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ABSTRACT

In the last few years, quantum computing has experienced a growth
spurt. One exciting avenue of quantum computing is quantum
machine learning (QML) which can exploit the high dimensional
Hilbert space to learn richer representations from limited data
and thus can efficiently solve complex learning tasks. Despite the
increased interest in QML, there have not been many studies that
discuss the security aspects of QML. In this work, we explored
the possible future applications of QML in the hardware security
domain. We also expose the security vulnerabilities of QML and
emerging attack models, and corresponding countermeasures.
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1 INTRODUCTION

Quantum computing is a new computing paradigm with enormous
potential for the future. Despite the fact that the technology is
still in its infancy, the community is looking for computational
advantage from quantum computers (i.e., quantum supremacy) for
practical applications such as material/drug discovery [15] [16]. In
the near future, Quantum Machine Learning (QML) is a promising
application domain for achieving quantum advantage with noisy
quantum computers. Image classification could be transformed by
QML. Several Parameterized Quantum Circuit (PQC) based QML
models, also known as Quantum Neural Network (QNN), have
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already been proposed in the literatures [26]. A traditional QNN
consists of a data encoding circuit, a PQC, and measurement opera-
tions that can be trained to perform traditional Machine Learning
(ML) tasks such as classification, regression, distribution generation,
and so on.

However, the security of QML/QNNSs against adversaries, as
well as their effectiveness in solving security problems remains
unexplored. This may come as a surprise given the long history of
quantum computing applications in security. With more and more
ML algorithms being used by system defenders and attackers to se-
cure and attack hardware, we attempt to investigate how QML can
be used to assist in the resolution of hardware security issues. This
is primarily due to the fact that hardware supply chain is plagued by
threats like counterfeiting, Trojan insertion and tampering. A slight
error in ML based detection approaches may lead to compromised
hardware in mission critical systems. Hence, there is a need to ex-
plore a fundamentally superior ML model such as, QML. Although
attractive, quantum classifiers, like classical neural network based
classifiers, are also vulnerable to carefully crafted adversarial ex-
amples, which are obtained by adding imperceptible perturbations
to legitimate input data (adversarial input manipulation).

In this paper, we investigate the use of QML with a hybrid
quantum-classical model, specifically classical dimension reduc-
tion + QNN, to classify Printed Circuit Board (PCB) defects, which
have become a pressing need in the PCB industry because they can
severely affect system performance/security. We also discuss how
this model can be utilized for hardware Trojan and recycled chip
detection, which makes the electronic supply chain untrustworthy.
We also study potential vulnerabilities and threats to QML models,
as well as numerous approaches to minimize them.

The rest of the paper is structured as follows; We cover basics
on quantum computing and QNN in Section 2, discuss the security
applications of QML in Section 3, present various vulnerabilities
and attack models on QML in Section 4, and draw the conclusions
in Section 5.

2 QUANTUM COMPUTING BASICS
2.1 Qubits, Quantum Gates & Measurements

A qubit is a fundamental building block of a quantum processor
and are usually driven by microwave pulses. It is a two-level sys-
tem that stores data as quantum states. A qubit is analogous to a
classical bit. However, unlike a classical bit, a qubit can be in a su-
perposition state, which is a combination of |0) and |1) at the same
time. Mathematically, the qubit state is represented by state vector
[y = a|0) + b |1) where |a|? and |b|? represent probabilites of ‘0’
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Figure 1: Example hybrid quantum-classical architecture. Classical features are transformed to quantum states using angle
encoding where each feature is encoded into single qubit (1:1 encoding for example, RZ(f1)). The encoded quantum states are
then subjected to multiple transformations by a parameterized circuit before being measured.

and ‘1’ respectively (thus, la]2+ b2 =1). A variety of qubit tech-
nologies exists, e.g., superconducting qubits, trapped-ions, neutral
atoms, silicon spin qubits, to name a few [20].

Quantum gates are operations that change the state of qubits, al-
lowing them to perform computations. Quantum gates can operate
on a single qubit (for example, the X (NOT) gate) or on multi-
ple qubits (e.g., 2-qubit CNOT gates). They are realized physically
through the use of pulses (e.g., laser pulse in Ion Trap qubits, RF
pulse in Superconducting qubit, etc.) A quantum circuit can have a
large number of gate operations. Qubits are measured in a desired
basis to determine the final state of a quantum program. Measure-
ments in physical quantum computers are typically restricted to a
computational basis, such as the Z-basis in IBM quantum comput-
ers.

