
ar
X

iv
:2

00
2.

02
64

1v
1

 [
cs

.D
C

]
 7

 F
eb

 2
02

0

Deterministic Leader Election

in Anonymous Radio Networks

Avery Miller∗ Andrzej Pelc† Ram Narayan Yadav‡

February 10, 2020

Abstract

Leader election is a fundamental task in distributed computing. It is a symmetry breaking
problem, calling for one node of the network to become the leader, and for all other nodes
to become non-leaders. We consider leader election in anonymous radio networks modeled as
simple undirected connected graphs. Nodes communicate in synchronous rounds. In each round,
a node can either transmit a message to all its neighbours, or stay silent and listen. A node v
hears a message from a neighbour w in a given round if v listens in this round and if w is its only
neighbour transmitting in this round. If v listens in a round in which more than one neighbour
transmits then v hears noise that is different from any message and different from silence.

We assume that nodes are identical (anonymous) and execute the same deterministic algo-
rithm. Under this scenario, symmetry can be broken only in one way: by different wake-up
times of the nodes. In which situations is it possible to break symmetry and elect a leader
using time as symmetry breaker? In order to answer this question, we consider configurations.
A configuration is the underlying graph with nodes tagged by non-negative integers with the
following meaning. A node can either wake up spontaneously in the round shown on its tag,
according to some global clock, or can be woken up hearing a message sent by one of its already
awoken neighbours. The local clock of a node starts at its wakeup and nodes do not have access
to the global clock determining their tags. A configuration is feasible if there exists a distributed
algorithm that elects a leader for this configuration.

Our main result is a complete algorithmic characterization of feasible configurations. More
precisely, we design a centralized decision algorithm, working in polynomial time, whose input
is a configuration and which decides if the configuration is feasible. Using this algorithm we
also provide a dedicated deterministic distributed leader election algorithm for each feasible
configuration that elects a leader for this configuration in time O(n2σ), where n is the number
of nodes and σ is the difference between the largest and smallest tag of the configuration. We
then ask the question if there exists a universal deterministic distributed algorithm electing a
leader for all feasible configurations. The answer turns out to be no, and we show that such a
universal algorithm cannot exist even for the class of 4-node feasible configurations. We also
prove that a distributed version of our decision algorithm cannot exist.

keywords: leader election, anonymous radio network, graph, algorithm

∗Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
avery.miller@umanitoba.ca. Supported by NSERC Discovery Grant RGPIN–2017–05936.

†Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada.
pelc@uqo.ca. Partially supported by NSERC Discovery Grant RGPIN–2018–03899 and by the Research Chair
in Distributed Computing at the Université du Québec en Outaouais.

‡Department of Computer Science and Engineering, Institute of Infrastructure Technology Research and Manage-
ment (IITRAM), Gujarat, India. narayanram.1988@gmail.com

http://arxiv.org/abs/2002.02641v1

1 Introduction

1.1 The model and the problem

Leader election is a fundamental distributed task involving symmetry breaking: initially all nodes
of a network have the same status non-leader and the goal is for all nodes but one to keep this
status and for the remaining single node to get the status leader. The problem of leader election
was first formulated in [35] in the study of local area token ring networks, where, at all times,
exactly one node (the owner of a circulating token) is allowed to initiate communication. When
the token is accidentally lost, a leader must be elected as the initial owner of the token.

We consider the task of leader election in radio networks, modeled as simple undirected con-
nected graphs. A node can either wake up spontaneously, or can be woken up hearing a message
sent by one of its already awaken neighbours. Nodes communicate in synchronous rounds. In each
round, a node can either transmit a message to all its neighbours, or stay silent and listen. At the
receiving end, a node v hears a message from a neighbour w in a given round if v listens in this
round and if w is its only neighbour that transmits in this round. If more than one neighbour of a
node v transmits in a given round, we say that a collision occurs at v. We make the well-established
and practically motivated assumption of the capability of collision detection (cf., e.g., [33,38,39]): if
a node v listens and a collision occurs at v, then v hears noise that is different from any message and
also different from silence. Finally, a node that transmits in a given round does not hear anything.

We assume that nodes are anonymous (identical) and execute the same deterministic algorithm.
Under this very weak scenario, symmetry can be broken only in one way: by different wake-up times
of the nodes. Indeed, if all nodes wake up in the same round, in each subsequent round they will
either all transmit or all listen, and no message will be ever heard. In which situations is it possible
to break symmetry and elect a leader using wake-up time as symmetry breaker? In order to answer
this question, we consider configurations. A configuration is defined as the graph underlying the
radio network with nodes tagged by non-negative integers indicating the round of spontaneous
wakeup of the node, according to some global clock. Hence a node either wakes up spontaneously
in the round indicated by its wakeup tag, or wakes up in an earlier round, if it hears a message in
this round. The local clock of a node has value 0 in its wakeup round, and a node starts executing
its algorithm in local round 1. Nodes do not have access to the global clock determining their tags.
A configuration is feasible if there exists a deterministic distributed algorithm that elects a leader
for this configuration.

