
A Shuttle-Efficient Qubit Mapper for Trapped-Ion
Quantum Computers

Suryansh Upadhyay
School of EECS

Pennsylvania State University
University Park, PA

sju5079@psu.edu

Abdullah Ash Saki
Zapata Computing

MA, USA
axs1251@psu.edu

Rasit Onur Topaloglu
IBM Corporation

Hopewell Junction, NY
rasit@us.ibm.com

Swaroop Ghosh
School of EECS

Pennsylvania State University
University Park, PA

szg212@psu.edu

Abstract—Trapped-ion (TI) quantum computer is one of the
forerunner quantum technologies. However, TI systems can
have a limited number of qubits in a single trap. Execution
of meaningful quantum algorithms requires a multiple trap
system. In such systems, the computation may frequently involve
ions from two different traps for which the qubits must be
co-located in the same trap, hence one of the ions needs to
be shuttled (moved) between traps, increasing the vibrational
energy, degrading fidelity, and increasing the program execution
time. The choice of initial mapping influences the number of
shuttles. The existing Greedy policy counts the number of gates
occurring between each pair of qubits and assigns edge weight.
The qubits with high edge weights are placed close to each
other. However, it neglects the stage of the program at which
the gate is occurring. Intuitively, the contribution of the late-
occurring gates to the initial mapping reduces since the ions
might have already shuttled to a different trap to satisfy other
gate operations. In this paper, we target this gap and propose
a new policy especially for programs with considerable depth
and high number of qubits (valid for practical-scale quantum
programs). Our policy is program adaptive and prioritizes the
gates re-occurring at the initial stages of the program over late
occurring gates. Our technique achieves an average reduction
of 9% shuttles/program (with 21.3% at best) for 120 random
circuits and enhances the program fidelity up to 3.3X (1.41X on
average).

I. INTRODUCTION

Quantum Computing (QC) exploits phenomena such as
superposition, entanglement, and interference to efficiently
explore exponentially large state spaces and compute solu-
tions for certain classically intractable problems. Application
domains of QC include machine learning [1], security [2],
drug discovery [3], computational quantum chemistry [4] and
optimization [5]. On one hand, researchers are proposing
new quantum algorithms to speed up computation, while on
the other hand, various technologies like superconducting,
trapped-ion (TI), and photonics are also being studied to
design efficient quantum bits or qubits. Two of the forerunner
qubit technologies are superconducting qubits [6] and trapped-
ion (TI) qubits [7]–[9].

TI qubit offers several advantages such as perfectly identical
qubits , long coherence times, and all-to-all connectivity
among qubits [10], making them one of the most promising
technology candidates for building NISQ devices. Several
companies such as IonQ and Honeywell are pursuing this tech-
nology. Recently, Honeywell reported a trapped-ion system

with a high quantum volume of 1024 [12]. Quantum volume
is a metric introduced by IBM to measure the overall capability
and performance of a quantum computing system regardless
of technology [13]. Various TI hardware systems [14], [15] are
also commercially available through quantum cloud services
such as Honeywell, AWS Braket, and Microsoft Azure.

A major hurdle in realizing large TI systems is confining
many ions in a single trap as it decreases the spacing between
ions, making it challenging to pulse a qubit using laser
controllers selectively. Moreover, the gate time becomes slow,
which results in longer program execution time. Therefore, the
pathway to scalability in TI systems involves multiple inter-
connected traps. However, in a multi-trap system, computation
is sometimes required on data from ions situated in different
traps. For such cases, one ion needs to be shuttled (moved)
from one trap to another so that the ions are co-located and
the gate operation can be performed. A compiler adds shuttle
operations to a quantum program to satisfy the inter-trap
communication, and the shuttle operation increases program
execution time and degrades quantum gate fidelity. Therefore,
it is essential to minimize the number of shuttle operations.
Fig. 1a shows a simplified 2-trap system interconnected by a
shuttle path. Here, we assume that each trap can accommodate
a maximum of 4 ions, i.e., trap capacity equals 4 per trap.

To scale up TI technology for near-term applications, a
modular and scalable architecture called the Quantum Charge
Coupled Device (QCCD) is proposed [18]. An extensive
architectural study for multi-trap trapped ion systems has been
reported in [19] where a compiler and a simulator has been
developed for such systems with experimentally calibrated
values. The initial mapping entails the assignment of logical
qubits from the program to the traps and the relative position
of qubits inside a trap. It is essential to have an optimum initial
mapping as it influences the total number of shuttles during
the program execution. For example, if we randomly map 2
logical qubits from the program with the highest number of
gates between them in different traps, there will be an increase
of shuttles between the two traps compared to the case when
they were mapped together in the same trap. A good initial
mapping policy thus tries to place ions with frequent gates
together so that communication can be minimized.

