
RAFeL- Robust and Data-Aware Federated Learning-inspired
Malware Detection in Internet-of-Things (IoT) Networks

Sanket Shukla
George Mason University
FairFax, Virginia, USA
sshukla4@gmu.edu

Gaurav Kolhe
University of California Davis

Davis , California, USA
gskolhe@ucdavis.edu

Setareh Rafatirad
University of California Davis

Davis , California, USA
srafatirad@ucdavis.edu

Houman Homayoun
University of California Davis

Davis , California, USA
hhomayoun@ucdavis.edu

Sai Manoj PD
George Mason University
FairFax, Virginia, USA
spudukot@gmu.edu

ABSTRACT
Federated Learning (FL) is a decentralized machine learning in
which the training data is distributed on the Internet-of-Things
(IoT) devices and learns a shared global model by aggregating local
updates. However, the training data can be poisoned and manip-
ulated by malicious adversaries, contaminating locally computed
updates. To prevent this, detecting malicious IoT devices is very
important. Since the local updates are large because of the high
volume of data, minimizing the communication overhead is also nec-
essary. This paper proposes a “RAFeL" framework, comprising of
two techniques to tackle the above issues, (1) a robust defense tech-
nique and (2) a “Performance-aware bit-wise encoding" technique.
“Robust and Active Protection with Intelligent Defense (RAPID)" is
a defense system that detects malicious IoT devices and restricts the
participation of the contaminated local updates computed by these
malicious devices. To minimize communication cost, “Performance-
aware bit-wise encoding" selects the appropriate encoding scheme
for individual split bits based on their significance and effect on FL
performance. The results illustrate that the proposed framework
shows a 1.2-1.8 × higher compression and has an average accuracy
drop of 3% to 10%.

CCS CONCEPTS
• Security and privacy;

KEYWORDS
Malware Detection, Federated Learning, IoT

ACM Reference Format:
Sanket Shukla, Gaurav Kolhe, Setareh Rafatirad, HoumanHomayoun, and Sai
Manoj PD. 2022. RAFeL- Robust andData-Aware Federated Learning-inspired
Malware Detection in Internet-of-Things (IoT) Networks. In Proceedings
of the Great Lakes Symposium on VLSI 2022 (GLSVLSI ’22), June 6–8, 2022,
Irvine, CA, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3526241.3530378

This work is licensed under a Creative Commons
Attribution International 4.0 License.

GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9322-5/22/06.
https://doi.org/10.1145/3526241.3530378

1 INTRODUCTION
With the increasing number of IoT devices, the diversity in the
data experienced by the individual devices also increases due to
user interactions. Such diversity makes it challenging to deploy
data analysis techniques, including machine learning (ML) models
for automated tasks, including security challenges [6, 19], as data
experienced by individual devices differ in terms of samples and
distribution. Deploying one global ML model for all devices for data
analysis leads to under-fitting due to the diversity in the experienced
data. Similarly, deploying individual ML models for each device
for analyzing the captured data results in over-fitting. Therefore,
need to secure IoT devices against unseen traces and signatures of
malware, calls for a distributed ML technique that can efficiently
capture node-level variations yet is aware of patterns experienced
by other devices in the network.

The authors in [7] propose Federated Learning (FL) as an alterna-
tive technique for efficient and distributed ML. Federated learning
is collaborative machine learning in which the server generates a
shared global model with the help of a federation of participating
devices. The FL framework functions differently from the tradi-
tional distributed machine learning [8, 16] in terms of handling a
large number of participating devices, communication of local up-
dates, convergence to unified model, and non-uniform distributed
data distribution. In FL, all the training data is kept on local devices,
thus, disassociating the capability to learn from the need to store
and expose the data from the participating devices. The devices are
used as nodes performing computation on their local training data
to update a global model.