Our research is motivated by the following question: Which are the feasible configurations and
does there exist a universal deterministic algorithm electing a leader in all of them?

Deterministic leader election in anonymous networks is a difficult task, even in the model
of wired message passing networks because nodes do not have distinct labels permitting us to
immediately break symmetry between them. However, in wired networks, where distinct port
numbers are available at each node, enabling it, for example, to learn its degree, and, on the
other hand, messages are guaranteed to arrive at neighbours, regardless of time rounds in which
nodes transmit, leader election can be based on the topological structure of the network: nodes
can relay their neighbourhoods of increasing radii, learning in this way asymmetries of the network
topology, which can eventually serve leader election. In this case, differences of wake-up times do
not have to be exploited, and symmetry breaking can be done exclusively on the basis of graph
structure considerations. In contrast, in anonymous radio networks, differences of wake up times
must be involved because otherwise, as mentioned above, no communication between nodes can be

2

achieved. Hence, in a sense, the scenario of anonymous radio networks is the most adverse scenario
for symmetry breaking, and our research can be seen as investigating if and when symmetry breaking
is at all possible in this extreme case.

1.2 Our results

Our main result is a complete algorithmic characterization of feasible configurations. More precisely,
we design a centralized decision algorithm whose input is a configuration and which decides if the
configuration is feasible. Our algorithm works in time O(n3∆), where n is the number of nodes
and ∆ is the maximum degree. Using this algorithm we also provide a dedicated distributed leader
election algorithm for each feasible configuration that elects a leader for this configuration in time
O(n2σ), where σ is the difference between the largest and smallest tag of the configuration. On the
negative side we prove that time complexity o(σ + n) cannot be achieved for some configurations.
We then ask the question if there exists a universal deterministic distributed algorithm electing
a leader for all feasible configurations. The answer turns out to be no, and we show that such a
universal algorithm cannot exist even for the class of 4-node feasible configurations. We also prove
that a distributed version of our decision algorithm (i.e., a deterministic distributed algorithm
which, when run on any feasible configuration, would make all nodes say “yes”, and when run on
any unfeasible configuration would make some node say “no”) cannot exist.

1.3 Related work

Leader election in labeled networks. Leader election is a classic topic in distributed computing,
and has been widely studied in the early history of this domain (cf. [36]). The problem of leader
election was first mentioned in [35]. Early papers on leader election focused on the scenario where
all nodes have distinct labels. Initially, it was investigated for rings in the message passing model.
A synchronous algorithm based on label comparisons was given in [29]. It used O(n log n) messages.
In [22] it was proved that this complexity cannot be improved for comparison-based algorithms.
On the other hand, the authors showed a leader election algorithm using only a linear number
of messages but requiring very large running time. An asynchronous algorithm using O(n log n)
messages was given, e.g., in [37], and the optimality of this message complexity was shown in [7].
In [9], the authors investigated the time of leader election in point-to-point networks whose nodes
have logarithmic labels, establishing optimal election time under the assumption that messages are
of constant size. Leader election was also investigated in the radio communication model, both in
the deterministic [32,33] and in the randomized [39] scenarios. In [17,31], the task of leader election
was studied in the context of dynamic networks.
Leader election in anonymous networks. Many authors [1–3,5,6,40,41] studied leader election
in anonymous networks. In particular, [5, 41] characterized message-passing networks in which
leader election is feasible. In [40], the authors studied the problem of leader election in general
networks, under the assumption that node labels exist but are not unique. They characterized
networks in which leader election can be performed and gave an algorithm which achieves election
when it is feasible. In [19, 21], the authors studied message complexity of leader election in rings
with possibly nonunique labels. Memory needed for leader election in unlabeled networks was
studied in [23]. In [16], the authors investigated the feasibility of leader election among anonymous
agents that navigate in a network in an asynchronous way. In [26] leader election was studied in
the context of the size of advice needed to accomplish it in a given time. Other computing tasks

3

in anonymous networks were considered, e.g., in [5, 6, 18,41].
Leader election in radio networks. Algorithmic problems in radio networks modeled as graphs
were studied for such tasks as broadcasting [12, 25], gossiping [12] and leader election [33]. In
some cases [12,14], the topology of the network was unknown, in others [10,20,24,25], nodes were
assumed to have a labeled map of the network and could situate themselves in it.

