑋2, we utilised different values depending on
the ratio of the remaining energy to the energy demand (Eq. 11), as will be explained in Section 3.3,
which determines the required settings.

3 THE QUAREMMETHODOLOGY
This section presents the proposed QUality of experience-aware Adaptive REsource Management
(QUAREM) methodology. Fig. 3 shows the proposedQUAREM methodology. It consists of its position
within the MPSoC Platform (Fig. 3 (left)), and the techniques involved (Fig. 3 (right)). To achieve
our desired objective of maximising QoE through energy budgeting and QoS balancing, we must
be able to predict the energy demand until the next plug-in time. The overall implementation is
dependent on the users’ energy usage behaviour, i.e. plug-in time and energy demand, which is
dynamic. These are the novel features of QUAREM:
(1) Prediction of energy demand until the next plug-in time, 𝐸𝐷 , to deliver the QoE required

based on user’s usage. This estimates the overall energy requirement for the user’s expected
battery life before plug-in (Section 3.1).
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(2) Estimation of the time of the next plug-in, 𝑇𝑃 : This is the expected time-of-day the user
normally plugs-in the device to charge it, e.g. 19:12 (Section 3.2).

(3) Determination of the remaining energy, 𝐸𝑅 in the battery.
(4) Monitoring and adaptive effective configuration of DVFS for the CPU cores (Section 3.3).
To adaptively manage the resources, the above information (𝑇𝑃 , 𝐸𝐷 and 𝐸𝑅) allows the necessary

DVFS settings, 𝐹𝐶𝐴𝑃 , to be configured to ensure the desired QoS while meeting the expected user’s
battery life. 𝐹𝐶𝐴𝑃 is determined based on the ratio of 𝐸𝑅 and 𝐸𝐷 , referred to as 𝛿 , and the correlated
frequency parameters given as 𝜖 and 𝜙 , which determine the DVFS settings for the different energy
requirements and the optimum DVFS setting respectively (discussed further in Section 3.3). The
whole process is repeated after a delay interval of Δ𝑇𝑆 , which is obtained by performing extensive
experiments and leading to efficient results.

3.1 Energy Demand Prediction
A fast convergence and most reliable algorithm for building a time-series forecasting model based
on a set of data is exponential smoothing [1, 27]. Based on its popularity, quick convergence, adap-
tiveness and considerable level of accuracy at low overheads in terms of memory and computation,
the exponential weighted moving average (EWMA) is considered for the energy demand prediction.
By using this approach, the model gives a reasonable forecasting result with fast convergence
and more implication to the latest data. It also solves memory overhead encountered by most
methods through its recursive technique of constantly updating value in memory with the recent
observation. The following describes the implementation of the model.

3.1.1 Exponential Weighted Moving Average (EWMA). The user model is built to predict the energy
demand of an individual user until plug-in 𝑇𝑃 , based on the user’s energy usage pattern and
behaviour using EWMA. The EWMA model is trained using the user’s historical data collected and
updated online to ensure accurate prediction.
To effectively predict the energy demand, 𝐸𝐷 , the time of the day is divided into equal num-

ber of discrete time steps of length Δ𝑇𝑆 , such that the vector {𝐸C (1), 𝐸C (2), . . . , 𝐸C (𝑡), 𝐸C (𝑡 +
1), . . . , 𝐸C (𝑇𝑃 )} represents the energy consumed at each time step of smartphone operation for the
current day while the matrix 𝐸C (𝐷 ×𝑇 ) represents the energy consumed in the discrete time steps
for the last 𝐷 ∈ Z+ days (as shown in Fig. 4). These equal discrete time steps (for instance, 24 h
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can be divided into 288 discrete time steps with Δ𝑇𝑆 = 5min) are considered so that the model
can efficiently record and refer to the historical 𝐸𝐶 data by consistent indices. These 𝐸𝐶 values are
computed using Eq. (2).

𝐸𝐶 = 𝐸 (𝑆𝑂𝐷𝑉 2 − 𝑆𝑂𝐷𝑉 1) (2)
where 𝐸 is the rated battery energy capacity for the smartphone and 𝑆𝑂𝐷𝑉𝑖 is the state-of-

discharge of the battery at 𝑉 i (𝑖=1 or 2), i.e. in current and previous time steps, which can be
computed as the ratio of the amount of charge removed from the battery at the given state, 𝑄𝑑 , to
the total amount of charge, which can be stored in the battery,𝐶 , (usually expressed as a percentage
𝑄𝑑

𝐶
× 100) [55]. These values (battery level, battery capacity, battery status, charge, voltage etc.) are

accessible from the battery service state, which provides estimate of these values. These 𝐸𝐶 values
are recorded at every time step and then used to predict the required energy in the subsequent
time steps, 𝐸𝐶 . For high prediction accuracy, typically many samples back in time are considered,
e.g. for predicting energy for 𝑡 + 1 at the current time 𝑡 , samples at 𝑡 , 𝑡 − 1, 𝑡 − 2, etc. are used. To
illustrate this, in determining the energy demand, 𝐸𝐷 , for time step 𝑡 + 1, at the current time step 𝑡
and day, it involves the cumulative addition of the predicted energy consumption 𝐸𝐶 , as shown by
the coloured area of Fig. 4 and given by Eq. (3).

𝐸𝐷 (𝑑, 𝑡 + 1) =
𝑇𝑃∑

𝑚=𝑡+1
𝐸𝐶 (𝑑,𝑚) (3)

where 𝐸𝐷 (𝑑, 𝑡 + 1) is the predicted energy demand at time 𝑡 + 1 and 𝐸𝐶 (𝑑,𝑚) is the predicted
energy consumption at time step𝑚, which is predicted using the EWMA. The EWMA prediction
of the future energy consumption, 𝐸𝐶 , at time step 𝑡 + 1, is computed by taking the actual energy
consumed, 𝐸𝐶 (𝑡) at the current time step t with weighting 𝛼 and updating it with the previous
averaged energy consumptions at time step 𝑡 + 1 for the previous 𝐷 days considered with weighting
1 − 𝛼 . Thus, 𝐸𝐶 (𝑑, 𝑡 + 1) is given by the first part of Eq. (4) where𝑚 = 𝑡 + 1. Alternatively, in the
following time steps when 𝑡 + 1 < 𝑚 ≤ 𝑇𝑃 , that is 𝐸𝐶 (𝑑, 𝑡+2), 𝐸𝐶 (𝑑, 𝑡+3), . . . , 𝐸𝐶 (𝑑,𝑇𝑃 ); 𝐸𝐶 (𝑑,𝑚−1),
is replaced with the estimated 𝐸𝐶 (𝑑,𝑚 − 1) where it becomes the second part of Eq. (4).