Despite FL being effective in terms of preserving privacy [7],
it poses two important challenges. Firstly, FL requires data to be
transmitted frequently to and from individual IoT devices, the com-
munication overhead is prohibitively high [1, 14], often leading to
energy-depletion of IoT devices. We did a case study demonstrat-
ing the energy consumption for various ML models with respect
to each round while performing federated learning. A round in
FL is a process of obtaining local updates from the participating
devices, updating the global model at the FL server, and sending
back the updated global model to the devices. Figure 1 illustrates
the energy consumption trend, which is almost linear in the case of
all the three classifiers. For IoT devices, this energy consumption
is considerably high. Thus, it is important to minimize the excess
energy consumption by IoT devices. Secondly, despite FL being

Poster Overview 1 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

153

https://doi.org/10.1145/3526241.3530378
https://doi.org/10.1145/3526241.3530378
http://secure-web.cisco.com/1YucB4RhldSEcv6fOJtFFH2L7fyCMCG-RocNaPM03eFeZ0I-xSLYcdvbpTAtMxLLCB0FoSK7ZzHQXs5SfBMJ1zYzS7KmOlRkXw5rjR_s0mZ9nRR5Pw5jh9gmG35TkjXMVgPFSIlXYzm8J1NKvDjbqu-v6R0aE14LmvazMcs12osw_9hBMawP0YEoenj_Otve_TS9Q5a4jNawX2eERBB2tDfoiW9x19IlqyqEQWE83dERxthWS-Ymvv2pnPG1gRi1fUTb3mSBouTBuNaLfb2Vx1eOlNINM1CFafunkxN2dPZyAzbwqJU7F9uRcUbQYHBGdaLvY9e2fSsBmSwhdt32R7Dr_bpkUCmr-fjhMyp37bUSC6f5PhwKOPEwTmEWfAfM6x7MpPZGZG5Kj_VBTK1fVYhXR3kJ9LkirAQiyrnmsWlMe_fdLw1ID00wbe4QFW2vnmwK_A6MJVgdpat_OpGcfUA/http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F
http://secure-web.cisco.com/1YucB4RhldSEcv6fOJtFFH2L7fyCMCG-RocNaPM03eFeZ0I-xSLYcdvbpTAtMxLLCB0FoSK7ZzHQXs5SfBMJ1zYzS7KmOlRkXw5rjR_s0mZ9nRR5Pw5jh9gmG35TkjXMVgPFSIlXYzm8J1NKvDjbqu-v6R0aE14LmvazMcs12osw_9hBMawP0YEoenj_Otve_TS9Q5a4jNawX2eERBB2tDfoiW9x19IlqyqEQWE83dERxthWS-Ymvv2pnPG1gRi1fUTb3mSBouTBuNaLfb2Vx1eOlNINM1CFafunkxN2dPZyAzbwqJU7F9uRcUbQYHBGdaLvY9e2fSsBmSwhdt32R7Dr_bpkUCmr-fjhMyp37bUSC6f5PhwKOPEwTmEWfAfM6x7MpPZGZG5Kj_VBTK1fVYhXR3kJ9LkirAQiyrnmsWlMe_fdLw1ID00wbe4QFW2vnmwK_A6MJVgdpat_OpGcfUA/http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F
http://secure-web.cisco.com/1YucB4RhldSEcv6fOJtFFH2L7fyCMCG-RocNaPM03eFeZ0I-xSLYcdvbpTAtMxLLCB0FoSK7ZzHQXs5SfBMJ1zYzS7KmOlRkXw5rjR_s0mZ9nRR5Pw5jh9gmG35TkjXMVgPFSIlXYzm8J1NKvDjbqu-v6R0aE14LmvazMcs12osw_9hBMawP0YEoenj_Otve_TS9Q5a4jNawX2eERBB2tDfoiW9x19IlqyqEQWE83dERxthWS-Ymvv2pnPG1gRi1fUTb3mSBouTBuNaLfb2Vx1eOlNINM1CFafunkxN2dPZyAzbwqJU7F9uRcUbQYHBGdaLvY9e2fSsBmSwhdt32R7Dr_bpkUCmr-fjhMyp37bUSC6f5PhwKOPEwTmEWfAfM6x7MpPZGZG5Kj_VBTK1fVYhXR3kJ9LkirAQiyrnmsWlMe_fdLw1ID00wbe4QFW2vnmwK_A6MJVgdpat_OpGcfUA/http%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F
https://doi.org/10.1145/3526241.3530378
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3526241.3530378&domain=pdf&date_stamp=2022-06-06

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

1 2 3 4 5 6

A
cc

u
ra

cy
 (

%
)

R
o
u
n
d
s

Energy consumption for CNN

Energy consumed (mJ) No. of rounds Accuracy (%)

108.25 mJ

153.71mJ

200.26 mJ

254.38 mJ

298.77 mJ
322.55 mJΔmJ ≈ 3 x

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

1 2 3 4 5 6

A
cc

u
ra

cy
 (

%
)