Most of the results on leader election in the radio model concern single-hop networks of known
size n. Some of these results were originally obtained for other distributed problems but have corol-
laries for leader election. For the time of deterministic leader election without collision detection,
the complexity O(n log n) follows from [13]. A constructive upper bound O(n · polylog(n)) follows
from [30]. For the time of deterministic algorithms with collision detection, matching bounds are
also known: Ω(log n) follows from [27], and O(log n) follows from [8, 28, 38]. For the expected
time of randomized algorithms without collision detection, the same matching bounds are known:
Ω(log n) follows from [34] and O(log n) from [4]. Finally, randomized leader election with collision
detection can be done faster: matching bounds Ω(log log n) (for fair protocols) and O(log log n) on
the expected time were proved in [39].

For leader election in arbitrary radio networks results are less complete. Deterministic algo-
rithms without collision detection were proposed in [11,14]: the algorithm from [11] works in time
O(n log3/2 n

√
log log n) and the algorithm from [14] works in time O(n log n logD log logD). In [33]

it was shown how to elect a leader in arbitrary radio networks in time O(n), if collision detection
is assumed. In [15] the authors gave a randomized leader election algorithm, without collision
detection, working in time O(D log n/ logD + polylog(n)) with high probability.

In all the above papers, results concerning deterministic leader election in radio networks as-
sumed that nodes have distinct labels. To the best of our knowledge, no results are published for
deterministic leader election in anonymous radio networks.

2 Terminology and Notation

2.1 Configuration

A configuration is an undirected graph where each node v is tagged with a non-negative integer tv.
A configuration represents a radio network in which each node v wakes up in a global round r ≤ tv
if v receives a message in global round r (called a forced wakeup), or in global round tv otherwise
(called a spontaneous wakeup). For a configuration G, the number of nodes of G is called the size
of G and is denoted by n, and the difference between the largest and smallest wakeup tag is called
the span of G and is denoted by σ. Since nodes do not have access to the global clock determining
the wakeup tags, we can assume without loss of generality that the smallest wakeup tag is 0, and
hence the span is equal to the largest wakeup tag.

2.2 Distributed Radio Interaction Protocol (DRIP)

We now formally define the notion of a distributed communication protocol being executed by each
node in a configuration G. In each round i ≥ 1 on its local clock, each node v decides whether it
will listen, transmit a message, or terminate its execution. This decision in each round depends on
all of the knowledge the node knows so far, which we now define formally.

For each i ≥ 0, the history of node v in round i, denoted by Hv[i], is defined to be:

4

• (∅) if v transmits in local round i, or, listens and receives no message in local round i,

• (M) if v listens in local round i and receives message M , or, if i = 0 and v was woken up by
message M ,

• (∗) if v listens in local round i and a collision occurs at v.

This definition indicates that a node can distinguish if it wakes up spontaneously or by a message
of a neighbour, and in the latter case it records the wakeup message in its history. Consider an
arbitrary function D that takes as input a node’s history vector up to some round, and outputs one
of the following strings: listen, transmit(M) for some string M , or terminate. A distributed radio
interaction protocol (DRIP) is defined as such a function D in the following way: each node v, in
each round i ≥ 1 on its local clock, computes D(Hv[0 . . . i−1]) and performs the action described by
the value of D. We require that each node eventually terminates permanently, i.e., for each node v,
there exists an i ≥ 1 such that D(Hv[0 . . . i− 1]) = terminate, and D(Hv[0 . . . i

′ − 1]) = terminate
for all i′ ≥ i. In the execution of any DRIP D, for any given i ≥ 0, we denote the history of a node
v up to local round i by Hv,D[0 . . . i].

A patient DRIP is a DRIP such that no node transmits in global rounds 0, . . . , σ. Since all
wakeup tags are in this range, it follows that, when executing a patient DRIP, all nodes wake up
spontaneously in the global round equal to their wakeup tag. Therefore, we have a reliable way of
converting between local clock values and the global round number, as provided in the following
result.

Proposition 2.1. For any patient DRIP D, any two nodes v,w executing D, and any i ≥ 0, local
round i at node v occurs in the same global round as local round i− (tw − tv) at node w.

Proof. Let r denote the global round number corresponding to local round i at node v. Let r(w)

denote the local round number at w that corresponds to global round r. Since D is a patient
DRIP, both v and w wake up spontaneously in global rounds tv and tw, respectively. It follows
that r = tv + i and r = tw + r(w). Setting tv + i = tw + r(w), and solving for r(w) gives the desired
result.

2.3 Leader Election Algorithm

For any DRIPD and any node v, let donev,D denote the first round i for whichD(Hv,D[0 . . . i−1]) =
terminate. When it is clear from the context which DRIP is being executed, we will just write
donev. A decision function f for a DRIP D takes as input a node’s history vector induced by
the execution of D, i.e., Hv,D[0 . . . donev,D], and outputs a 0 or 1. A dedicated leader election
algorithm for configuration G is a DRIP D along with a decision function f for D such that
f(Hv,D[0 . . . donev,D]) = 1 for exactly one node v ∈ G. A configuration G is feasible if there exists
a dedicated leader election algorithm for G.