A Greedy mapping policy [19] has been proposed for the

1

ar
X

iv
:2

20
4.

03
69

5v
1

 [
qu

an
t-

ph
]

 7
 A

pr
 2

02
2

initial mapping (elaborated with an example in Section III)
where a graph is created for the program with qubits as nodes
and gates between qubits as edges. An edge weight is assigned
to a qubit pair depending on the frequency of occurrence for
the gate between them. It maps the edges in the descending
order of the weight to place ions with frequent gates together.
However, it does not consider the gate position in the program
and program-specific parameters like the number of qubits,
gates, and depth. For instance, considering a program with
1000 2-qubit gates, a gate occurring at the 900th instance
intuitively, won’t contribute much to the initial mapping (ions
might have already shuttled to a different trap to satisfy other
gate operations) as the one occurring at the 10th instance.

Various initial qubit mapping heuristics have been exten-
sively reported for superconducting qubits [22] [23], however
literature lacks work on TI qubit mapping policy which is
fundamentally different; this is a technical gap we target in this
paper. Superconducting qubits tend to interact only with their
nearest neighbors, whereas trapped ions can easily interact
with several other ions but only if they are within the same
trap, and through costly shuttles if they are in a different trap.
For superconducting qubit systems, qubit-mapping algorithms
explicitly attempt to minimize the amount of swap gates
employed, also considering other parameters such as two-qubit
gate error rates, single-qubit error rates, and execution time.
On the other thand for TI qubits, as their operations are less
prone to errors [24] and qubits have better connectivity within
the trap, the mapping heuristics aim to minimize the number
of shuttles between the traps.

In this paper, we present an efficient initial qubit mapping
heuristic to target the inefficiency in the Greedy mapping
policy. Our basic idea is to attenuate the weight of late
occurring gates in the program. We explore three different
edge weight allotment heuristics, i.e., step, linear, and de-
cay. For example, the linear edge weight policy reduces the
weight of the gate linearly with increasing number of stages.
Based on the intuition developed from the above explorations,
we propose an optimized initial qubit mapper based on a
penalizing approach which assigns negative weight to the
late occurring gates. The proposed policy considers program-
specific parameters such as, number of qubits, number of gates,
and depth, making it more custom for the program.

The rest of the paper is organized as follows: Section
II describes the background for quantum computing and TI
systems. Section III presents the proposed initial mapper
heuristics. Section IV compares the Greedy mapper with the
proposed heuristics. Finally, we conclude in Section V.

II. BACKGROUND

In this section, we discuss the basics of a quantum computer,
TI systems, and the terminologies used in this paper.

A. Qubits

Qubits are the building block of a quantum computer that
store data (i.e., |0〉 and |1〉) as various internal states. Due to

quantum superposition property, a qubit can be in both |0〉 and
|1〉 simultaneously unlike a classical bit which can either be
0 or 1. Hence, an n-qubit system can represent all 2n basis
states simultaneously rather than a classical n-bit register in
exactly one of the 2n states. A qubit state is represented as
a ψ = a |0〉 + b |1〉 where a and b are complex probability
amplitudes of states |0〉 and |1〉, respectively. Measurement
collapses the qubit to one state and returns classical bits 0 or
1 with probabilities |a|2 and |b|2, respectively.

B. Quantum Gates

Computation in quantum systems is performed by ma-
nipulating the information stored in the qubits. The gates
transform the qubit amplitudes to get the desired output. Gates
are realized using pulses such as radio frequency (RF) and
laser pulses. The gates are reversible and are mathematically
represented by unitary matrices. In a QC program, a sequence
of gates is executed on a set of appropriately initialized qubits.
At present, physically realized gates in TI systems are 1-
qubit and 2-qubit. For example, the IonQ TI system offers 1-
qubit GPI, GPI2, and GZ gates and 2-qubit Mølmer–Sørensen
(MS) [20], [21] gate. Fig. 1(b) illustrates a program with 2-
qubit MS gates.