R
o
u
n
d
s

Energy consumption for KNN

Energy consumed (mJ) No. of rounds Accuracy (%)

27.81mJ

39.49 mJ

51.45 mJ

65.35 mJ

76.75 mJ

93.55 mJ

ΔmJ ≈ 3.5 x

0

10

20

30

40

50

60

70

80

90

100

0

50

100

150

200

250

300

350

1 2 3 4 5 6

A
cc

u
ra

cy
 (

%
)

R
o
u
n
d
s

Energy Consumption for LR

Energy consumed (mJ) No. of rounds Accuracy (%)

53.55 mJ

12.72 mJ 18.06 mJ
23.53 mJ

29.89 mJ
35.10 mJ

ΔmJ ≈ 4.5 x

Figure 1: Amount of energy to transfer data (model parameters)

resilient to random device drop-outs, [7] or garbage data sent to
the FL server during the update phase, an adversary who crafts and
manipulates the training data on IoT devices can severely degrade
the quality of the shared global model produced by the FL server
[17, 18]. Hence, it is crucial to devise a robust technique on the FL
server to withstand adversarial data manipulations by malicious
IoT devices that further influence’s the shared global model.

Two strategies to minimize the communication overheads, given
that FL is resilient to random or truncation errors, are: a) data
quantization [5]; and b) data encoding [5]. Data quantization refers
to reducing the precision of the data. Though prevalent and efficient,
this technique cannot reduce the precision beyond a specific limit
to ensure good performance. Lossy transformations (pruning, SVD)
[5] encode data by reducing the amount of information in the data,
and lossless encoding (Huffman, Z-RLC, ZVC) [5] encodes data by
increasing the density of information in its representation. However,
these techniques have been considered part of an encoding pipeline
rather than a stand-alone method.

The authors in [11] assume the existence of a global model is
generated from a trusted dataset and classify the training data as
malicious or benign based on its effect on the accuracy of this model.
However, a trusted dataset or golden model is impractical due to
inefficacy or inability to verify every device. On the other hand,
the defense against data manipulation attacks [11] needs access to
complete training datasets, thereby compromising user privacy and
security. In [9] authors propose to identify malicious training data
based on the label of their neighboring data values. This method
requires access to the entire training dataset. Hence, the existing de-
fenses are insufficient and cannot be re-purposed straightforwardly
to prevent data manipulation attacks in FL systems.

Therefore, securing IoT devices against malware and making FL
communication efficient and robust against malware-based data
manipulation attacks is of a major concern. This paper presents a
“RAFeL" framework which addresses the above mentioned issues
by introducing two novel techniques; (1) Performance-aware bit-
wise encoding - To reduce communication overheads in FL, we
deploy a lightweight lossless data-aware encoding technique that
encodes data with most appropriate lossless encoding technique
according to the bit sparsity and density, (2) RAPID: Robust and
Active Protection with Intelligent Defense - To mitigate the
data manipulations and tampering by malicious adversaries, we
integrate the RAPID defense mechanism, adding robustness by fil-
tering out and restricting the participation of malicious IoT devices
in FL and generating an error-free global model.

The results demonstrate that the proposed framework: (1) Pro-
vides a 1.2-1.8 × high compression rate compared to lossy and loss-
less encoding techniques, (2) Reduces the communication overhead

and (3) has an average accuracy drop of 3% to 10%, thus providing
robustness against data manipulation.

2 RELATEDWORK
To improvise and optimize the communication overhead in FL, in
[7] authors propose two ways to reduce the uplink communication
costs. The Structured updates directly learn an update from a re-
stricted space parametrized using a smaller number of variables,
and (2) Sketched updates learn a full model update and then com-
press it using a combination of quantization and random rotations
subsampling before sending it to the server. Although these meth-
ods reduce communication costs, they do not guarantee security
against malicious attacks that corrupt the training data. Addition-
ally, existing model compressions schemes such as [3] can reduce
the bandwidth necessary to download the shared global model. The
above-discussed method is not data-aware, which plays a critical
role and can lead to efficient compression. Data manipulation or
missing data in the FL can be handled by removing the outliers from
the training data [13] or, in the distributed setting, from the partic-
ipants’ models [2], or requiring participants to share the data for
centralized training [4]. All the above defenses need the defender
to inspect either the training data or the resulting models (which
leak the training data [10]. None of these techniques is applicable
in the case of FL, where user privacy and security are the primary
concern and prohibit users from explicitly sharing the raw infor-
mation. This work addresses the above shortcomings by proposing
“Performance-aware bit-wise encoding" and “RAPID" defense.