𝐸𝐶 (𝑑,𝑚) =
{
𝛼𝐸𝐶 (𝑑,𝑚 − 1) + (1 − 𝛼)𝜇𝐷 (𝑑,𝑚), 𝑚 = 𝑡 + 1.
𝛼𝐸𝐶 (𝑑,𝑚 − 1) + (1 − 𝛼)𝜇𝐷 (𝑑,𝑚), 𝑡 + 1 < 𝑚 ≤ 𝑇𝑃 .

(4)

Unifying Eq. (4) for general situations, we have Eq. (5)

𝐸𝐶 (𝑑,𝑚) =
𝑚∑

𝑘=𝑡+1

{
(1 − 𝛼)𝛼𝑚−𝑘𝜇𝐷 (𝑑, 𝑘)

}
+ 𝛼𝑚−𝑡𝐸𝐶 (𝑑, 𝑡) (5)

where 𝛼 is the smoothing constant determining how the historic and current data are weighted,
with value 0 ≤ 𝛼 ≤ 1. 𝜇𝐷 (𝑑, 𝑘) is the mean energy consumed at time step 𝑘 for the previous 𝐷
days, which is given by Eq. (6).

𝜇𝐷 (𝑑, 𝑘) =
1
𝐷

𝑑−𝐷∑
𝑚=𝑑−1

𝐸𝐶 (𝑚,𝑘) (6)

Therefore, substituting Eq. (5) into Eq. (3) and solving for 𝜇𝐷 from Eq. (6), we have Eq. (7) for the
energy demand prediction.
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𝐸𝐷 (𝑑, 𝑡 + 1) =
𝑇𝑃∑

𝑚=𝑡+1

𝑚∑
𝑘=𝑡+1

(1 − 𝛼)𝛼𝑚−𝑘

(
1
𝐷

𝑑−𝐷∑
𝑚=𝑑−1

𝐸𝐶 (𝑚,𝑘)
)
+ 𝛼𝑚−𝑡𝐸𝐶 (𝑑, 𝑡) (7)

Appropriate values of 𝛼 (weights), number of time steps for the day and 𝐷 (previous days) are
selected such that the prediction error is minimised while considering the constrained device and
the overall goal of maximising the user QoE across the battery discharge. We first considered the
average operating hours of users based on our analysis from Section 2 to determine an optimum
duration for the time step (or length for the time steps, Δ𝑇𝑆 ) and 𝐷 days, in which the constant
monitoring and adjustment of the QUAREM approach would not be with an additional energy and
memory cost. A selective search strategy was used for the parameters that best optimise our goal.
For example, [10 s, 60 s, 300 s, 1800 s, 3600 s] are considered for Δ𝑇𝑆 while 𝐷 = [5, 10, 20, 30, 40]
days were also considered. Then an investigation of varying 𝛼 values [0, 1] was also carried out
while considering the prediction errors.

Our proposed model accuracy is evaluated using Mean Absolute Error (MAE). We also used
Mean Absolute Percentage Error (MAPE), which estimate the error in percentage of the actual
value for better representation of the level of accuracy. The MAE and MAPE are given by Eq. (8)
and (9), respectively.

𝑀𝐴𝐸 =
1
𝑇

𝑇∑
𝑚=1

|𝐸𝐷 (𝑚) − 𝐸𝐷 (𝑚) | (8)

𝑀𝐴𝑃𝐸 =
1
𝑇

𝑇∑
𝑚=1

|𝐸𝐷 (𝑚) − 𝐸𝐷 (𝑚)
𝐸𝐷 (𝑚) | (9)

where 𝐸𝐷 is the predicted energy demand and 𝐸𝐷 is the actual energy demand by the smartphone
while operating. A time delay Δ𝑇𝑆 of 5min, 𝐷 = 4 𝑑𝑎𝑦𝑠 and 𝛼 = 0.3 tend to be the optimised values
for the parameters that gives minimal error. The energy demand prediction algorithm is not an
offline process but online too - updated over a granularity of Δ𝑇𝑆 (5min) based on the additional
information gained from the user’s behaviour within that time step until the plug-in time.

3.2 Plug-in Estimation
Considering our analysis of the Sherlock and individual data (Section 2.1), we assume that the user
has a similar average plug-in status; however, with a variation of up to 25% thus, we use EWMA
to estimate the user’s plug-in time (charging) for a day. Though a simple moving average can be
used to estimate the plug-in times, it does not respond to the user’s changes within different days
quickly. Thus EWMA is more suitable. The historic data collected from the user’s plug-in behaviour
shows that this plug-in time can be estimated since the user normally uses the smartphone during
the day and plugs-in (charges) during the night when there is adequate availability of tethered
power. Thus, the next plug-in time can be estimated using the user’s historic data. The next plug-in
time, 𝑇𝑃 (𝑡 + 1), is estimated using EWMA as shown in Eq. 10.

𝑇𝑃 (𝑡 + 1) = 𝛼𝑇𝑃 (𝑡) + (1 − 𝛼)𝑇𝑃 (𝑡) (10)
where 𝛼 is the smoothing constant where 0 ≤ 𝛼 ≤ 1. The higher the value of 𝛼 , the lower the

smoothing. It is worth mentioning that the plug-in prediction algorithm is not entirely an offline
process and not online over the granularity of a per hour process, but every day it is recalculated
based on that additional information gained from the user behaviour that day. So, if, for instance,
you always use your phone and find a plug based on your SOC level at 2 pm, QUAREM starts to

ACM Trans. Embedd. Comput. Syst., Vol. 00, No. 0, Article 0000. Publication date: March 2022.



QUAREM: Maximising QoE through Adaptive Resource Management in Mobile MPSoC Platforms 0000:11

2 5 7 3 4 2 4 1 4 5 2 0 5 9 6 6 7 5 7 1 00

2 5
2 6
2 7
2 8
2 9
3 0

Ja
nk

s (
%)

F r e q u e n c y  ( M H z )

( a )

0 . 9 8 1 . 3 6 1 . 6 9 2 2 . 3 2 2 . 6 5 2 . 80
2 0
2 1
2 2
2 3
2 4
2 5

Ja
nk

s (
%)

F r e q u e n c y  ( G H z )

( b )

0 . 4 0 . 6 5 0 . 9 1 . 1 3 1 . 4 2 1 . 6 9 1 . 7 70
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8

Ja
nk

s (
%)

F r e q u e n c y  ( G H z )

( c )

Fig. 5. Janks (dropped frames) observed for Google Maps while varying the frequency of the (a) GPU (b) big
CPU and the (c) Little CPU cores.

learn that you plug-in at that time and therefore, overtime your plug-in time does take the SOC
because of your behaviour.