3 Efficient Classification of Feasible Configurations

In this section, we set out to define a procedure that determines whether or not a given configuration
G is feasible. The challenge is to make such a procedure efficient, since trying every potential leader
election algorithm in a brute-force manner is prohibitively expensive. We describe a centralized

5

algorithm called Classifier that, when given as input a configuration G with n nodes, decides
whether or not G is feasible in time polynomial in n. Further, if G is feasible, we can explicitly
produce a distributed dedicated leader election algorithm for G without any additional computation.

3.1 Definition of Classifier

The high-level idea behind Classifier is to carry out the following phase-based algorithm. At the
start of each phase, the nodes of G are partitioned into equivalence classes, where nodes in the same
class have the same history so far. Phase P0 at each node consists of one round: its spontaneous
wakeup round. All nodes are placed in the same class at the end of phase P0. For each phase
i ≥ 1, we denote by numClassesi the number of equivalence classes at the start of phase i. Phase
i consists of numClassesi “transmission blocks”, where each transmission block consists of 2σ + 1
rounds. The idea is that each class is assigned its own transmission block, and we assume that each
node in each class k transmits in its local round σ + 1 of transmission block k (recalling that, due
to different wake-up times, local round σ + 1 at different nodes can correspond to different global
rounds). In particular, we determine the history of each node v during phase i by considering in
which equivalence class each of its neighbours w started the phase and the relative wake-up times
of v and w. Finally, once the history for phase i has been computed for each node v in G, the
equivalence classes are refined by comparing these histories, and the algorithm proceeds to the
next phase. This is repeated until either: there exists a class consisting of exactly one node v (in
which case, Classifier outputs “Yes” since v can be chosen as the leader), or, no such class exists,
and there are two consecutive phases with no changes in the partition (in which case, Classifier
outputs “No” since no further changes will ever occur and there is no possible leader). While it
seems that Classifier will only determine whether or not the specific algorithm described above
can solve leader election in configuration G, we will later show that this is sufficient in order to
determine the feasibility of G.

We now give a detailed description of Classifier. Each node v in G is augmented with the
following variables:

• A vCLASS variable that keeps track of which equivalence class the node belongs to.

• A label vLBL that will be used to determine if two nodes in the same equivalence class should
stay in the same equivalence class after the current phase. Essentially, at the start of each
phase, this label represents what node v heard during the previous phase.

The configuration is also augmented with a variable numClassesG that keeps track of the number
of different classes in the partition, as well as a list reps of representative nodes, one for each
equivalence class in the partition. We denote by Gaug the augmented version of configuration G.
Recall that each node v of a configuration G is labeled with its wakeup tag tv, so the wakeup tag
values are also available in the augmented configuration Gaug. Finally, we fix an arbitrary ordering
of the vertices of Gaug so that loops of the form “for all v ∈ Gaug” always iterate through the nodes
in the same order. Algorithm 1 gives the pseudocode describing how the augmented configuration
Gaug is initialized.

6

Algorithm 1 Init-Aug, input is configuration G, where each node v in G is labeled with its
wake-up tag tv
1: Gaug ← G
2: numClassesG ← 1
3: n← number of nodes in G
4: reps[1 . . . n]← (null, . . . , null)
5: for all v ∈ Gaug do

6: vCLASS ← 1
7: vLBL ← null
8: if reps[numClassesG] = null then
9: reps[numClassesG]← v

10: end if

11: end for

12: return Gaug

Next, we define a procedure Refine that will partition all of the nodes in Gaug into equivalence
classes by appropriately updating the CLASS variables to positive integer values. Two nodes are
placed in the same class if and only if they were in the same class at the start of the procedure and
their current labels are equal. The partitioning process considers one node at a time and compares
its label and previous class value to the representative of each existing class. If no match is found,
or no classes exist yet, node v becomes the representative node of a new class. Algorithm 2 gives
the pseudocode for Refine.