C. Gate Fidelity

Quantum gates in existing quantum computers are erroneous
due to imperfect qubit control, errors in pulse implementation,
and external interference. Therefore, the gates have finite
and non-negligible error rates (ε) during execution. The gate
fidelity (F) is usually defined as the complement of the error
rate. A lower gate fidelity will introduce more errors in the
output and can completely decimate the result.

D. Gate Dependency Graph and Depth of a Program

A quantum program can be converted to a gate dependency
graph, i.e., a directed acyclic graph (DAG). The dependency
graph consists of layers. Gates in a layer are independent but
depend on one or more gates from the previous layers. The
program’s depth is obtained from the number of layers of
the gate dependency graph. For example, Fig. 1c shows the
dependency graph for the sample program in Fig. 1b. Gates g5
and g6 are independent of each other in Layer 1 as they operate
on different sets of qubits. However, g5 and g6 depend on g1
and g3, respectively, which means the former gates cannot be
executed before g1 and g3. The depth for the sample program
is six, which is calculated from the number of layers.

E. Trapped Ion QC Systems

1) Traps and Ion Chain: Trapped ion QC system are
implemented by trapping ionized atoms like Y b or Ca be-
tween electrodes using electromagnetic field [15]. Data |0〉
and |1〉 are encoded as internal states such as hyper-fine or
Zeeman states of the ions. Using Fig. 1a, we illustrate various
components of a 2-trap TI system. The ions are organized
in form of an ion chain inside a trap. Trap capacity is the
maximum number of ions that a trap can accommodate. The

2

Fig. 1. (a) A two trap TI system with three qubits each. (b) A sample quantum
program consisting of ten 2-qubit Mølmer–Sørensen (MS) [20], [21] gates.
(c) Gate dependency graph of the sample program.

traps are connected by a shuttle path which allows movement
(shuttle) of an ion from one trap to another if needed. During
the initial allocation of ions, a part of the total trap capacity
is loaded with ions and the remaining capacity (termed as
communication capacity) is kept unoccupied to allow for
shuttled ions from other traps.

2) Shuttle Operation: A 2-qubit gate between ions from
different traps requires a shuttle. For example, in Fig. 1b, the
1st gate in the program MS q[0], q[1] involves ions from
the same trap (T0) and can be executed directly. However,
the 3rd gate MS q[2], q[3] involves ions from different traps.
Therefore, a shuttle operation is needed to bring both ions into
the same trap. For the shuttle operation (Fig. 2), first, ion-2 is
split from Chain–0 and shuttled from T0 to T1, adding energy
to the ion. Then, ion-2 is merged to the Chain-1. Finally, gate
MS q[2],q[3] can be executed as the ions are in the same trap
(T1). The merge operation increases the vibrational energy (n̄)
of chain-1 affecting the gate fidelity as follows:

F = 1− Γτ −A(2n̄+ 1) (1)

where, (τ) is gate time, (Γ) is trap heating rate and (n̄) is the
vibrational energy. With increased vibrational energy n̄, the
subsequent gate operations on chain-1 will experience lower
gate fidelities per Eq. 1.

F. Initial Qubit Mapping

The initial mapping refers to mapping of logical qubits to
physical traps and their relative positions inside a trap for the

Fig. 2. Shuttle steps to move ion-2 from trap T0 to trap T1.

first time. It is essential to have an optimal mapping logic
as initial mapping influences the total number of shuttles. For
example, the program qubits (0 to 5) from the sample program
in Fig. 1b are initially mapped as T0: [0, 1, 2], T1: [3, 4, 5]
considering a Greedy allocation [19], [20] (detailed below).
The program execution will start with this allocation and the
mapping will be updated based on the number of shuttles. In
this work, we list the limitation of the Greedy mapper and
propose a heuristic to reduce the net number of shuttles for
various benchmarks compared to the Greedy mapper.

1) Greedy Mapping Policy: In the Greedy policy, the qubits
are mapped to the physical traps by considering the number
of gates between the qubit pair. A quantum program can
be modeled as a graph where each node represents a qubit,
and an edge between two qubits represents a 2-qubit gate.
Thus, the edge weight represents the number of 2-qubit gates
between a pair of qubits. The Greedy policy maps the edges
in the descending order of the weight, placing edges with high
weight first, allowing qubits with a high number of gates close
together, i.e., in the same trap. The basic weight assignment
algorithm for Greedy policy is illustrated in Algorithm 1.It
starts by placing the highest weighted edge in one of the
traps. Next, for each edge with one mapped and one unmapped
endpoint, the algorithm maps the unmapped qubit to the adja-
cent position, minimizing the total distance between the qubit
and its neighbors. The process is repeated for each unmapped
edge in the descending order of the edge-weight. The Greedy
mapping policy can be explained using the sample program
in Fig. 1b. The edge weights of the program are, wt(0,1) =
4 (as the MS q[0],q[1] gate appears 4 times throughout the
program), wt(1,2) = 2, and wt(4,5) = wt(2,3) = wt(3,5) =
wt(4,2) = 1. Therefore, ions 0 and 1 are allocated first followed
by ion 2, and finally, ions 3, 4, and 5.