3 THREAT MODEL
We consider 𝑛 devices in the network. Each of these devices has
mutually exclusive local data . Among 𝑛 devices, we consider 𝑓
(𝑓 < 𝑛/2) devices to be compromised by the malware based data
poisoning attacks, i.e., around 10-30% of the devices are deemed
to be compromised. In each experiment, the attacker poisons the
training data of the device (which becomes a malicious device post-
attack), intending to influence the global model such that it classifies
a source data label (e.g., Virus) as a target data label (e.g., Benign).
The malicious device uses this poisoned training data to compute
the local updates from its local model. As an alternate, one can
assume that the data sent by the compromised local node to the
FL server is manipulated by the malware, eventually leading to a
low-performance global model.

4 PROPOSED FRAMEWORK
The overview of the proposed “RAFeL" framework is illustrated
in Figure 2a. “Performance-aware bit-wise encoding" technique is
outlined in Figure 2b and “RAPID" technique is shown in Figure 2c.

Poster Overview 1 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

154

Manipulated
and benign

local features

Analyze
local

features

Identify
indicative
features

Assign
susipicious
and clean
clusters

Identify
malicious
devices

Send local
features to
FL server

Error free
global
model

RAPID - Defense mechanism

ML model

ML model

ML model

Lossless
encoding

Lossless
encoding

Lossless
encoding

...

Lossless
encoding

RAPIDDecoder

w1'

'w3
'wN

'w2 Update

...

ML
models

Global model

ML model

FL-Server

Channel encoding

device1

device3

device2

devicen

...

On-device training to produce
 local features

Local data

wn

w3

w2

w1

Local features

Channel encoding

Reduced
precision and

contracted data

B0 B1 B2 B3 B4 B5 B6 B7

B0 B1 B2 B3 B4 B5 B6 B7

Local features
Full precision

 data

Channel split

Huffman
Z-RLC
ZVC

...

Lossless
encoding

Decoder

(a)

(b)

(c)
Figure 2: (a) Overview of the proposed framework, (b) Performance-aware bit-wise encoding, (c) RAPID defense mechanism

0
1
2
3
4
5

11
11

11
11

11
00

00
00

10
10

00
00

10
01

00
00

10
00

10
00

00
00

00
00

00
00

00
00

00
10

00
00

00
01

00
00

01
00

00
00

01
11

11
11

Fr
eq

ue
nc

y
(%

)

Sparsity: 4.35%

0

25

50

75

0 1

Fr
eq

ue
nc

y(
%

)

Sparsity 54.32%

0

25

50

75

100

00 01 10 11

Fr
eq

ue
nc

y(
%

)

Sparsity 94.34%

0
1
2
3
4
5
6

00
00

0
01

00
0

00
10

0
10

00
0

10
01

0
11

11
1

Fr
eq

ue
nc

y
(%

)

Sparsity 5.45%

a b
Figure 3: Changes in data characteristics by splitting bits (a) 𝑐ℎ𝑢𝑛𝑘0 = 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7 , (b) 𝑐ℎ𝑢𝑛𝑘0 = 𝑏0, 𝑐ℎ𝑢𝑛𝑘1 = 𝑏1 𝑏2, 𝑐ℎ𝑢𝑛𝑘2
= 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7
4.1 Proposed Robust FedProx Aggregation at FL

Server
In this work, we use state-of-the-art Federated Prox (FedProx) [15]
to perform the weight aggregation of the ML models local updates
at the FL server. FedProx algorithm tackles heterogeneity by adding
a proximal term (discussed later) in federated networks. FedProx
permits devices to share variable amounts of work based on their
resource availability by adding a proximal term (where 𝜔 is fea-
tures, 𝑝𝑘 is the probability, ` is tolerance rate, 𝐹𝑁 (𝜔) is a local
function). Instead of just minimizing the local function 𝐹𝑁 (𝜔) (·),
device 𝑁 uses its local solver of choice to approximately minimize
the objective function ℎ𝑁 .