Algorithm 2 Refine, input is the augmented configuration Gaug

1: for all v ∈ Gaug do

2: oldClass[v]← vCLASS ⊲ remember each node’s class before updating
3: end for

4: for all v ∈ Gaug do

5: assignedToClass← false
6: for k = 1, . . . , numClassesG do ⊲ compare v to existing class reps
7: if (oldClass[v] = oldClass[reps[k]]) and (vLBL = reps[k]LBL) then
8: vCLASS ← k
9: assignedToClass← true

10: end if

11: end for

12: if (assignedToClass = false) then ⊲ create a new class with v as its representative
13: numClassesG ← numClassesG + 1
14: vCLASS ← numClassesG
15: reps[numClassesG]← v
16: end if

17: end for

Next, we define a procedure Partitioner that sets the values of the node labels according to
the phase that is currently being simulated, and then calls Refine to update the equivalence classes
based on the new labels. At a high level, the idea is to record v’s history during the phase and
succinctly store it in v’s label, so that the call to Refine updates the equivalence classes based
on node histories. More concretely, to set the label at an arbitrary node v, Partitioner first
considers each neighbour w of v, creates a tuple (wCLASS, σ+1+ tw− tv), and, if vCLASS 6= wCLASS

7

or tw 6= tv, adds the tuple to a list Nv. In fact, we will store each tuple (a, b) as a triple (a, b, c)
in Nv, where c = 1 if tuple (a, b) is added exactly once, and c = ∗ otherwise. At a high level, for
each neighbour w of v, the value wCLASS represents in which transmission block node w transmits,
and the value σ + 1 + tw − tv represents v’s local round within the block that w transmits. Taken
together, the triples of Nv record all of the non-silent rounds in v’s history for the current phase,
and whether exactly one or more than one neighbour of v transmitted in each such round. A tuple
is excluded from Nv when wCLASS = vCLASS and tw = tv since this represents the case where v
and w will transmit at the same time in the current phase, so v would not receive w’s transmission
nor detect a collision. After completing the construction of Nv, Partitioner sets v’s label by
concatenating together the triples contained in Nv. Further, the concatenated triples appear in
v’s label in increasing order according to the fixed ordering ≺hist given in Definition 3.1 below.
This ordering ensures that, when Refine updates the equivalence classes based on node labels, two
nodes with equal histories are placed in the same class regardless of the order in which the tuples
were added to Nv. Algorithm 3 gives the pseudocode for Partitioner.

Definition 3.1. Let ≺hist be the ordering on N×N×{1, ∗} defined as follows: (a, b, c) ≺ (a′, b′, c′)
if a < a′, or a = a′ and b < b′, or a = a′ and b = b′ and c = 1.

Algorithm 3 Partitioner, input is the augmented configuration Gaug

1: for all v ∈ Gaug do

2: Nv ← empty list
3: for all w adjacent to v in Gaug do

4: if (wCLASS 6= vCLASS) or (tw 6= tv) then
5: newTuple← true
6: for all (a, b, c) ∈ Nv do

7: if (a = wCLASS) and (b = σ + 1 + tw − tv) then
8: newTuple← false
9: replace (a, b, c) with (a, b, ∗) in Nv

10: end if

11: end for

12: if newTuple = true then

13: append (wCLASS, σ + 1 + tw − tv, 1) to Nv

14: end if

15: end if

16: end for

17: Sort Nv according to ≺hist

18: vLBL ← null
19: for x = 0, . . . , |Nv| − 1 do

20: vLBL ← vLBL ·Nv[x]
21: end for

22: end for

23: Refine(Gaug)

Finally, we describe the Classifier algorithm, which is designed to output “Yes” if leader
election can be solved on the input configuration G, and outputs “No” otherwise. At a high level,
the algorithm starts by initializing the augmented version of configuration G, and then executes
Partitioner repeatedly. If the nodes are eventually partitioned such that there is an equivalence
class containing exactly one node, then the algorithm outputs “Yes”. If no such equivalence class

8

exists, and there is a call to Partitioner such that the partition is the same before and after the
call, then the algorithm outputs “No”. Algorithm 4 gives the pseudocode of Classifier.

Algorithm 4 Classifier, input is configuration G, each node v ∈ G is labeled with its global
wake-up tag tv
1: Gaug ← Init-Aug(G)
2: for i← 1, . . . , ⌈n/2⌉ do
3: oldClassCount← numClassesG
4: Partitioner(Gaug)
5: if ∃m ∈ {1, . . . , numClassesG} such that exactly one node v ∈ Gaug has vCLASS = m then

6: exit and output “Yes”
7: end if

8: if (numClassesG = oldClassCount) then
9: exit and output “No”

10: end if

11: end for

To aid in the analysis of Classifier, we define the following notation. For any i ∈ {1, . . . , ⌈n/2⌉},
we refer to the execution of Partitioner(Gaug) in the ith iteration of the for loop in the execution
of Classifier as iteration i of Classifier. We refer to the execution of Init-Aug as iteration 0
of Classifier. For any i ∈ {1, . . . , ⌈n/2⌉} and any node v ∈ Gaug, denote by vCLASS,i and vLBL,i

the values of vCLASS and vLBL, respectively, at the end of iteration i− 1 of Classifier. Similarly,
denote by numClassesG,i and repsi the value of numClassesG and reps, respectively, at the end
of iteration i− 1 of Classifier.