Measurement/Expectation Value is another important concept in
quantum computing. It is the average of the eigenvalues, weighted
by the probabilities that the measured state is in the corresponding
eigenstate. Mathematically, expectation value of an operator (o)
is defined as (Y|o|y) where |¢/) is the qubit state vector. It varies
between the minimum and maximum eigenvalues of the operator.
For example, the Pauli-Z (o) operator has two eigenvalues: +1 and
-1. Therefore, the Pauli-Z expectation value of a qubit will vary in
the range of [-1, 1] depending on the qubit state.

2.2 Quantum Noise

In theory, quantum computers should provide exponential speedups
over classical computers in a variety of tasks; however, this has not
been the case in practice. Among many impeding factors, quan-
tum computers suffer from a wide range of error/noise modes,
such as, a qubit can only retain its state for a short period of time
which leads to Coherence errors. Quantum gates are realized using
microwave/laser pulses and thus it is impossible to precisely gen-
erate and apply these pulses in actual hardware which is known
as Gate errors. Measurement errors occurs when a |0) state qubit
is measured as |1) due to imprecise measurement apparatus and,
Parallel execution of multiple gates on different qubits can affect
each other’s performance which is known as Crosstalk errors. The
rates of these errors vary depending on the qubits and hardware
used, and can impede the performance of QML models’ classifiers,
resulting in unreliable outputs and additional security risks.

2.3 Quantum Neural Networks (QNN)

ONN entails optimizing the parameters of a Parametric Quantum
Circuit (PQC) to achieve the desired input-output relationship. QNN

is typically divided into three sections: (i) a classical to quantum
data encoding (or embedding) circuit, (ii) a parameterized quantum
circuit, and (iii) measurement operations. A variety of encoding
methods are available in the literature [26]. For continuous vari-
ables, the most widely used encoding scheme is angle encoding
where a continuous variable input classical feature is encoded as a
rotation of a qubit along the desired axis [1, 25, 26]. Thus, to encode
‘n’ classical features, we require ‘n’ qubits. For example, RZ(f1) on a
qubit in superposition (Hadamard - H gate is used to put the qubit
in superposition) is used to encode a classical feature ‘f;’ in Fig.
1. We can also encode multiple continuous variables in a single
qubit using sequential rotations. As the states produced by a qubit
rotation along any axis will repeat in 27 intervals, features are
generally scaled within 0 to 27 (or -7 to 7) in a data pre-processing
step.

Parametric Quantum Circuit (PQC): The parametric circuit
is composed of two components: entangling operations and pa-
rameterized single-qubit rotations. The entanglement operations
are a set of multi-qubit operations performed between all of the
qubits to generate correlated states [17]. To search the solution
space, the parametric single-qubit operations listed below are used.
In QNN, this combination of entangling and single-qubit rotation
operations is referred to as a parametric layer. It is worth noting
that substantial research has been conducted in recent years to
determine the best PQC architecture for QNN. Descriptors such
as expressive power, entanglement capability, effective dimension,
and so on have been proposed to assess the efficacy of various PQC
options [1, 27]. Proponents of these descriptors assert that there
is a significant relationship between the descriptor values and the
trainability of quantum circuits. Such descriptors may be useful in
practical applications to select the best PQC architecture for the
intended QML application.

Cost Functions: The output state of a QNN circuit is determined
by measuring qubits in the computational basis. The network is
trained using a cost function derived from the measurements [1,
25]. In a binary classification problem, for example, the authors
measured all the qubits in the QNN model in Pauli-Z basis and
associated class 0 with the probability of obtaining even parity and
class 1 with the probability of obtaining odd parity [1]. Then, the
model is trained using binary cross-entropy loss. In [2], the authors
used the Pauli-Z expectation value of a single qubit (-1 associated
with class 1 and +1 associated with class 0) for a binary classifier
and trained it using mean squared error (MSE) loss. In [10], the



authors fed the outputs of the QNN to a classical neural network
and trained it using the binary cross-entropy loss function.