3.3 Adaptive DVFS Setting
From our exploration, we discovered that the ’Schedutil’ governor, which integrates the DVFS
mechanism within the scheduler, is widely used in most recent smartphones due to its compatibility
with modern heterogeneous multi-processing (HMP) schedulers [13, 21]. Studies have shown that
the processor consumes most of the Smartphone’s energy [12, 42]. For instance, Chen et al. [12]
have shown that processors consume around 40% of the energy while playing mobile games on
smartphones. In [42], the authors have demonstrated that >50% of the energy is consumed by the
processor at reduced screen brightnesses. Similarly, a recent study on the power consumption
of smartphone battery and energy usage also reveals that the CPU is among the power-hungry
components in smartphones [46]. Thus, if DVFS is utilised properly, it has the potential to save
energy with little or no QoS degradation. For example, Figs. 5 and 6 show the occurrence of frame
rate janks (janks), which is the frame deadlines missed, while changing and capping the frequency
on a mobile MPSoC platform. We used the 60 frame per second (FPS) for computing the frame rate
janks, which means all processing (computing, networking, and rendering) must be completed
within 16.7ms per frame to avoid the occurrence of a jank. The average jank value was considered
for the entire period of a productive task for each application e.g. Google Maps, YouTube, (discussed
in Section 4.1 and Table 2) across the several runs. In Fig. 5, the Google Maps workload is used
while varying the frequency of the GPU at fixed lowest frequencies for the big and LITTLE CPU
(Fig. 5a); varying the frequency of the big CPU at fixed lowest frequencies for the LITTLE CPU and
GPU (Fig. 5b); and varying the frequency of the LITTLE CPU at fixed lowest frequencies for the big
and GPU cores (Fig. 5c), respectively. From the three figures, while using other DVFS governors, a
significant increase in frame rate janks can be observed as the frequency is lowered for both the
CPU and the GPU. This is because of the lack of synergy between the DVFS governor and the
scheduling mechanism [21], thus, causing slow frequency ramping and task migration to the right
cores.
Fig. 6 shows the janks observed for YouTube, Google Maps and Chrome while capping the

frequency of the big CPU cores. This is not showing any new management approach, but it shows
the impact of capping the frequency while using 𝑆𝑐ℎ𝑒𝑑𝑢𝑡𝑖𝑙 governor. The result shows a lower
jank percentage even at lower frequency compared to fixing the frequencies in Fig. 5. This further
shows the advantages of schedulers that are tightly coupled with the DVFS governor as they have
awareness of the individual task’s load in making better scheduling decisions. Thus, the QUAREM
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Fig. 6. Janks (%) and mean operating frequencies (GHz) observed for YouTube, Google Maps and Chrome
workloads while capping the frequency of the CPU.

approach uses the state-of-the-art DVFS governor - Schedutil already employed in the current
smartphone generation.
Therefore, in meeting our objective of maximising the QoE while ensuring the battery life

expectation within the required QoS, we propose an adaptive technique utilising DVFS which
works as shown in Fig. 3 (right). First, an offline exploration on the commercial smartphone
was carried out. Various workloads were executed using the workload automation setup with ≈
150 runs per workload to determine the energy consumption and the frame rate janks (QoS) at
different frequency cap for the big CPU cores as represented in Fig. 6 and Fig. 7. The foreground
applications are executed one at a time, however, a range of background services are also running
in the background, as is the common case with smartphones operation. This scenario is considered
because the uncontrolled energy consumption by background applications in the past has been
aggressively addressed in Android 8 and above [14]. From the exploration, wewere able to determine
the optimum capping frequency 𝜙 for the big CPU cluster, as it is not beneficial to operate the
device at maximum frequency due to power and thermal concern, which is in agreement with the
findings of Li et al. [34]. In finding the optimum capping frequency, 𝜙 , (the minimum frequency
where QoE remains maximum), we leverage the improved IQX model employed, which divides
the QoE into three distinct regions using 𝑋1, and 𝑋2 (optimum and minimum points respectively).
The regions include constant optimal QoE where 𝑗𝑎𝑛𝑘𝑠 < 𝑋1, acceptable QoE region, which is
also known as the sinking QoE where janks is given by [𝑋1, 𝑋2), and the unaccepted region where
𝑗𝑎𝑛𝑘𝑠 ≥ 𝑋2. Since users are already satisfied with the QoS level at the constant optimal QoE region,
the provision of additional QoS by way of increasing the frequency does not necessarily lead to
higher QoE. Therefore, the optimum capping frequency 𝜙 is determined at this point. We also
determine the different frequency caps depending on the energy requirement while considering the
QoS, which we denote as 𝜖 . For example, in our particular setup, which involves a Google pixel 3
smartphone, we determined the value of 𝜙 as 2.65GHz while the determined 𝜖 values are 2.40GHz,
2.00GHz and 1.69GHz for 0.85 ≤ 𝛿 ≤ 1, 0.6 < 𝛿 < 0.85 and 𝛿 ≤ 0.6, respectively.

At runtime, the𝑄𝑈𝐴𝑅𝐸𝑀 approach consistently monitors, updates the model at each time delay
Δ𝑇𝑆 of the time step 𝑇 and allocate the resources accordingly to achieve the overall objective. For
instance, when the energy in the battery is predicted to be insufficient to sustain the operation
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Fig. 7. Normalised energy consumption for Google Maps and Chrome while capping the frequency of the big
CPU cores.

of the smartphone until 𝑇𝑃 , our system monitors and reconfigures the DVFS settings by capping
the frequency, 𝐹𝐶𝐴𝑃 of the CPU cores at each time-step (represented as delay Δ𝑇𝑆 in Fig. 3). The
𝐹𝐶𝐴𝑃 value is determined by 𝛿 (𝑡), which is the ratio between the remaining energy and the energy
demand at time step t+1 and is given by Eq. (11).

𝛿 (𝑡) = 𝐸𝑅 (𝑡)
𝐸𝐷 (𝑡 + 1)

(11)

where 𝐸𝑅 is the estimated remaining battery energy in the smartphone at time step 𝑡 , which is
given as the product of the battery level, 𝐵𝐿 , and the battery capacity, 𝐵𝐶 , (i.e. 𝐸𝑅 (𝑡) = 𝐵𝐿 (𝑡) × 𝐵𝐶 )
and 𝐸𝐷 is the predicted energy demand. Since users’ behaviour and SOC level will not always
be the same even for the same application use, QUAREM also considers the level of the battery
SOC at every time step of the device operation until plug-in in addition to the energy consumed
and predicted energy demand before taking decisions. The idea of updating the model at every
time step ensures that these dynamic changes are learned and addressed online to provide longer-
term budgeting of the constrained energy within the required QoS and thus, maximising the QoE.
However, if at much lower remaining battery than the predicted energy demand and the user feels
s/he has charging options or pressing task with a need for a higher frequency, there is an option
to disable QUAREM so that the application can operate uncapped. When the user turns it back
on afterwards, QUAREM will attempt to manage the remaining battery. In essence, 𝐹𝐶𝐴𝑃 = 𝜙 if
the value of 𝛿 (𝑡) > 1, implying that 𝐸𝑅 (𝑡) > 𝐸𝐷 (𝑡 + 1). Similarly, 𝐹𝐶𝐴𝑃 will be the different sets
of frequencies if the value of 𝛿 (𝑡) ≤ 1, implying 𝐸𝑅 (𝑡) < 𝐸𝐷 (𝑡 + 1). Thus, 𝐹𝐶𝐴𝑃 is expressed as Eq.
(12).