2) Limitations of Greedy mapper: The Greedy policy as-
signs a constant edge weight for every occurrence of a gate
between two qubits regardless of the position of the gate in
the program. A gate appearing at the beginning of the program

3

Algorithm 1: Allocation of edge weight using the
greedy policy

Input: gate map
Output: edge weights

1 for gate ∈ gate map do
2 if qubit edge weight ∈ edge register then
3 qubit edge weight += 1;
4 else
5 qubit edge weight = 1;
6 end
7 update edge register with qubit edge register;
8 end

is assigned the same edge weight as the one appearing at the
end. In programs with considerable depth and many qubits,
the initial mapping using this policy is not optimum. Hence,
leaves the scope of further improvement in the number of
shuttles. Intuitively, the gates appearing toward the end of a
deep program should not determine the initial mapping since
the qubits might already have shuttled to a different trap.

III. OPTIMIZED INITIAL MAPPER HEURISTICS

A. Basic Idea

We propose a mapping heuristic where edge weights are
assigned based on the number of gates between qubits and
considering the stage of the program where the gate appears.
We also consider program-specific parameters such as, the
number of qubits, depth of the program (derived from the
gate dependency graph), and the total number of gates while
assigning edge weights. Priority is given to the gates re-
occurring at the earlier stages of the program.

B. Edge Weight Function

We propose to improve the logic by assigning edge weights
for any re-occurrence of a gate using a function rather than
a constant value. However, the first occurrence of a gate in
the program will be assigned the same constant value similar
to the Greedy mapper policy. This process can be illustrated
using the Algorithm 2. Various types of decaying functions
explored in this paper are explained in the following section.
Here cnt is just a variable used to implement a counter loop;
it will take values from 0 to (number of gates in the program)
- 1. For the first occurrence of a gate, edge weight will be
assigned a constant value(equal to the total number of gates
in the program), followed by an increment in edge weight per
the decaying function being used for any re-occurrence of the
gate later in the program. We explain this algorithm using a
sample program and a sample function in Example 3.1.

Our initial compilations are carried out using three different
functions. By studying the effect of these functions on the
number of shuttles, we arrive at our optimized initial mapping
heuristic discussed later in this section.

Algorithm 2: Optimized edge weight heuristic
Input: gate map
Output: edge weights

1 for gate ∈ gate map do
2 if cnt ≤ # of gates then
3 if qubit edge weight ∈ edge register then
4 qubit edge weight += decaying

function{f(cnt)};
5 cnt += 1;
6 else
7 qubit edge weight = total # of gates;
8 cnt += 1;
9 end

10 end
11 update edge register with qubit edge register;
12 end

1) The Decaying Step Function: We divide our program
into n (n being an empirical parameter) equal blocks for
simplicity. For each gate in a block, we assign a constant edge
weight. The edge weight is assigned to the block in the form of
a decaying staircase function, i.e., the first block is assigned a
constant weight ‘n’, followed by ‘n-1’ for the next block, and
so on. The algorithm in Fig. 3 is explained using the decaying
step function in the following example.

Example 3.1: We consider a sample program with 10
MS gates (Fig. 3a) and divide it into two equal parts with
five gates each. Any re-occurring gate in the first (second)
block is assigned an edge weight of 2 (1). The function
can be graphically shown in Fig. 3b. The first occurrence
of the gate in the program irrespective of the block will be
assigned a constant value equal to the number of gates in the
program. The edge weights of the program are as follows:
wt(0, 1) = 10 + 1 + 1 + 1 = 13 (as the MS q[0],q[1]
gate appears 4 times throughout the program, the three re-
occurrences occur at the second block hence this block gets
assigned edge weight of 1), wt(1, 2) = 10 + 1 = 11 , and
wt(4, 5) = wt(2, 3) = wt(3, 5) = wt(4, 2) = 10.