A proximal term effectively limits the impact of variable local up-
dates. The advantages of adding proximal terms are: (1) It addresses
the issue of statistical heterogeneity by restricting the local updates
to be closer to the initial (global) model without any need to manu-
ally set the number of local epochs; and (2) it incorporates variable
amounts of local work resulting from systems heterogeneity.

As per the threat model (discussed in section 3), the malicious
samples will continue to execute and bypass the on-device mal-
ware detection and classification process. Execution of this mali-
cious sample will manipulate the value of locally computed updates
transmitted to the FL server. The malicious IoT devices under the
influence of the data manipulation and poisoning attacks will show
a similar distribution pattern of its locally computed updates. In
contrast, the IoT devices that are not influenced by any malicious
attack will show a similar distribution pattern of their locally com-
puted updates. The distribution pattern of the locally computed
updates by malicious IoT devices is represented by indicative fea-
tures 𝑗 . Moreover, when the IoT device is under any malicious
attack, 𝑆𝐼 (𝑗) (indicates features manipulation) is set to 1 and 𝛿 (𝑗) ≁

𝛿 (𝑗) (where 𝛿 → distribution of training data, 𝛿 → distribution of
local model updates) is within statistical error bounds (Line 2 - Line
7) in Algorithm 1. Thus, locally computed features from most hon-
est devices will exhibit a similar distribution in an attack scenario,
while malicious devices will exhibit an anomalous distribution.

In response we modify state-of-the-art FedProx [15] algorithm
by integrating RAPID (Algorithm 1) to suffice our needs. When
the server receives the local features, then if the distribution of
training data is similar to the distribution of local updates, we
execute FedProx aggregation. Suppose the local updates sent to the
server are not similar in distribution. In that case, it is a sign of
being manipulated by an adversary, which is handled by executing
the RAPID defense mechanism. In this way, the modified FedProx
contributes to generating an error-free global model.

Initially, the defense mechanism identifies the indicative features
by analyzing the distribution of the local updates using cosine
similarity. The key challenge is to extract the indicative features
that change distribution when the device is under a malicious attack.
To decide whether a particular local feature is indicative or not, it
groups the values for that local update uploaded by all devices into
different clusters (Line 8 - Line 11) in Algorithm 1. We calculate
the euclidean distance of 𝑛 data-points (𝑝𝑧 , 𝑞𝑧 refer to data-points),
referred as 𝐷𝐸 . If the distance between the centers of two clusters
is greater than a threshold value 𝛼 , the local feature is marked as
indicative (Line 12 - Line 13) in Algorithm 1. The value of 𝛼 depends
on the original distribution 𝛿 of the training dataset.

The cluster which has the majority participants is marked as
clean or non-malicious (benign) 𝐶𝑐𝑙𝑒𝑎𝑛 because the number of ma-
licious samples encountered by devices are comparatively less as
compared to benign samples (e.g., out of 10K samples, only 2-5%
samples will be malicious). The benign samples will exhibit a simi-
lar distribution of local features by performing on-device training.

Poster Overview 1 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

155

Algorithm1 Pseudo-code for ‘RAPID’ - defensemechanism against
device/node under malicious attack
1: Input: 𝑁 (number of devices), 𝑓 (fraction of total devices to be malicious), 𝛿

(distribution of training data), 𝛿 (distribution of local model features), 𝜏 (error-rate
tolerance), 𝛼 (distance threshold), 𝑆𝐼 (𝑗) (indicates features manipulation)

2: for 𝑥 = 0, ..., 𝑁 : do
3: if 𝛿 (𝑗) ∼ 𝛿 (𝑗) (j = indicative features)
4: 𝑆𝐼 (𝑗) → 0 do
5: Run the federated averaging algorithm
6: else (𝛿 (𝑗) ≁ 𝛿 (𝑗))
7: 𝑆𝐼 (𝑗) → 1 do
8: 𝐷𝐸 =

∑𝑛
𝑧=1 (𝑝𝑧 − 𝑞𝑧)1/2 (Calculate Euclidean distance)

9: 𝐶𝑐𝑙𝑒𝑎𝑛 and𝐶𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 ⇒ (Clustering 𝛿 (𝑖) , 𝛿 (𝑖))
10: Analyse the 𝛿 for benign and malicious users
11: Form clusters by grouping the values from 𝛿