𝐹𝐶𝐴𝑃 =

{
𝜙 if 𝛿 (𝑡) > 1.
𝜖 if 𝛿 (𝑡) ≤ 1.

(12)

where 𝜙 is the optimum capped frequency of the MPSoC as determined from our offline ex-
ploration of the different applications while capped at different frequencies; and 𝜖 (implying
𝐸𝑅 (𝑡) < 𝐸𝐷 ) is the calculated values based on the relationship between the energy consumption
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and the frequency of the CPU cores as shown in Fig. 7. Note that the 𝐹𝐶𝐴𝑃 setting is implemented per
cluster since the smartphone utilised provides only per cluster DVFS control (as is typical in mobile
SoCs). The firmware automatically adjusts the voltage based on preset pairs of voltage-frequency
values with every variation in frequency to achieve the required energy saving. Since the firmware
handles the frequency switching, the switching overhead would not be more than usual. Moreso,
the experimental results measure the actual energy consumption, and therefore any overheads are
inherently included. Details about the mobile hardware and the operating frequencies are given in
Section 4.1.

4 EXPERIMENTAL SETUP AND EVALUATION
This section presents the experimental setup which consists of the mobile hardware platform, tools
and the workloads employed for the experiment and exploration. It also discusses the relevant
existing state-of-the-art approaches used for comparison.

4.1 Experimental Setup
4.1.1 Mobile Hardware. The experiment was conducted on a Google Pixel 3, a flagship commercial
smartphone and third-generation design by Google that contains the Qualcomm Snapdragon 845
SoC (SD845) [20, 54]. We used the Google Pixel 3 that is two years old because of the predominance
of the chipset category and its advancement over many smartphones in the market. The mobile
chipset technology used, which falls within the mid-tier category of smartphones, represents the
highest category in the market compared to low- and high-end categories [41], thus making it an
up-to-date technology in the market. For instance, out of the estimated 1.6 billion smartphones
projected to be sold by 2021, ≈ 580 million (36.3%) are mid-tier smartphones, surpassing high
and low-end ones that are 530 million (33.1%) and 490 million (30.6%), respectively. Real mobile
smartphone was used as opposed to development board to address the fundamental challenge
associated with the lack of scalability of board-based implementations to real mobile devices either
due to unavailability of sensors used or impossibility of accessing them on actual smartphones. In
addition, QoE is subjective, and most of the factors in real mobile operation are not captured (such
as the interactivity of the user and other IP cores within the SoC) due to the fact that the experiment
is often carried out in a controlled environment and/or simulated based on some assumptions that
are typically not true representations in real-life situations [48]. The SD845 integrates performance
(big) and efficiency (LITTLE) CPU clusters alongside a Qualcomm Andreno 630 GPU cluster. The
big cluster consists of 4 × Kryo 385 gold CPU cores that allow cluster-wise DVFS with 24 operating
points ranging from 825–2803MHz. Similarly, the LITTLE cluster consists of 4 × Kryo 385 silver
cores with 18 operating points ranging from 300–1766MHz [47, 54]. The Andreno 630 GPU cluster
also support cluster wise DVFS with seven frequency values: 257MHz, 342MHz, 414MHz, 520MHz,
596MHz, 675MHz and 710MHz.

4.1.2 Software Infrastructure. The Google Pixel 3 runs the Android 11 operating system. The
scheduler, based onQualcomm’s customHMP scheduling, is tightly coupledwith the DVFS governor
(Schedutil) [20]. In addition, it supports DVFS by editing relevant files in the sysfs directory from
the userspace in rooted devices. The availability of these resources and next generation software
makes this platform ideal for our experiment.
To facilitate the experiment on this device, Workload Automation (WA) was used, which is a

developer framework that helps execution of mobile application and collection of measurements
on mobile embedded devices running Android and Linux in a repeatable manner [3]. The flexibility
and extensibility of this tool makes it ideal for exploring an off-the-shelf mobile platform to better
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Table 2. Summary of the applications used in the experiment and the productivity task performed by each
based on workload automation [3]

Application Class Productivity Task
Chrome Web based task Search and navigate through couple of web pages.
Gmail Email Creating and sending emails with task such as opening the

app, clicking on the create email field, searching for the file
to be attached and entering the details in the required fields
(recipient details, subject and compose field), and then
clicking on the send button.

Google Maps Navigation task Search for locations, pan and zoom around the map while
following the path along the route.

YouTube Video Search and play video within the YouTube application.
While playing the video, tasks such as video seeking, pausing
playback and navigating to the comments section are done.

understand the interactivity between the user, applications and the SoC in a way that it can easily
be repeated and measured.

4.1.3 Workloads. Popular mobile applications supported byWA such as Chrome (browser), Google
Maps, Gmail and YouTube were selected and executed. These applications are among the top 10most
widely used in smartphones because of their relevance in users’ daily lives [5], - also considered
among the top 10 apps people cannot live without in the United States. They also load and operate
differently from each other, thus exhibiting a wide range of characteristics. For example, while
the YouTube application streams data to the application for the video to be rendered, the Chrome
application involves a client-server exchange of data based on the user’s action/request. Due to this
and the difference in their QoS requirement, they were selected for the experiment. Similarly, the
use of real mobile applications which are multi-platform based enables their applicability across
many possible hardware configurations of a heterogeneous multi-core chip-set. Table 2 summarises
the applications used, their classes and specific productivity task.

4.2 Evaluation
4.2.1 Comparison. The proposed approach was compared with the following existing state-of-the-
art approaches to demonstrate its QoE maximisation while meeting the battery life expectation of
the user.
(1) Schedutil with Energy-aware scheduling (DF) [4]: Recent HMP are equipped with EAS, which

integrate the cpufreq governor (DVFS) in the scheduling process. This approach focuses
on optimising energy consumption by leveraging on the different power and performance
capabilities of the multi-cores within the SoC. This is considered for comparison because of
its popularity in flagship commercial smartphones as it provides energy efficiency and user
satisfaction by balancing the trade-off between energy and QoS.