Fig. 3. (a) A sample quantum program consisting of ten 2-qubit gates. (b) A
decaying step function for the sample program.

2) Linear Decay Function: One of the major drawbacks
of using the step function becomes evident for programs with
many gates where the blocks themselves contain a large num-

4

ber of gates with the same edge weight without considering
the order in which the gates occur. For example, consider a
program of 1000 2-qubit gates. For simplicity, we divide the
program into 10 equal blocks with 100 gates each. Therefore,
the same constant edge weight will be allotted for any re-
occurrence for the 100 gates in a specific block. Within a
span of these 100 gates, this function does not prioritize the
earlier gate re-occurrences within the block. We circumvent
this problem by using continuous decaying functions. Using
a continuous linearly decaying function, we assign any re-
occurrence of a gate a linearly reducing edge weight value
as we go deeper into the program to prioritize the gates that
re-occur at the start of the program. We varied a (empirical
parameter) between 0 to 1 to compare the number of shuttles
with the Greedy mapper for various benchmark programs and
random circuits (mentioned in Section IV). The edge weight
in linear function can be modeled as:

Wlinear = G− (a× cnt)

Where G is the number of gates, a = 0.1 (empirically
determined) and cnt varies between 0 and (number of gates
in the program - 1).

3) Exponential Decay Function: The motivation behind
using an exponential decay function is to get a sharp decrease
in the edge weight as we go deep into the program. We tune
empirial parameter a to experimentally determine an optimal
solution for the least number of shuttles across all benchmark
programs. The edge weight can be modeled as

Wexponential = G× a−cnt/G

Where a = 2 (empirically determined). Other definitions
remain same as before.

C. Penalized Linear Decay Function

All the three functions mentioned above assign an edge
weight (though reduced) as we go deeper into the program.
However, in penalized approach, we assign a negative weight
to a gate re-occurrence after a certain point in the program i.e.,
we penalize any re-occurrence of a gate after a certain point
in the program. Intuitively, the qubits with gates occurring
at a later stage in a program will need to shuttle out more
often if mapped predominantly by the weights determined by
the early occurring gates. Hence, such qubits would require
a different mapping negating the weights determined by the
early occurring gates. The proposed function also considers the
program parameters such as, the total number of gates, depth
of the program, number of qubits, and symmetric/asymmetric
nature of the program. We define a symmetric program to have
a fixed repetitive occurring pattern of gates throughout the
program. The edge weight is modeled as

WP = G− (S ×Q×D/G)× cnt

Where G is the number of gates, Q is the total number of
qubits, D is the depth of the circuit, and S is the symmetry

TABLE I
REDUCTION IN THE NUMBER OF SHUTTLES

Benchmark Qubits Gates Greedy This Work ∆(↓)
SquareRoot 78 1028 355 348 7
Supremacy 64 560 233 217 16

QAOA 64 1260 975 975 0
QFT 64 4032 196 196 0

factor. For symmetric circuits S takes the value 0, else 1.
We define a symmetric program as the one where each gate
will have the same number of re-occurrences and at the same
relative time in the program when compared to other gates.

Fig. 4. Graphical representation of a Linear Decay function for implementing
the penalizing policy.

The edge weight allotment policy using this heuristic can
be explained using Fig. 4. A program is divided into two
parts by the point B. Any re-occurrence of a gate before that
point will be assigned a positive edge weight though small in
magnitude compared to a preceding gate as per the function.
Any re-occurrence of a gate post point B in the program will
be penalized by assigning a negative weight. The point B for
a program depends on an empirically determined function of
number of gates, depth, symmetry, and number of qubits.

IV. EVALUATION AND RESULTS

A. Experimental Setup

1) Hardware Model: We use the linear TI hardware model
as the one used in [19]- [20]. We consider the “L6” trap
topology [19] where six traps are connected linearly. For each
trap, initially, 15 ions can be loaded.

2) Benchmark Programs: Considering the baseline
capability for 50-100 qubit NISQ systems, we selected
applications with 60-80 qubits and 500-4000 two-qubit gates
[19]. Our benchmark suite includes circuits from Google’s
supremacy experiment, quantum approximate optimization
algorithm (QAOA), quantum Fourier transform (QFT), a
quantum arithmetic circuit Square Root [19]. To exapnd the
benchmark suite, we also test for 120 randomly generated
circuits which covers a wide range of communication patterns,
number of qubits, number of gates and depths.