3.2 Time Complexity of Classifier

The key to the analysis is to notice that each call to the procedure Refine results in a refinement
of the node partition. This is because, according to the condition on line 7 of Refine, two nodes
are assigned to the same class k only if they were in the same class (as the representative of class
k) immediately before Refine was called. It follows that the number of equivalence classes can
only increase. Moreover, as each equivalence class contains at least one node, there cannot be more
than n equivalence classes.

Observation 3.2. For any v,w in G and any j ≥ 1, if vCLASS,j 6= wCLASS,j, then vCLASS,j′ 6=
wCLASS,j′ for all j′ > j.

Corollary 3.3. 1 ≤ numClassesG,1 ≤ · · · ≤ numClassesG,⌈n/2⌉+1 ≤ n

Using the above fact, we show that Classifier will eventually output ‘Yes’ or ‘No’ (and
terminate) in one of its ⌈n/2⌉ iterations.

Lemma 3.4. There exists an iteration i ∈ {1, . . . , ⌈n/2⌉} of the for loop in Classifier such that
either the condition at line 5 or 8 evaluates to true, and then Classifier will terminate.

Proof. Assume that the condition at line 8 of Classifier evaluates to false after all iterations
i ∈ {1, . . . , ⌈n/2⌉} of Classifier. Corollary 3.3 implies that 1 ≤ numClassesG,1 < · · · <
numClassesG,⌈n/2⌉+1. It follows that numClassesG,⌈n/2⌉+1 ≥ ⌈n/2⌉+1. In other words, at the end
of iteration ⌈n/2⌉ of Classifier, the number of equivalence classes is strictly greater than n/2,

9

which means that the average class size is strictly less than 2. It follows that there is at least one
class with size exactly 1 immediately after Partitioner(Gaug) is executed for the ⌈n/2⌉th time,
and the condition at line 5 evaluates to true.

We showed above that there are at most ⌈n/2⌉ iterations of Classifier. Each iteration assigns
a node label to each node, and then updates the node partition by check the equality of pairs of
labels. We can show that each such iteration takes at most O(n2∆) steps, where ∆ is the maximum
degree of the nodes in G. This gives an overall running time of O(n3∆), which is O(n4) in the
worst case.

Lemma 3.5. The worst-case time complexity of Classifier on an input configuration G is
O(n3∆), where ∆ is the maximum degree of G.

Proof. We assume that any comparison of two O(log n)-bit or O(log σ)-bit words takes constant
time. In particular, note that comparing two triples in Nv in Partitioner takes constant time.
Let ∆ be the maximum degree of nodes in G. We determine an upper bound on the worst-case
time complexity of Partitioner.

First, consider an arbitrary v ∈ Gaug in the execution of the for loop at lines 1-22. We determine
an upper bound on the number of triples in Nv. Each triple is added at line 13 of Partitioner, and
this happens at most once per iteration of the for loop at line 3. As this loop iterates through all
neighbours of v, it follows that Nv contains at most ∆ triples. The overall complexity of determining
Nv is ∆2: for each triple added to Nv, it was compared with all previously added triples, of which
there are at most ∆. The complexity of sorting Nv at line 17 is O(∆ log∆). Appending together
the triples in Nv to form vLBL takes O(∆) time. Thus, the worst-case complexity of lines 2-21 is
dominated by O(∆2). As this is repeated for each v ∈ Gaug, the worst-case time complexity of the
for loop at lines 1-22 is O(n∆2).

Next, consider the execution of Refine(Gaug) at line 23 of Partitioner. At line 7 in Refine,
comparing vLBL with reps[k]LBL takes O(∆) time: each label consists of at most ∆ triples, the
labels can be scanned from left-to-right as the triples are in sorted order, and comparing two triples
takes constant time. This is performed numClassesG ≤ n times inside the for loop at lines 6-11
in Refine. Thus, the complexity of assigning a class number to an arbitrary node v (lines 5-16)
is dominated by O(n∆). This is repeated n times in the for loop at line 4. So the running time
of lines 4-17 is O(n2∆). This dominates the O(n) steps needed for lines 1-3. Thus, the number
of steps taken by the execution of Refine(Gaug) at line 23 of Partitioner is bounded above by
O(n2∆).

From the above discussion, we see that an execution of Partitioner has worst-case time
complexity O(n2∆). Finally, since by Lemma 3.4, Partitioner is executed at most ⌈n/2⌉ times
by Classifier, we get that the overall worst-case time complexity of Classifier is O(n3∆).