(2) Powersave Governor (PS) [25]: This approach focuses on minimizing the power consumption
by ensuring the power hungry cores are operated at low frequency. Although the implemen-
tation of Powersave on the experimental platform occasionally allows the CPU frequency to
scale to the maximum frequency (2.80 GHz) depending on the workload requirements [56], it
predominantly operates at low frequency (825 MHz) as shown in Fig. 8. This is selected as a
comparison candidate to show the energy saving of our approach with respect to it.
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Fig. 8. CPU frequency traces of the different approaches while running Google Maps application.

(3) QoS-Aware (QA) [24]: This approach is aimed towards maximising the QoS by assigning
high frequency to the cores. This is readily available on the commercial smartphones and
operate in similar way to the Linux performance governor.

(4) User- and Battery-aware Resource management (UBAR) [52]: This approach focuses on
maximising both QoE and aging by considering users’ preferences, plug-in/out patterns and
state of charge (SOC) level. The resource allocation/management for each user is based on the
predicted user’s action (plugged-in) and estimated current SOC from the user and SOC model.
This state-of-the-art work is the most relevant to our work. The energy minimization strategy
used in this method is reduction of performance reference (or performance target). First,
when SOC is high (above 70%), applications performance requirement are set to the highest
reference. Secondly, when SOC is less than 70%, performance target is relaxed gradually, 80%
in the first instance and to 50% subsequently.

4.2.2 Usage Pattern. To experimentally evaluate the proposed approach at runtime, use-case
scenario as observed by the usage pattern in one of the days was considered. Workload automation
(WA) which allows interactive execution of mobile application on real mobile device in a way that it
can easily be repeated and measured as discussed in Section 4.1.2 was utilised. The usage sequential
pattern considered for the evaluation while running the mobile workloads on the mobile hardware
using the WA is given in Table 3. In the table, the first column shows the action or operation carried
out by the user, whereas the second column shows the application executed or the time taken for
the action. For instance, row 3 shows that the smartphone is idle (not used by the individual) for
about 25 minutes. Similarly, the email action involves all the tasks in sending an email, ranging
from the launching of the app (Gmail) to clicking on the send button.
The use-case of each of the application considered in the experiment is in conformity with the

productivity task of the WA as described in Table 2. To further illustrate the adaptability of the
different approaches to changes in either the user usage pattern or the energy requirement, we
considered the scenario in Table 3 at different initial battery levels ranging from 100–40 % (varying
from 0-60) represented as 100%, 90%, 80%, 70%, 60%, 50% and 40%. The rationale behind varying the
initial SOC level is to show how the QUAREM resource management adjusts to different scenarios
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Table 3. The usage sequential pattern considered for the evaluation while running the mobile workloads on
the mobile platform using the workload automation

Action Application/Time
Email Gmail
Check news online Chrome <22 minutes>
Idle 25 minutes
Check information online Chrome
Backlit on while reading the content 20 minutes
Set Google Maps and drive to work Google Maps <69 minutes>
Idle while occasionally checking the screen 185 minutes
Watch video YouTube <20 minutes>
Drive back home Google Maps <101 minutes>

in real-life as users might not always begin the day with 100 % battery level and also to show how
the approach will adapt to varying energy requirements.

5 RESULTS AND DISCUSSION
5.1 Prediction Results
To facilitate the learning and prediction of the energy demand until plug-in time, the model uses
individuals’ user data on energy usage patterns. This was collated using Funf Journal [2], an
Android application installed on a smartphone to record the energy usage pattern over three weeks.
To avoid memory overheads and battery consumption due to many different sensor samples at a
relatively high frequency, we only enabled the battery sensor every 5min since we are interested
in the energy usage and plug-in time of the individual over a long time period.

The data collected consists of the Unix timestamp, battery level, voltage, plug-in status, charging
type and battery status. We split the user’s dataset into training (two weeks of data) and testing set
(one week). Two weeks worth of collected data are used to train and fit our model as detailed in
Sections 3.1 and 3.2. The extra one week of data is used to evaluate (test) the experimental results.
While user behaviour may vary in practise, depending on the DVFS/scheduling governor, for the
purposes of this study we assumed that it does not and thus varied the initial battery level to
account for those changes.

Fig. 9 shows the predicted plug-in time of our model compared to the actual plug-in time of the
user. The prediction is done at the moment when the user unplugs the device from charging (which
varies per individual). The predicted times show good level of accuracy with error ranging from
0–12min for over half of the days. The results give a mean absolute percentage error of 2.48 %,
which is equivalent to 22.3min. This error is small compared to the total hours in a day (≈ 15 h)
the user spent before the next plug-in time, as shown in Fig. 1.
Fig. 10 shows the predicted energy demand, 𝐸𝐷 , and the actual energy demand, 𝐸𝐷 , of the user

within a day. This value is updated every 5min (each time step) with the most recent value of the
energy consumption (𝐸𝐶 ) until the predicted plug-in time (𝑇𝑃 ) as enumerated in Section 3.1. From
the results, we can see that our model does well in predicting the energy demand within the day
with a mean absolute percentage error of 3.47 %.
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Fig. 9. Comparison between Predicted plug-in time vs the Actual plug-in time of the user.

5.2 Battery Life Extension
Fig. 11 shows the battery discharge profile for the five different approaches considered for the
scenario described in Table 3. Similar results are expected in other scenarios as in Section 4.2.2
because the approach has considered varying workloads and users of varying nature. The figure
shows the different percentages of the battery level (the remaining energy) for the five approaches
at the end of the execution while the user starts the day with 100% initial battery charge. It can be
seen that all the approaches are able to meet the expected battery life of the user with 7%, 18%, 30%,
24% and 22% final battery level still remaining for the QA, DF, PS, UBAR and QUAREM techniques
respectively. As we further decrease the battery’s state of charge at the start of the day as reflected
in Fig. 12, QA, DF and UBAR approaches fail to meet the battery life at 90%, 80% and 80% state of
charge respectively. QA failed at 90% initial battery level because of its unnecessary allocation of
higher frequency to performance cores in the quest to deliver maximum QoS as shown in Fig. 8.
Though DF approach maps resources to energy-efficient cores, it still fails at 80% initial battery
level due to its unawareness of the user’s battery life goal. Similarly, UBAR slightly fails to meet
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Fig. 10. Comparison between the Predicted energy demand 𝐸𝐷 vs the Actual energy demand of the user across
the time steps for a particular day. The energy demand plot is normalised as a percentage of the battery level.
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Fig. 11. Battery discharge profile for the different approaches considered.

the expected battery life goal due to its initial higher QoS target and also being agnostic to the
battery life goal. QUAREM on the other hand is able to meet the battery life expectation of the user
at 80% initial battery level, however, it fails at 70%, which is also the same initial battery level at
which PS approach fails. This shows QUAREM’s ability to compare favourably, with power saving
techniques. The secondary Y-axis of Fig. 12 shows the final battery level for the rest of the initial
battery levels considered. The figure reveals that while QA, DF and UBAR approaches run out of
battery with slight variation in user’s usage behaviour (reduced battery from the start), QUAREM
was able to adjust resource allocation to meet battery life by up to 25%.