Training: QNNs can be trained using any gradient-based opti-
mization algorithm such as, Adam [12] or Adagrad [8]. To apply
these methods, we need to compute the gradients [6, 24] of the QNN
outputs with respect to the circuit parameters. The parameter-shift
rule is a known method to compute the gradients [6, 24]. The
parameter-shift rule is conceptually very similar to the age-old
finite difference method, which uses two close-proximity evalua-
tions of a target function to compute gradients with respect to a
parameter. In the parameter-shift rule, the two data points can be
far apart, unlike in the finite difference rule. As a result, it is more
resistant to shot noise and measurement errors than finite differ-
ence. [24]. Alternatively, one can also use gradient free optimizer
such as Nelder-Mead to train a QNN [14]. A gradient-free optimizer,
on the other hand, may perform poorly when the network has a
large number of parameters.

3 SECURITY APPLICATIONS

In this section, we explore the usage of QML in defect classification
of PCB and discuss other possible security applications.

3.1 PCB Defect Classification

Overview: PCBs are the fundamental building blocks of the major-
ity of modern electronic devices. However, due to limited technol-
ogy, a 100% quality rate cannot be guaranteed in the PCB production
process. Sometimes the PCBs will have short circuit, missing hole,
spur, and other defects. Because the task of manufacturing a large
number of PCBs is frequently outsourced to third-party vendors
in order to save money, these PCBs are vulnerable to attacks. For
example, defects could be purposefully introduced by these untrust-
worthy vendors, rendering PCBs faulty and severely disrupting
the workflow of systems that rely on these PCBs. We attempt to
demonstrate a potential security application of QML in classifying
various PCB defects using a hybrid quantum-classical model. For
this task, we employ the framework proposed by [3], in which
we first use a convolutional autoencoder to reduce dimensionality
before training a QNN with the crucial extracted features for our
classification problem.

Convolutional Autoencoders (CAE): Autoencoders (AE) are
a type of feedforward neural network. They use an encoder network
to compress the input into a lower-dimensional code, and then use
a decoder network to reconstruct the output from this representa-
tion. To train the network, the distance between the input and the
reconstructed output (e.g., MSE loss) is used as the feedback signal.
However, CAE has a better architecture than AE for extracting tex-
tural features from images. In CAE, the encoder block begins with
one or more successive convolutional layers. The decoder block con-
cludes with convolutional transpose/deconvolutional layers. In the
center is a fully connected AE, the innermost layer of which is made
up of a small number of neurons. Once trained, the encoder block
can be used as a stand-alone entity to extract a lower-dimensional
representation of the input data.

Fig. 2 shows how CAE is used in this work (for PCB defect classi-
fication). The final ConvTranspose2d layer uses Sigmoid activation
where ‘d’ is the dimension of the latent-space.

Convolutional Autoencoder
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Figure 2: The network architecture of CAE + QNN. The
trained CAE Encoder block generates a lower-dimensional
image representation for the QNN.

Classification Model: The hybrid network (Fig. 2) consists of
two separate networks: a CAE and a QNN. To learn a lower dimen-
sional representation of the data, the CAE is trained with the origi-
nal image dataset. To extract image features, the trained encoder
network is used. To perform final classification, a conventional
ONN is trained with these extracted features and image labels. This
architecture is named as CAE+QNN.

In terms of encoding methods, parametric circuits, and mea-
surement operations, a QNN/quantum filter has a plethora of de-
sign options. The Python framework developed by [3] supports a
wide range of these options, which will impact the learnability of
the QNN [27]. However, we use the single feature/qubit encoding
method like in (Fig. 1), the PQCircuit-16 from [11], and Z-basis
measurements of the qubits in the QNN. In addition, we limit the
number of trainable parametric layers to two. We feed the QNN out-
puts to a fully-connected layer [10]. The number of output neurons
is equal to the number of classes.

Dataset: We chose the augmented PCB defect dataset, which
was originally released by Peking University’s Open Lab on Human
Robot Interaction, and later [7] performed augmentation techniques
on the original dataset to create this new dataset. It contains 6 types
of defects which are created by photoshop using Adobe softwares.
The defects defined in the dataset are: missing hole, mouse bite,
open circuit, short, spur, and spurious copper. The dataset contains
a total of 10,668 images of size 600 x 600, each of which may or
may not have more than one defect, but all defects in an image
belong to the same class. For our PCB defect classification task,
we further cropped out these defects from each of these images to
form a larger dataset of 21,664 images, each of size 32 x 32 (Fig. 3).
More information regarding no. of images per defect is shown in
Table 1. We first trained our convolutional autoencoder with our
defect dataset images (Train:Test = 70:30). Later, we created one

Table 1: Augmented PCB Defect Dataset

Defects # of images
Missing hole 3612
Mouse bite 3684
Open circuit 3548
Short 3508
Spur 3636

Spurious copper 3676
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Figure 3: (a) Original PCB image of size 600x 600 (b) Cropped
defect image of size 32 X 32 used for classification

smaller 3-Class and one 6-Class classification datasets, using the
trained model with latent dimension(d) = 4 which we used to train
our QNN (for classification).