12: if 𝐷𝐸 (𝐶𝑘 :𝐶 (𝑘−1)) > 𝛼 do𝐶𝑘 ⇒ Clusters
13: 𝛿 = 𝑗 (indicative feature)
14: if 𝑈𝑥 ∈𝐶𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 > 𝜏 do
15: 𝑈𝑥 ⇒𝑀𝑈 (malicious)
16: else
17: 𝑈𝑥 ⇒ 𝐵𝑈 (benign)
18: end if
19: end if
20: end for

In contrast, the other cluster is marked as suspicious 𝐶𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠
(Line 14 - Line 17) in Algorithm 1. All the devices 𝑈0,· · · , 𝑈𝑁 in
the suspicious group are suspected to be malicious𝑀𝑈 but are not
confirmed. In contrast, the devices which are not in the suspicious
group are marked as benign 𝐵𝑈 . The defense mechanism marks a
device in the suspicious group as malicious if it appears for more
than 𝜏 times (on finishing all rounds) such as (𝑈0,· · · , 𝑈𝑁 ⇒ 𝑀𝑈

(if → occurrence > 𝜏 = 40%). The RAPID sends the local updates,
excluding the manipulated local features for federated aggregation.
Finally, the FL server generates an error-free and accurate global
model after executing the FedProx algorithm discussed below.

Hence, using the modified FedProx enhances our framework’s
robustness. Our next objective is to minimize the communication
costs using “Performance-aware bit-wise encoding".
4.2 Performance-aware bit-wise encoding
“Performance-aware bit-wise encoding" is different from a tradi-
tional data encoding technique. It splits the full precision data into
different chunks of data as shown in (Figure 2b) and applies a spe-
cialized data encoding technique for each chunk. The motivation
behind using “Performance-aware bit-wise encoding" is different
portions of values (weights, activations, gradients) have different
characteristics in machine learning and deep learning. The most
significant bits (MSB) tend to be very sparse when represented in
bits, while sparsity keeps reducing as the bits become less signifi-
cant. The main redundancy in machine learning data is sparsity in
both values and bits [12]. The sparsity in values is the proportion
of zero-valued symbols in a dataset. The sparsity in bits is the pro-
portion of zero-bits in a signed magnitude binary representation.
Machine learning data sources have high value-level sparsity.

Even dense data has high bit-level sparsity because most non-
zero machine learning data values are minimal regardless of the
source, as shown in Table 1. The change in data characteristics
by splitting bits into chunks is visualized in Figure 3. The value
sparsity of the original machine learning data is 4.35% (Figure 3a).
Since the information content and sparsity are distributed unevenly
across the bits, we can break values into chunks with more distinct

characteristics. Therefore, we take advantage and split values into
multiple chunks and apply a customized encoding technique to
each chunk. Hence, the most significant chunk’s sparsity increases
considerably (Figure 3b), and the entropy of the source is shifted to
the least significant chunk.

The decoder is deployed and used to decode the encoded data
sent to the FL server. The decoder replicates the encoder but in
reverse order. The input compressed symbols are stored in an 8-bit
buffer. A stop code detector checks for stop code sequences in the
encoded symbols. Each chunk then inspects the remaining symbol
sequentially to deduce which part of the symbol was generated
by what chunk in the encoder. Once all chunks have inspected
the data, the symbol width can be computed, and the appropriate
number of bits is removed from the buffer. Each chunk’s symbol
is decompressed and passed to the recombining logic that forms
the complete output symbol. The decoded data will undergo the
robust FedProx aggregation discussed above. The experimental
results showcase that“Performance-aware bit-wise encoding" has a
significant contribution in reducing the communication cost.

5 EXPERIMENTAL RESULTS
5.1 Experimental setup
The proposed framework is executed on a system running Ubuntu
18.04 with Linux 5.3 kernel. We prefer non-IID sampling for the
dataset and to impose statistical heterogeneity, the data is dis-
tributed unevenly among devices created using virtual machines.
We evaluated for 200 rounds because it gave better results than
other # rounds, and the model did not converge beyond 200 rounds.
The FL parameters vary as follows: clients per round (10, 25, 50)
and # epochs (20, 30, 40).