3.3 Correctness of Classifier

In this section, we show that Classifier correctly identifies whether or not a configuration G is
feasible. First, in Section 3.3.1, we give a distributed implementation (a DRIP) of the iterations of
Classifier. We call this the canonical DRIP for configuration G since the outcome of its execution
accurately predicts whether or not there exists any DRIP that can be used to solve leader election
in G. In Section 3.3.2, we prove some important properties about the canonical DRIP. We then

10

proceed to prove the correctness of Classifier. In Section 3.3.3, we prove that if Classifier

outputs “Yes” on input G, then the canonical DRIP can be used to solve leader election in G, and
thus G is feasible. Conversely, in Section 3.3.4, we prove that if G is feasible, then the canonical
DRIP can be used to solve leader election in G, and Classifier outputs “Yes” on input G.

3.3.1 The Canonical DRIP

In order to implement Classifier in a distributed way for a given configuration G, we would
like each node to be able to independently determine in which equivalence class of the partition it
belongs to at the start of each phase. However, as the nodes of G are anonymous, we must install
an identical algorithm at each node. So, in order to describe the canonical DRIP for configuration
G, we first create a sequence of lists that is defined with respect to the execution of Classifier
on G. The high-level idea is that, for each j ≥ 1, the jth list consists of a list of histories of class
representatives chosen by iteration j − 1 of Classifier. The same sequence of lists is hard-coded
into the algorithm installed at each node, and at the start of each phase Pj , each node v will
compare its history to the items in list Lj to determine which equivalence class it was assigned to
by Classifier. It will use this class number to determine when it will transmit during phase Pj .

We now give a detailed construction of each list Lj. If Classifier terminates after iteration
j − 1, then Lj consists of a single item: the string “terminate”. Otherwise, each item in list Lj
corresponds to a single class representative, whose history is encoded as a tuple (oldClass, label).
For j ≥ 2, the value of oldClass represents the class number that the representative belonged to at
the start of the phase Pj−1, and the value of label corresponds to the history of the representative
during phase Pj−1. For j = 1, we pick a tuple that reflects the fact that, at initialization, all nodes
are in the same class and have no history. More specifically:

• L1 consists of one item: the tuple (1, null).

• For each j ≥ 2,

– if numClassesG,j = numClassesG,j−1, or ∃m ∈ {1, . . . , numClassesG,j} such that
exactly one node v ∈ Gaug has vCLASS,j = m, then the list Lj consists of one item,
defined as Lj[1] = “terminate”.

– Otherwise, Lj is a list consisting of numClassesG,j tuples. For each k ∈ {1, . . . , numClassesG,j},
define the kth tuple in the list as Lj[k] = (repsj[k]CLASS,j−1, repsj[k]LBL,j). To clarify,
we take the representative of class k at the end of phase Pj−1, and write the number of
the class it was in at the end of phase Pj−2 into the first entry of the tuple, and write
the label it was assigned during phase Pj−1 into the second entry of the tuple.
Recall that the label repsj[k]LBL,j is a concatenated sequence of triples of the form
(a, b, c).

We now provide the specification of the canonical DRIP DG. For a given configuration G, the
canonical DRIP for G is defined locally at each node v as a sequence of phases that starts when
node v wakes up. Define r0 to be local round 0, and let phase P0 consist of local round 0. For each
j ≥ 1, the phase Pj and local round rj in which phase Pj ends are defined inductively, as follows.
At each node v, phase Pj starts in local round rj−1 + 1. There are two possible cases:

• If Lj[1] = “terminate” then node v terminates in local round rj−1+1 and rj is defined to be
rj−1 + 1.

11

• Otherwise, phase Pj consists of numClassesG,j consecutive transmission blocks, each block
consisting of exactly 2σ + 1 rounds, followed by σ rounds in which node v listens. The local
round rj in which phase Pj ends is set to rj−1 + numClassesG,j · (2σ + 1) + σ. Node v can
deduce the value of numClassesG,j by looking at the number of items in the list Lj.
During phase Pj , node v transmits during exactly one transmission block. It maintains a
variable tBlock to store the block number in which it should transmit, and this value gets
re-calculated at the start of each phase. The initial value of tBlock before the start of phase
P1 is 1. Its transmission in phase Pj occurs in the (σ + 1)th round of block tBlock, and the
transmitted message is a ‘1’. Node v listens in all other rounds of the phase.

To calculate the value of tBlock at the start of a phase Pj , node v finds the value of k
such that the kth entry in list Lj “matches” v’s history during the rounds of phase Pj−1. In
particular, for each k ∈ {1, . . . , numClassesG,j}, node v performs the following comparison
between Lj [k] = (oldClassk, labelk) and its history during phase Pj−1:

1. Check that oldClassk = tBlock. Note that we are currently calculating the value of
tBlock of phase Pj , so this comparison is performed with the old value of tBlock.