Training Setup/Metrics: We trained our CAE with 15,165 train-
ing samples from the PCB defect dataset with latent dimension
d = 4 [Loss function: Mean Squared Error (MSE), Optimizer: Adam,
Learning rate: 0.001, Epochs: 25, and Batch size: 50]. We tested this
trained CAE using the testing samples to generate the reduced
feature set (of d = 4). This reduced dataset is further divided into
two equal sets (3 & 6 class) of 2000 samples each. Finally, these sets
are used for QNN training and validation (70:30 split).

To evaluate the performance of the QNN model, we use the aver-
age accuracy over the entire training and validation dataset [4]. The
training accuracy of the models indicates their trainability, whereas
the validation accuracy indicates their generalization capability. To
train our model, we use the gradient-based Adagrad optimizer [21].
We used angle encoding technique to encode the classical features,
encoding one feature per qubit, as shown in Fig. 1. Thus, for our
four feature dataset, we used four qubits. In our 4-qubit model,
we limited the number of parametric layers to two. We trained
the QNN for 10 epochs [Loss function: Sparse Categorical Cross
Entropy, Optimizer: Adagrad, Learning rate: 0.5, and Batch size: 32].

Results: The performance after 10 epochs of training are tabu-
lated in Table 2. The chosen number of latent-dimension (d) dictates
the QNN architecture. It also affects the overall network perfor-
mance. A higher value of d means more input features for the QNN
model that generally translates to better training performance of
the QNN. Therefore, a higher d (at the cost of larger QNN) may
provide better performance in practical applications. Also, there are
myriad of PQC options to choose from hence there might be some
other PQC which provides better classification rates; the analysis
by authors in [11] shows the PQCircuit-5 & 6 with the high number
of gate count (trainable parameters) consistently provides higher
accuracy at cost of higher training time, when compared to the
other PQCs.

It should be noted that the goal of this work is not to demonstrate
superior classification accuracy over our classical counterparts, but
rather to demonstrate the potential applications of QML.

Table 2: CAE+QNN Architecture performance after 10
Epochs

Dataset ‘ Train Accuracy ‘ Val. Accuracy
Defect 3-Class 0.70 0.68
Defect 6-Class 0.46 0.42

3.2 Hardware Trojan & Recycled Chip
Detection

Hardware Trojan attacks have emerged as a significant security
risk for Integrated Circuits (IC). In simple terms, a Hardware Tro-
jan attack is a malicious intentional modification of an electronic
circuit or design that results in unfavorable behavior and leads to
security threats. Over the years, several classical machine learning
techniques have been explored across different abstraction lev-
els to detect this malicious hardware virus such as; (a) Reverse
Engineering[19], (b) Real time detection[13], (c) Gate-Level Netlists
Detection [9] etc. Another important concern for the security and
dependability of electronic systems/devices is the use of recycled
ICs. Using counterfeited/recycled ICs might pose a major threat
since during the recycling process, an adversary could add a Tro-
jan, change the functionality, or even insert faults, which could
lead to important information leakage or just impede the device’s
performance.

The proposed hybrid quantum-classical framework (or any an-
other QML model) can be trained with proper datasets and data
preparations/pre-processing to detect the Trojans and recycled
parts.

3.3 Usage Model of QML in Hardware Security

QML can be used in hardware security domain in two ways, (i)
full quantum approach, where the QML is used to screen all PCBs,
recycled chips and Trojan infested designs. This approach will be
costly since quantum computers are expensive but will provide
best security guarantees, (ii) hybrid approach, where classical ML is
used to screen the PCBs, chips and designs first and only the chips
dedicated for mission critical systems are forwarded to the QML.