5.2 Performance Analysis

Table 1: ML data characteristics after applying Performance-
aware bit-wise encoding technique

ML Bits Value Bit Entropy Accuracy
Model per value sparsity sparsity density
CNN 11.8 34.96% 76.88% 55.23% 96.45%

Mobile-Net 10.7 37.42% 78.21% 59.43% 89.54%
RF 9.6 40.42% 80.21% 61.77% 91.43%
LR 9.2 42.78% 83.81% 64.92% 94.98%
KNN 10.2 37.93% 74.64% 56.43% 91.12%
MLP 10.9 38.13% 74.77% 59.43% 92.45%

5.2.1 Performance-aware bit-wise encoding. Table 1 illus-
trates data statistics after “Performance-aware bit-wise encoding"
being applied on the quantised data. However, the value sparsity
and bit sparsity ranges from 34% to 42% and 74% to 84%, respec-
tively. Moreover, the model’s performance, i.e., the classification
accuracy, is also significant enough. Thus, splitting bits into chunks
and applying a customized encoding algorithm does not impact the
model’s performance.

Figure 4 shows compression rates normalized to Shannon limit.
Among all the ML models used, the architecture of CNN is most
dense in values. Still, the distribution of non-zero values is concen-
trated around zero, leading to a high geometric mean compression
rate. The scale on the y-axis shows compression rate normalized to

Poster Overview 1 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

156

Shannon limit, where ‘0’ means no compression and ‘1’ means max-
imum compression rate given by Shannon limit. The effective com-
pression rate enables us to compare gains and losses from compres-
sion more directly. It can be observed that the “Performance-aware
bit-wise encoding" technique achieves 80% to 85% of the gain sug-
gested by the Shannon limit from encoding. The proposed method
delivers approximately 1.5 × better compression rate than Huffman
encoding, 1.2 × more compression than Run Length Encoding, and
1.6-1.8 × higher compression than L-Ziv, LZMA, and Z-lib. These
results demonstrate that combining lossy and lossless encoding
techniques to encode 32-bit floating-point data can achieve better
compression results than solely using lossy or lossless compression
techniques. This reduces the communication overheads by nearly
18% to 22% which minimize the power consumption by 25-30%.

0

0.2

0.4

0.6

0.8

1

CNN Mobile-Net RF LR KNN MLP

C
R

 n
or

m
al

is
ed

to
 S

ha
nn

on
 Huffmann RLE L-Ziv Zlib LZMA Proposed

Figure 4: A comparison of compression schemes. Results are
mean value of combination of all chunk splits

5.2.2 RAPID - Defense Mechanism. To measure the severity
of data manipulation attacks on the proposed RAPID defense, we
perform several experiments by varying the fraction of malicious
devices 𝑓 . The malicious devices range from 10% to 40% of all the
participating devices (𝑛) considering 𝑓 < 𝑛/2 (𝑛 is 100, 200, 300
and 400). In each experiment, the malicious device manipulates its
training data to influence the global model.

Table 2: Effect of malicious devices on model performance
post RAPID defense integration

Fraction of malicious devices (%) 0 10 20 30 40
Accuracy % (CNN) 96.45 93.55 90.66 87.76 86.80

Accuracy % (Mobile-Net) 89.54 86.94 84.34 81.75 81.39
Accuracy % (RF) 91.43 88.96 86.12 83.47 82.97
Accuracy % (LR) 94.98 92.22 89.47 86.71 85.76
Accuracy % (KNN) 91.12 88.75 85.92 83.37 82.55
Accuracy % (MLP) 92.45 90.23 87.36 84.68 82.70

Table 2 shows the model’s accuracy post RAPID integration
when the fraction of devices are malicious. The accuracy drop
for the ML classifiers used is approximately 3% when 10% of the
devices are malicious. The maximum accuracy drop is nearly 10%,
with 40% devices being malicious. This shows that the accuracy
drop increases with an increase in the fraction of malicious users.
Therefore, integrating RAPID defense yields a negligible drop in
the model’s accuracy, with even 40% devices being malicious.
Table 3: Post synthesis hardware results for proposed frame-
work with different ML classifiers (@100MHz)

Classifier Power (𝑚𝑊) Energy (𝑚𝐽) Area (𝑚𝑚2)
CNN 82.45 5.12 4.5

Mobile-Net 72.64 2.35 2.25
RF 45.63 2.79 1.81
LR 46.54 2.29 1.55
KNN 56.46 3.21 1.46
MLP 54.55 3.37 1.27