5

B. Results

1) Shuttle Reduction: Table I shows the reduction in the
number of shuttle operations using the new heuristics com-
pared to the Greedy mapper for the benchmarks circuits
especially for square root and supremacy. For symmetric
programs such as, QAOA and QFT circuits, our algorithms still
show similar performance as that of Greedy as expected. The
basic idea of prioritizing gates based on their re-occurrence
becomes irrelevant for a symmetric program as each gate will
have the same number of re-occurrences and at the same
relative time in the program. Our program has a Symmetry
factor to compensate for that. We also test our policy using
120 randomly generated circuits covering a wide variety of
programs with Qubits varying from ≈ (60 − 75), number
of gates between ≈ (900-2000), high depth, and diverse
communication patterns. Table II outlines the performance
of different decaying functions and our policy (with Greedy
policy being the baseline). We report the number of circuits
for which the number of shuttles are reduced and increased,
average reduction and increment in the number of shuttle
operations and net reduction in the number of shuttles for
the whole 120 random circuits. All three variants provide
net reduction in average number of shuttles however, the
penalizing function performs the best. Out of 120 circuits, we
observe a decrease in the number of shuttles for 100 circuits
with an average percentage decrease of ≈9% for the penalizing
weighting function.

2) Program fidelity improvement: Shuttle operation in-
creases vibrational energy n̄, of an ion-chain and degrades
gate fidelity as per Eq. 1. As our proposed policies reduces
shuttles, it curbs motional mode resulting in the improved
gate and overall program fidelity. For the random circuits, the
exponential and linear decay functions provide 10% and 6%
fidelity improvement, respectively (Table II). The best gain of
1.41X on average (3.3X at best) is achieved with the penalized
approach due to reduction in the net shuttle operations.

3) Cost and Limitations: All three variants provide net
reduction in average number of shuttles. However, even for
our best performing approach using the penalizing function
we have seen a minuscule increase in shuttles for 20 random
circuits. For symmetric programs such as, QAOA and QFT
circuits, our algorithms show similar performance as that
of Greedy mapping. Our mapping optimization for shuttle
reduction does not show any increase in compilation time
when compared to the greedy mapping policy as shown in
Table III.

V. CONCLUSION

In this paper, we present an efficient initial mapper for
multi-trap TI quantum computers. Our technique achieves an
average reduction of 9% shuttles/program (with 21.3% at best)
for 120 random circuits and enhances the program fidelity up
to 3.3X (1.41X on average) compared to the state-of-the-art
Greedy mapper. The proposed policy also considers program-
specific parameters such as, number of qubits, number of gates,

TABLE II
ANALYSIS OF 120 RANDOM CIRCUITS.

BASELINE IS THE GREEDY MAPPER

Parameters Exponential Linear Penalized
(a = 2) (a = 0.1)

of ckts w/less shuttles 73 77 100
Avg. reduction in shuttles 46.52 50.22 62.29
of ckts w/more shuttles 47 43 20
Avg. increase in shuttles 38.86 43.60 29.55
Net reduction in shuttles 13.75 16.6 56.88

Net % reduction in shuttles ≈ 1.8% ≈ 2% ≈ 9%
Avg. net fidelity improvement 1.1X 1.06X 1.41X

Max. fidelity improvement 1.8X 2.67X 3.3X

TABLE III
COMPILATION TIME OVERHEAD

Benchmark Compile Time(sec) Compile Time(sec) ∆(↑)
(Penalised) (Greedy)

SquareRoot 7.81 8.14 -.33
Supermacy 3.26 3.55 -.29

QAOA 19.18 19.25 -.07
QFT 20.82 20.91 -.09

and the depth for the initial qubit mapping, making it more
holistic and efficient.

REFERENCES

[1] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neu-
ral networks,” Nature Physics, 2019. [Online]. Available: https:
//doi.org/10.1038/s41567- 019- 0648- 8.

[2] K. Phalak, A. Ash-Saki, M. Alam, R. O. Topaloglu, and S. Ghosh,
“Quantum PUF for Security and Trust in Quantum Computing,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, pp.
1–1, 2021. [Online]. Available: https://doi.org/10.1109/JETCAS.2021.
3077024.

[3] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum com-
puting for drug discovery,” IBM Journal of Research and Development,
vol. 62, no. 6, pp. 6–1, 2018.