4 QUANTUM MACHINE LEARNING:
VULNERABILITIES, ATTACKS & DEFENSES

By utilizing quantum mechanics principles such as superposition,
tunneling, and entanglement QML have given hope of outperform-
ing their classical counterparts in the near term, even with noisy

intermediate-scale quantum (NISQ) hardware. The high-dimensional
Hilbert space of sizable quantum systems provides a naturally ad-
vantageous starting ground for QML models for classification tasks

where statistical patterns can be revealed in complex feature spaces.
However, QML models, like many state-of-the-art classical machine

learning models, possess assets and are vulnerable to attack. Re-
searchers have demonstrated that the adverserial robustness of any

classifier is increasingly reduced by the dimensions of the space

on which it classifies. This has caught the interest of QC/QML

researchers, as QML models take advantage of quantum systems’

high dimensionality. In this section, we discuss the vulnerabilities,
possible attacks that could compromise QML’s Intellectual Property

(IP), reliability and performance.

4.1 Assets

QML circuits possess following assets, (i) training data embedded
in state preparation circuit; (ii) type of encoding used in the state
preparation circuit; (iii) PQC ansatz; (iv) number of parameters; (v)
number of qubits and number of PQC layers.



4.2 Vulnerabilities

Identical coupling hardware in quantum cloud: Several com-
panies, including IonQ, D-Wave, IBM, and Rigetti, now provide
access to their quantum computers via cloud-based partners such
as Azure Quantum, Amazon Braket, Google Cloud etc, where re-
searchers frequently deploy their QML models to evaluate the ro-
bustness/performance in noisy environments. These cloud service
providers frequently have multiple hardware with varying hard-
ware quality and architectures, such as the number of qubits, cou-
pling map, and so on. The scheduler at the cloud service provider’s
end may have multiple hardware with the same coupling map at
times. Furthermore, coupling maps of larger hardware, such as
ibmq_rochester, with a greater number of qubits, can fit the cou-
pling map of many smaller hardware, such as ibmq_london and
ibmq_santiago. Therefore, many choices of the user defined cou-
pling map architecture exists in the quantum cloud. Unfortunately,
user lacks capability to distinguish the identical coupling maps
at cloud end. As a result, third-party cloud vendors may assign
low-quality hardware to the job, resulting in poor results and/or a
longer convergence time for the quantum circuit.

Reliance on compilation quality: Quantum circuit compila-
tion is another important step in converting quantum programs
written in high-level gate sets to low-level (native) gate sets tai-
lored to the underlying hardware. The compilation is also crucial to
the program’s success on real-world hardware. Several companies
nowadays have their own quantum hardware frequently offer com-
pilers for their hardware, such as D-Wave’s Ocean, IBM’s Qiskit,
Rigetti’s QuilC compilers etc, as well as some third-party software
tools, including compilers, such as Orquestra and tKet. With the
growing interest in quantum computing, in future there may be
several third-party compilers that provide better performance due
to better optimization algorithms, etc. However, compilers from
these less trustworthy companies would eventually lead to security
and privacy issues.

Embedding of sensitive private property in QML circuit:
QNN circuits with novel PQC or angle encoding techniques are
frequently designed and tested on real quantum hardware. In order
to take advantage of increased speed/efficiency, they might be sent
to third-party compilers, who would have complete access to the
circuit architecture, posing a threat to intellectual property. Like-
wise, the quantum circuit may also include sensitive information
such as financial analysis and proprietary algorithms thus it might
not be the best strategy to directly send the raw quantum circuit
for testing to/through untrusted compilers/cloud providers.

4.3 Attack Models and Defenses

Unreliable Hardware Allocator: As previously stated, untrust-
worthy quantum computers from third parties can allocate poor
quality hardware to save money or to meet their falsely advertised
qubit or quantum hardware specifications, severely degrading QML
model performance.

In [22], authors proposed Quantum Physically Unclonable Func-
tion (QuPUF) to verify the identity of the hardware assigned by the
cloud-based scheduler before sending the actual workload. As each
qubit is distinct in term of gate error, readout error, decoherence
error, their idea is to design a QuPUF to convert these error rates

into qubit signature, which forms the hardware signature. The work
used various types of QuPUFs like; (a) Hadamard gate-based QuPUF
where qubits are placed in a superposition state using H-gate fol-
lowed by the measurement. Qubit values are expected to be biased
towards either zero or one, depending on the errors that act as
unique device signature, (b) Decoherence-based QuPUF which uses
the difference in the decoherence times of the qubits to generate
a response etc. Experiments on real IBM quantum hardware re-
vealed that QuPUF achieves an inter-die Hamming Distance (HD)
of 55% and an intra-HD of 4%, compared to ideal cases of 5nd 0%,
respectively. QuPUF can also be used to defend against unreliable
hardware allocator attack for QML application.