Fig. 12 also shows the percentage of time each approach was active (primary Y-axis) at different
initial battery level. It can be seen that PS approach has the highest percentage of time active
because it is focused on power saving irrespective of the impact on the users’ QoE. QUAREM
was able to provide higher active time in comparison to UBAR, DF and QA approaches while
maximising the QoE. Indeed, PS has better battery discharge and active time profiles than the
approaches considered in Figs. 11 and 12. This is because the PS approach is designed to minimise
the power consumption even at the expense of QoS, thus negatively affecting the QoE. On the other
hand, QUAREM is aimed at maximising the user’s QoE across the battery discharge by adaptively
managing the QoS and the energy consumption. The idea is to provide a satisfactory service across
a battery-life goal. For example, Fig. 11 shows PS with a 30% battery level (remaining energy) at
the plug-in time, while QUAREM has a 22% battery level at the same plug-in time. However, it will
be worthless to have 30% or more battery level at the plug-in time when the user is dissatisfied
with or even abandoning the services provided for most time of the day (PS in Fig. 11); QUAREM
tries to balance the QoS while focusing on the battery life goal, thus having a slightly lower battery
level (22%) at the plug-in time but the user is satisfied with the services throughout the day. This
also shows the benefit of resource management with the knowledge of the battery-life goal as
against generic energy saving approaches. Though the focus of QUAREM is the short-term battery
discharge (time from plug-out to the next plug-in), its impact on longer-term battery life (i.e., the
number of charge/discharge cycles before the battery fails to operate satisfactorily) cannot be
overemphasized since consistent good short term battery life management like the one proposed in
this work that helps in maintaining the SOC level for a long time and also alleviating the on-chip
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Fig. 12. Summary of the percentage of the final battery level and the percentage of time each approach was
active at different initial battery level.

thermal profile through capping off the excessive heat that might be generated as a result of
unnecessary high frequency will help in improving the overall long battery life.

5.3 QoE Improvement
To evaluate the benefit of QUAREM in meeting the user’s battery life expectancy with little or no
QoS degradation, i.e. enhancing the QoE, we employ the model utilised in the works of [19, 33] to
quantify the QoE, an exponential relationship between QoS and QoE as earlier stated in Section 2.
We also compare the results obtained by different state-of-the-art approaches using the commercial
mobile smartphone and usage pattern described in Section 4.
Fig. 13 shows the comparison of instantaneous QoE for five resource management techniques.

The values are computed using the exponential QoS to QoE relationship [19] from the frame jank
rate (QoS) obtained every second while running the considered scenario in the device. The higher
the value of instantaneous QoE the better it is because it shows less/fewer janks, thus, giving rise
to a smoother and better experience. Fig. 13 reveals that QA, DF, UBAR and QUAREM approaches
have relatively higher instantaneous QoE with an occasional dip at certain instances. This dip is
mostly as a result of the resource requirement and adjustment associated with loading and starting
up an application, which is accustomed to fluctuation in the instantaneous QoE. For example, this
can be observed at time t = 220s, 1000s, for the QUAREM approach. Similarly, identical fluctuations
can be noticed with other approaches as well. QUAREM approach closely compares with the QA
technique with a slightly higher instantaneous QoE values compared to DF approach. UBAR also
has comparatively high QoE at the beginning when the battery level is high, but decreases as the
battery level decreases due to the approach’s reduction in target QoS when a plug-in is not predicted
and the battery level is below a certain threshold (70 % and 50%). Overall, it has a higher QoE
compared to PS approach. PS on the other hand, shows a relatively low instantaneous QoE with
dips that goes below 40% indicating significantly higher janks (>60 %). This is because of the low
frequency of operation that is mostly employed by the PS method. Table 4 summarises the variation
improvement of the instantaneous QoE of the QUAREM approach against the existing approaches.
From the table, the QA approach has maximum and minimum QoE of 100% and 60.9% respectively
with variance of 86.5 and a standard deviation of 9.30. Similarly, DF, UBAR and QUAREM have the
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Fig. 13. Comparison of instantaneous QoE for five different resource management techniques (higher is
better) while running Google Maps and YouTube repeatedly. The QoS is measured as frames rate jank at
every second.

same maximum QoE of 100% and minimum values of 50.2%, 41.3% and 54.6% respectively. While
DF has a variance and standard deviation of 105 and 10.3 respectively, UBAR and QUAREM have
variance of 91.7 and 76.7 with standard deviation of 9.57 and 8.76 respectively. PS on the other hand
has 99.8% and 33.5% for maximum and minimum values respectively with variance and standard
deviation of 200 and 14.2, respectively.
In summary, QUAREM approach shows a lower variance and standard deviation compared to

the considered techniques with percentage variation improvement (statistical variance) of 11.3%,
16.4%, 27.1% and 61.8% in comparison to QA, UBAR, DF and PS respectively (as shown in Table 4).
This significantly improves the overall users’ QoE because higher variation means inconsistent
usage experience thus, affecting the overall QoE.

Fig. 14 shows the averaged QoE comparison results for the five different resource management
approaches while starting the day at different percentage of initial battery level. The seven different
initial battery level are evaluated with the same usage scenario as described in Section 4.2.2. The
average QoE in Fig. 14 is computed by taking the average of the instantaneous QoE values obtained
in Fig. 13 for the entire usage scenario with a penalty of 0 when the battery is fully depleted to
show user’s dissatisfaction. QA shows higher average QoE at 100 % initial battery level but declines
at subsequent battery levels, 90 % through 40% due to its inability to meet up with the battery

Table 4. Variation improvement of the instantaneous QoE of the QUAREM approach against the existing
approaches while running Google Maps and YouTube applications.