5.3 ASIC Implementation of Proposed
Technique for different Classifiers

The experiments are implemented on a Broadcom BCM2711, quad-
core Cortex-A72 (ARM v8) 64-bit, 28 nm SoC running at 1.5 GHz.
The power, area, and energy values are reported at 100 MHz. We
used Design Compiler Graphical by Synopsys to obtain the area for
the models. Power consumption is obtained using Synopsys Prime-
time PX. The post-layout area, power, and energy are summarized
in Table 3. Among all the classifiers, CNN consumes the highest
power, energy, and area on-chip (Table 3).
6 CONCLUSION
In this paper, we integrated “Performance-aware bit-wise encod-
ing" and “RAPID" defense techniques in Federated Learning. The
experiments and results show that the implemented techniques
exhibit effective and lightweight lossless encoding and robustness
against data manipulation attacks in machine learning. We demon-
strated that, on average, “Performance-aware bit-wise encoding"
outperformed all lightweight and some complex encoding methods
applied to machine learning data. The case studies provide evidence
that the proposed Federated Learning-inspired framework provides
1.2-1.8 × higher compression rates and robustness with a negligible
accuracy drop of just 3% to 10%, even in the presence of more than
40% compromised devices in the network.
REFERENCES
[1] C. Adrián Martínez and et al. 2010. Malware detection based on Cloud Computing

integrating Intrusion Ontology representation. In IEEE Latin-American Conference
on Communications.

[2] Clement Fung and et al. 2018. Mitigating Sybils in Federated Learning Poisoning.
ArXiv (2018).

[3] Song Han and et al. 2015. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv:1510.00149 (2015).

[4] Jamie Hayes and et al. 2018. Contamination attacks and mitigation in multi-party
machine learning. In Advances in neural information processing systems.

[5] U. Jayasankar and et al. 2021. A survey on data compression techniques: From the
perspective of data quality, coding schemes, data type and applications. Journal
of King Saud University - Computer and Information Sciences (2021).

[6] Robert Karam and et al. 2017. Mixed-granular architectural diversity for device
security in the Internet of Things. In 2017 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST).

[7] Jakub Konečnỳ and et al. 2016. Federated learning: Strategies for improving
communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[8] Chenxin Ma and et al. 2017. Distributed optimization with arbitrary local solvers.
Optimization Methods and Software (2017).

[9] Fabrice Muhlenbach and et al. 2004. Identifying and Handling Mislabelled In-
stances. J. Intell. Inf. Syst. (2004).

[10] Milad Nasr and et al. 2019. Comprehensive Privacy Analysis of Deep Learn-
ing: Passive and Active White-box Inference Attacks against Centralized and
Federated Learning. IEEE Symposium on Security and Privacy (SP) (2019).

[11] B. Nelson and et al. 2009. Misleading Learners: Co-opting Your Spam Filter.
Springer US (2009).

[12] Miloć Nikolić and et al. 2018. Characterizing Sources of Ineffectual Computa-
tions in Deep Learning Networks. In IEEE International Symposium on Workload
Characterization (IISWC).

[13] Mingda Qiao and et al. 2018. Learning Discrete Distributions from Untrusted
Batches. ArXiv (2018).

[14] Noelle Rakotondravony and et al. 2017. Classifying malware attacks in IaaS cloud
environments. Journal of Cloud Computing (2017).

[15] Anit Kumar Sahu and et al. 2018. Federated Optimization for Heterogeneous
Networks.

[16] Ohad Shamir and et al. 2014. Communication-efficient distributed optimization
using an approximate newton-type method. In ICML.

[17] Sanket Shukla and et al. 2021. On-device Malware Detection using Performance-
Aware and Robust Collaborative Learning. In (DAC).

[18] Gang Wang and et al. 2014. Man vs. Machine: Practical Adversarial Detection of
Malicious CrowdsourcingWorkers. In 23rd USENIX Conf. on Security Symposium.

[19] Kan Xiao and et al. 2016. Hardware trojans: Lessons learned after one decade of
research. ACM Transactions on Design Automation of Electronic Systems (2016).

Poster Overview 1 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

157

	Abstract
	1 Introduction
	2 Related Work
	3 Threat Model
	4 Proposed Framework
	4.1 Proposed Robust FedProx Aggregation at FL Server
	4.2 Performance-aware bit-wise encoding

	5 Experimental Results
	5.1 Experimental setup
	5.2 Performance Analysis
	5.3 ASIC Implementation of Proposed Technique for different Classifiers

	6 Conclusion
	References