Compilation Oriented Attacks: We also discussed earlier how
sending a novel QML architecture or algorithm to untrusted compil-
ers creates opportunities for adversaries to steal IP namely, the type
of ansatz used, the number of parameters, the number of layers in
the QNN, the type of input embedding, to name a few. The adver-
sary can also insert malicious components in the QNN to poison
training and lead to misclassification.

The work in [23], presents a novel split methodology to secure
IPs from untrusted compilers while taking advantage of their op-
timizations. The main idea behind their proposed method is that
instead of sending the entire quantum circuit at once, it is divided
into multiple parts that are sent to a single compiler at different
times or to multiple compilers, and these sub-circuits are later com-
bined together accordingly by the designer post-compilation. They
conducted extensive experiments with 152 circuits and concluded
that this split compilation method can completely secure IPs or
introduce factorial time reconstruction complexity with a minor
overhead (max 6%).

In [28], to make circuits more robust against any kind of tamper-
ing/counterfeiting from untrusted third party compilers, they insert
dummy SWAP gates to corrupt the functionality of the program.
Unlike classical chips, quantum chips do not reveal circuit func-
tionality, so the adversary cannot estimate the SWAP gate location
since, any gate can be a potential dummy gate making it hard for the
adversary to reverse engineer the quantum circuit. They presented
a method for determining the best position for dummy SWAP gate
insertion that maximizes Total Variation Distance (TVD) without re-
quiring time-consuming quantum circuit simulation. Experiments
show that their proposed metric achieved a ~ 6% improvement
over average TVD and a ~ 12% improvement over best TVD with
minimal overhead. As a result, third-party cloud suppliers may
assign low-quality hardware to the job.

In case of QNNs, we may split the state preparation circuit and
PQC for compilation in separate vendors. One may also split the
PQC further for compilation in randomized order. This approach
will protect the information about state preparation circuit and
PQC. For further obfuscation (or as an alternate standalone defense
technique), dummy ZZ gates can be inserted in the PQC layer to
alter the ansatz and number of parameters in QNNs architecture.
Even though the adversary will obtain the QNN, the training and
performance of the obfuscated QNN will be different than the un-
obfuscated QNN. A careful designer can even place the dummy
ZZ gates to cause barren plataue in the solution space to make the
ONN useless.



Fault Injection Attacks: The gate error of an isolated opera-
tion may differ from the gate error with another gate operation in
parallel. This is known as the crosstalk error. In [18], researchers
showed that the gate error with another operation in parallel can
be ~ 3 times higher than an isolated gate operation. As a result,
crosstalk may negatively impact the prediciton/classification accu-
racy of a QML model. Furthermore, it has recently been demon-
strated that an external adversary can inject faults into another
user’s program sharing the same hardware by repeatedly driving
qubits using CNOT gates [5]. This would cause a QNN to perform
worse than it would in a normal environment.

Saki et al. [5], investigated these types of threats on quantum
circuits and classifiers, and proposed a method to mitigate the afore-
mentioned threat by introducing isolation/buffer qubits between
user programs. This basically means that when one QNN circuit
is running on a set of qubits in a hardware, another program is
not allowed to run on the previous program’s neighbouring qubits,
which is maintained by inserting/considering those neighbouring
qubits as buffer/isolation qubits. Their analysis shows that buffer
qubits provide as much as 1.87X higher reliability at the cost of a
few unused qubits.

5 CONCLUSION

Machine learning techniques are widely used in almost every aspect
of modern society, making it a popular area of scientific research
in terms of both attack and defense mechanisms. With the recent
surge in research interest in Quantum Machine Learning (QML),
we investigate the security opportunities, vulnerabilities, threats,
and defenses of QML. We present a potential security application
of QML in detecting PCB defects and suggest hardware Trojan
and recycling chip detection as additional application areas to se-
cure the semiconductor supply chain. We also describe the QML’s
vulnerabilities, attack models and defenses.
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