Approach Max Min Mean Variance STD % of Variation
Compared to QUAREM

QA [24] 100 60 93.3 86.5 9.30 11.3 %
DF [4] 100 50.2 91.2 105 10.3 27.1%
PS [25] 99.8 33.5 77.1 201 14.2 61.8%

UBAR [52] 100 41.3 89.3 91.7 9.57 16.4%
QUAREM 100 54.6 92.3 76.7 8.76 0
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Fig. 14. Comparison of average QoE for five different resource management techniques while starting the
day at different initial battery level (%).

life expectation of the user. Similarly, DF shows a considerable high average QoE at 100% and
90% battery levels but it also declines as the initial battery levels considered are lowered. On the
other hand, QUAREM shows a comparatively higher average QoE compared to other techniques
due to its ability to adaptively manage the resources to meet the battery life expectation of the
user. UBAR was unable to provide higher averaged QoE at 100% initial battery level compared to
DF, QUAREM and QA approaches due to over-constrained DVFS despite the fact that the energy
(battery) is sufficient for the expected battery life. It is also able to provide higher averaged QoE
compared to QA and DF approaches due to its energy saving ability at low SOC, thus, sustaining
higher expected battery life compared to DF and QA. Though even QUAREM could not guarantee
the battery life at initial battery level beyond 70% as shown in Fig. 12, QUAREM is able to maintain
a higher average QoE for almost all the situations. PS maintained a relatively low average QoE
compared to the other approaches when starting the day at battery level >70%.
In summary, Table 5 depicts the QoE improvement that can be obtained using QUAREM in

comparison to existing approaches. The result demonstrates that our approach can achieve up to
92.6% the improvement compared to QA that aims at maximising QoS and up to 54.1% compared to
the DF that is with energy awareness. It also shows that QUAREM achieves 4.05% to 62.2% QoE
improvement when compared with UBAR approach. This is because UBAR often fails in meeting

Table 5. Summary of QoE improvement of QUAREM compared to existing approaches at different percentage
of initial battery level (IBL).

Approach At 100% At 90% At 80% At 70% At 60% At 50% At 40%
IBL IBL IBL IBL IBL IBL IBL

QA [24] -1.51% 2.87% 6.65% 16.2% 92.6% 51.6% 39.2%
DF [4] 1.57% 0.82% 2.50% 8.01% 54.1% 34.4% 22.4%
PS [25] 18.8% 17.9% 16.5% 14.1% 11.5% 15.1% 21.8%

UBAR [52] 4.05% 5.17% 6.09% 12.8% 62.2% 24.3% 9.44%
*IBL = Initial Battery Level
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the user’s battery life expectation with slight variation in user’s usage pattern and/or reduced
battery from the start, but QUAREM is able to adapt with up to 25% variation with little or no QoS
degradation, thus improving the overall QoE. This further demonstrates the benefit of considering
both the user desired plug-in time and the energy requirement in maximising QoE. For a new user
and platform whose data does not exist a priori, the QUAREM approach is turned off on the first
day while the user’s data is profiled using the default runtime management. Subsequently, the
previously profiled data is used for the current day while the model is updated with the current
data and continuously adapt based on the usage pattern of the user.

5.3.1 Effect of Varying the Penalty. We also analysed the effect of varying the penalty to show
users’ dissatisfaction if the battery life expectation is missed when employing the QUAREM and
existing approaches. This is considered because existing approaches that utilised the same IQX
model for the QoE computation applied a penalty of -100 when the battery life expectation is
missed; for example, Lee 𝑒𝑡 𝑎𝑙 . [33]. Table 6 shows average QoE results when applying a penalty
of −50 and −100 at varying initial battery levels. With a higher penalty value, e.g., −100, the QA,
DF, and UBAR approaches either have nominal average QoE value (1.22) or zero average QoE
value (capped to zero to avoid negative values), but QUAREM maintains a high average QoE (52.6).
Similarly, when the approaches have a zero average QoE value at a penalty of −50, QUAREM still
has a significant average QoE value. However, with a further decrease in the value of the initial
battery level, e.g., 40% and beyond, all the approaches have a zero average QoE value. It can also
be observed that QUAREM provides a much higher average QoE (higher than even the values in

Table 6. Summary of the average QoE at a varying penalty for QUAREM and the existing approaches

Approach At 100%
IBL

At 90%
IBL

At 80%
IBL

At 70%
IBL

At 60%
IBL

At 50%
IBL

At 40%
IBL

QA [24] -50 94.3
(-1.5%)

87.4
(5.5%)

80.6
(13%)

67.3
(29%)

9.09
(593%)

0
(0%)

0
(0%)

-100 94.3
(-1.5%)

85.1
(8.3%)

75.7
(20.3%)

58.1
(45.8%)

0
(0%)

0
(0%)

0
(0%)

DF [4] -50 91.5
(1.5%)

91.5
(0.8%)

87.5
(4.1%)

77.3
(12.3%)

24.4
(158.2%)

0
(0%)

0
(0%)

-100 91.5
(1.5%)

91.5
(0.8%)

86.2
(5.7%)

72.5
(16.8%)

1.22
(4211%)

0
(0%)

0
(0%)

PS [25] -50 78.2
(18.8%)

78.2
(17.9%)

78.2
(16.5%)

77.5
(12%)

58.0
(8.6%)

2.82
(159%)

0
(0%)

-100 78.2
(18.8%)

78.2
(17.9%)

78.2
(16.5%)

77.2
(9.7%)

50.1
(5%)

0
(0%)

0
(0%)

UBAR [52] -50 89.3
(4%)

87.7
(5.1%)

85.8
(6.2%)

74.5
(16.5%)

22.6
(179%)

0
(0%)

0
(0%)

-100 89.3
(4%)

87.7
(5.1%)

85.6
(6.4%)

70.4
(20.3%)

0
(0%)

0
(0%)

0
(0%)

QUAREM -50 92.9
(0%)

92.2
(0%)

91.1
(0%)

86.8
(0%)

63.0
(0%)

7.3
(0%)

0
(0%)

-100 92.9
(0%)

92.2
(0%)

91.1
(0%)

84.7
(0%)

52.6
(0%)

0
(0%)

0
(0%)

*IBL = Initial Battery Level
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Table 5) over existing approaches. This indicates that if you penalise failure to meet battery life
expectations more, all existing approaches fall over sooner, thus, more remarkable improvement
for QUAREM, which ensures users’ battery life expectations are met within the QoS requirement.
Although a dataset of this size is typical in this literature, we have proposed a competitive

approach rather than extending the evaluations of existing ones. We have also evaluated our
approach similarly to existing works and have shown improved results, and scaling the evaluation
is the top of our future work. This will involve getting more diverse user groups to evaluate the
data.

5.4 Adaptability and Scalability
This section discusses the adaptability of our approach with respect to users with erratic (multiple)
charging behaviour and its scalability to other portable electronics, both hardware and software.

5.4.1 Users with erratic charging patterns. Though the QUAREM approach was designed to max-
imise the user’s QoE across the battery discharge for users with regular charging cycle as discussed
in Section 2, we also selected five (5) individual users from the Sherlock dataset with erratic (multi-
ple) charging patterns to evaluate the effectiveness of QUAREM for different charging patterns.
Among the users with erratic behaviour randomly selected include two (2) users that plug-in around
15:00 of the day in addition to their plug-in times at the end of the day. Similarly, three (3) users
that plug-in twice between their normal plug-in times i.e. around 12:00 and 16:00 in addition to
their normal plug-in times at the end of the day were also considered.