[4] A. Kandala,et al “Hardware-efficient variational quantum eigensolver for
small molecules and quantum magnets,” Nature, vol. 549, Sep 2017.

[5] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” 2014. [Online]. Available: https://arxiv.org/abs/
1411.4028.

[6] J. Majer, et al, “Coupling superconducting qubits via a
cavity bus,” Nature, vol. 449, Sep 2007. [Online]. Available:
http://dx.doi.org/10.1038/nature06184.

[7] Honeywell. Oct. 2020. URL https:
//www.honeywell.com/us/en/news/2020/10/get- to- know- honeywell-
s- latest- quantum- computer- system- model- h1.

[8] S. Debnath,et al, “Demonstration of a small programmable quantum
computer with atomic qubits,” Nature, vol. 536, Aug 2016. [Online].
Available: http://dx.doi.org/10.1038/nature18648.

[9] T. P. Harty, et al, “High-fidelity preparation, gates, memory, and readout
of a trapped-ion quantum bit,” Phys. Rev. Lett., vol. 113, p. 220501, Nov
2014.

[10] K. Wright, et al., “Benchmarking an 11-qubit quantum computer,”
Nature communications, vol. 10, no. 1, pp. 1–6, 2019.

[11] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[12] https://www.honeywell.com/us/en/news/2021/07/honeywell-sets-
another-record-for-quantum-computing-performance

[13] https://www.honeywell.com/us/en/news/2020/03/quantum-volume-the-
power-of-quantum-computers

[14] J. Pino, et al. Demonstration of the trapped-ion quantum ccd computer
architecture. Nature, 592(7853):209–213, 2021.

[15] K. Wright, et al. Benchmarking an 11-qubit quantum computer. Nature
com- munications, 10(1):1–6, 2019.

6

http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1038/nature18648

[16] https://techcrunch.com/2020/10/01/ionq-claims-it-has-built-the-most-
powerful-quantum-computer-yet/

[17] Jungsang Kim. Trapped Ions Make Impeccable Qubits. DOI:
10.1103/Physics.7.119

[18] D. Kielpinski, et al, “Architecture for a large-scale ion-trap quantum
computer,” Nature, vol. 417, no. 6890, pp.709–711, 2002.

[19] P. Murali, et al. Architecting Noisy Intermediate-Scale Trapped Ion
Quantum Computers. In Proceedings of the ACM/IEEE 47th Annual
International Symposium on Computer Architecture, ISCA ’20, page
529–542. IEEE Press, 2020. ISBN 9781728146614.

[20] IONQ. Best Practices - Native Gates, May 2021. URL https:
//ionq.com/best- practices.

[21] K. Mølmer and A. Sørensen. Multiparticle Entanglement of Hot Trapped
Ions. Phys. Rev. Lett., 82:1835–1838, Mar 1999.

[22] L. Lao, D. Manzano, H. van Someren, I. Ashraf, and C. G. Almudever,
Mapping of quantum circuits onto nisq superconduct- ´ ing processors,
arXiv: Quantum Physics (2019).

[23] M. Bandic, et al, On structured design space exploration for mapping
of quantum algorithms,2020 XXXV Conference on Design of Circuits
and Integrated Systems (DCIS) (2020) pp. 1–6.

[24] Brown,et al. (2011). Single-qubit-gate error below 10-4 in a trapped ion.
Physical Review A - PHYS REV A. 84. 10.1103/PhysRevA.84.030303.

7

	I Introduction
	II Background
	II-A Qubits
	II-B Quantum Gates
	II-C Gate Fidelity
	II-D Gate Dependency Graph and Depth of a Program
	II-E Trapped Ion QC Systems
	II-E1 Traps and Ion Chain
	II-E2 Shuttle Operation

	II-F Initial Qubit Mapping
	II-F1 Greedy Mapping Policy
	II-F2 Limitations of Greedy mapper

	III Optimized Initial mapper Heuristics
	III-A Basic Idea
	III-B Edge Weight Function
	III-B1 The Decaying Step Function
	III-B2 Linear Decay Function
	III-B3 Exponential Decay Function

	III-C Penalized Linear Decay Function

	IV Evaluation and Results
	IV-A Experimental Setup
	IV-A1 Hardware Model
	IV-A2 Benchmark Programs

	IV-B Results
	IV-B1 Shuttle Reduction
	IV-B2 Program fidelity improvement
	IV-B3 Cost and Limitations

	V Conclusion
	References