Fig. 15 shows the average QoE for the different resource management approaches while consid-
ering these erratic charging patterns at different initial battery levels (%). In the figure, QA, DF, and
PS show consistent values with QA having a higher average QoE across all the initial battery levels
considered. This is because these approaches have no specific battery life goal to meet and with an
erratic charging pattern, the device is never expected to span the entire day but is often plugged
intermittently within the day. However, for a larger proportion of the users that do not exhibit
erratic charging patterns, these approaches tend to be worst due to their inability to guarantee
battery life across the user’s expected battery life (charging cycle) as shown in Figs. 12 and 14. On
the other hand, QUAREM and UBAR approaches that work based on plug-in times prediction and
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Fig. 15. Comparison of average QoE for five different resource management techniques while considering
erratic charging patterns and starting the day at different initial battery level (%).
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battery life expectation behave differently from these approaches. While QUAREM was able to
adapt very well with a higher average QoE value compared to DF, UBAR and PS at 100 % and 90 %
initial battery levels, it is slightly outperformed by the DF approach at 80 %, 70 % and 60% initial
battery levels due to the impact of the erratic user behaviour on the resource management strategy.
This is because, at these initial battery levels (80 %, 70 % and 60 %), the energy demand is predicted
to be greater than the remaining energy for the predicted plug-in time, and thus, the QUAREM
approach enforces frugal resource management to ensure that the remaining energy meets the
expected battery life of the user. However, at midday or anytime within the day (15:00, 12:00 and
16:00) when the user randomly plugs in the device to charge, that extra energy is considered and
optimal management (optimum cap, 𝜙) is enforced since the energy demand prediction is done at
each time step. Meanwhile, the plug-in time will not be affected because the approach is configured
to acknowledge plug-in at the end of the day rather than multiple charging within the day. In
contrast, UBAR shows a lower average QoE compared to QA, DF and QUAREM approaches for
the scenario considered, however, if the random charging was done at SOC level > 70 %, UBAR
outperforms DF approach. This is because the strategy involves relaxing the QoE whenever the
SOC is < 70 % and plug-in is not predicted, which in this case occurs randomly, and thus, hampering
the prediction accuracy.
In summary, despite the erratic charging pattern, QUAREM is able to maintain a higher QoE

value > 88 %, which outperforms UBAR and PS in all the scenarios. This indicates that QUAREM
can adapt with comparable average QoE despite erratic user behaviour.

5.4.2 Scalability to other portable electronics (hardware and software). Although smartphone is
the platform that QUAREM was experimented on, there is no reason this would not work on
laptops, tablets and other general-purpose mobile computing platforms since, in principle, we need
a device with a battery whose discharge is variable based on the user behaviour and input, and
some ability to control the power consumption dynamically. Also, some specialise devices like
Kindle and battery-powered smartwatches will still be applicable. But when it comes to specialised
electronic devices that do not meet these requirements because they are carefully designed to
optimise energy consumption for a specific task, QUAREM might not scale.

The OS provides the support required for the control; as long as it provides those functionalities,
it is scalable. The more heterogeneous the system is, the more complex the problem becomes, and
more dimensions are for managing it, which our approach will also apply. Even though different
memory architectures will impact the power savings, it is still applicable unless there is a change in
the relationship between the CPU frequency and the power consumption. Likewise, the approach
will also scale with single or multi-core architectures without GPU.

5.5 Overhead
5.5.1 Runtime overhead. The runtime overhead of the proposed QUAREM approach depends on
the duration of the plug-in time and the time taken to complete computations such as updating the
model and reconfiguring of the DVFS settings at each time step before the next plug-in activity.
Since the model is less compute-intensive as it is only updated with the most recent value for the
prediction, the computation and configuration are done quite quickly. At each time step, on average,
updating the model, the predictions and DVFS reconfiguration take 400ms. Considering the entire
plug-in time of ≈ 15 h on average with 180-time steps (5 min interval), the total timing overhead is
72 s, which is only 0.13 % of the entire plug-in time. The entire implementation has small memory
footprint with less than 1% computational overhead.

We also observed the CPU utilisation with the help of Snapdragon profiler [32], which is a tool
that allows system information such as power, processing elements, memory, thermal and network,
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to be captured and analysed in real-time. We monitor the system usage with and without our
approach running to determine the overhead. We observed an average of less than 0.5 % increase in
total CPU utilisation, which is also quite low. This is because the firmware is allowed to manage the
frequency switching, thus making the switching overhead, not more than usual. This shows that
QUAREM can be efficiently used to maximise QoE while meeting the user’s expected battery life.
For the energy consumption, an exact value can not be given because the experimental results

measure the actual energy consumption, and therefore any overheads are inherently included.
However, this is < 1% of the entire battery usage until plug-in as it is not even captured by the
power monitoring system within the mobile phone. Comparing these results with existing work
such as UBAR [52], QUAREM compares favourably as similar results are obtained with improved
average QoE.

5.5.2 Offline overhead. The offline profiling time consists of the times taken to determine the
optimum frequency cap, 𝜙 , and the various efficient frequency caps, 𝜖 , for the range of 𝛿 values to
achieve the desired user’s battery life expectation. This time depends upon the number of iterations
considered and the time for the productive task of an application to be completed, which mostly
varies. In our case, we consider four popular applications, which takes ≈ 68–120 s for a productive
task to be completed for each application. We also considered two-step size frequency starting
slightly below the mid-frequency up through to the highest frequency of the CPU core with ≈ 150
runs (iterations) per application. The whole offline profiling takes ≈ 146 ℎ𝑜𝑢𝑟𝑠 (≈ 6 𝑑𝑎𝑦𝑠), which is
given by: no. of applications × average time taken × no. of runs × no. of different frequencies. Since
it is a one-time process whose benefit leads to maximization of user’s QoE as earlier shown, it is
suitable to be employed.

6 CONCLUSIONS
This paper has explored a QoE-aware adaptive resource management technique, QUAREM, for
mobile MPSoC platforms. Firstly, a study on user energy usage pattern and plug-in time is conducted.
The analysis revealed wide variation in plug-in times and usage patterns by users. Thus, a prediction
model was built and used to maximise the QoE by balancing the QoS and the user desired battery
life. Experimental evaluation on Google pixel 3 smartphone for different initial battery levels has
shown that our approach can be used to achieve improved battery life and QoE. The results also
show that QUAREM achieves averaged QoE improvement when compared with the state-of-the-art
focusing on maximising QoE, and thus QUAREM illustrates the benefit of considering user plug-in
time and energy requirement in maximising QoE. Our future work will involve getting more diverse
user groups to evaluate our data and testing the app with a diverse set of live users. We will also
consider tuning the hyper-parameters online to factor in significant differences in usage patterns
(such as vacation, breaks, etc.) over time or at different times in the year.
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