2. If j ≥ 2, for each round t in phase Pj−1 such that t = rj−2+(a− 1)(2σ+1)+ b for some
a ∈ {1, . . . , numClassesG,j−1} and b ∈ {1, . . . , 2σ + 1}:
– If Hv,DG

[t] = (‘1’), check that there exists a triple (a, b, 1) in labelk.

– If Hv,DG
[t] = (∗), check that there exists a triple (a, b, ∗) in labelk.

– If Hv,DG
[t] = (∅), check that there exists no triple (a, b, 1) or (a, b, ∗) in labelk.

If any of the checks returns false, v immediately aborts the comparison, increments k, and
tries again. When all checks return true for some value of k, node v sets tBlock = k.

3.3.2 Properties of DG

In this section, we prove some properties about the canonical DRIP that will be important in the
proof of correctness of Classifier. The first property is that DG is a patient DRIP, which implies
that all nodes wake up spontaneously in the global round equal to their wakeup tag.

Lemma 3.6. In the execution of DG by all nodes in G, no node transmits in any of the global
rounds 0, . . . , σ. Equivalently, each node in G wakes up spontaneously in the execution of DG.

Proof. To prove the claim, we proceed by induction on the global round number r. In the base
case, r = 0, all nodes with wakeup tag greater than 0 are not awake, and those with wakeup tag
equal to 0 start executing their local algorithm in global round 1. Thus, no node transmits in global
round 0. As induction hypothesis, assume that no node transmits in global rounds 0, . . . , k − 1 for
some k ∈ {1, . . . , σ}. We consider the behaviour of an arbitrary node v in global round k. By the
induction hypothesis, v does not receive any messages in global rounds 0, . . . , k − 1. We consider
two cases:

• if v has wakeup tag greater than or equal to k, then the fact that v does not receive any
messages in global rounds 0, . . . , k − 1 implies that v is not awake before global round k.
Therefore, v does not start executing its local algorithm until global round k + 1 or later, so
v does not transmit in global round k.

12

• if v has wakeup tag less than k, then, from the description of DG, the earliest local round in
which v might transmit is the (σ + 1)th round of the first transmission block of phase P1. In
particular, it does not transmit before its local round σ+1. As its local clock value is always
bounded above by the global clock value, and we assumed that k ≤ σ, we conclude that v
does not transmit during global round k.

In all cases, v does not transmit in round k, so it follows that no node transmits in global rounds
0, . . . , k, which completes the inductive step.

An important feature of the canonical DRIP’s design is that, in each phase Pj , every node trans-
mits exactly once. This is because each node is placed in some equivalence class by Classifier,
each equivalence class is assigned a transmission block within the phase, and each node in the
equivalence class transmits in its local round σ + 1 within that block. Due to offsets in wakeup
times, local round σ + 1 might correspond to a different local rounds at a different nodes, however
the transmission block and phase number will be the same. As a result, in each phase, each node
will have a chance to receive a transmission from each of its neighbours. Further, the round in
which each transmission occurs relative to the start of a transmission block reveals the relative
offset of the transmitting node and a neighbour. These observations are formalized in the following
result.

Lemma 3.7. For any configuration G, consider the execution of the canonical DRIP for G, and
consider any j ≥ 1 such that Lj 6= “terminate”. For any v in G, for any h ∈ {1, . . . , 2σ + 1}
and for any k ∈ {1, . . . , numClassesG,j}, consider the h’th round of the k’th transmission block in
phase Pj of node v’s execution of the canonical DRIP, i.e., v’s local round rj−1+(k−1)(2σ+1)+h.
A neighbour v̂ of v transmits in this round if and only if

• h = σ + 1 + tv̂ − tv, and,

• v̂ transmits in transmission block k of phase Pj of its execution of DG.

Proof. In the execution of the DRIP at node v, phase Pj starts in local round rj−1 + 1 and
each transmission block consists of 2σ + 1 rounds. We conclude that the h’th round of the k’th
transmission block in phase Pj at node v has local round number rj−1 + (k − 1)(2σ + 1) + h. By
Proposition 2.1, the local round number at v̂ corresponding to this round is rj−1+(k−1)(2σ+1)+
h−(tv̂− tv). Since h ∈ {1, . . . , 2σ+1} and |tv̂− tv| ≤ σ (by the definition of the span σ) we get that
rj−1+(k−1)(2σ+1)+h−(tv̂−tv) ∈ {rj−1+(k−1)(2σ+1)−σ+1, . . . , rj−1+(k−1)(2σ+1)+3σ+1}.
It follows that the local round rj−1+(k−1)(2σ+1)+h−(tv̂− tv) at v̂ falls into one of the following
three ranges:

1. {rj−1 + (k − 1)(2σ + 1)− σ + 1, . . . , rj−1 + (k − 1)(2σ + 1)},

2. {rj−1 + (k − 1)(2σ + 1) + 1, . . . , rj−1 + (k − 1)(2σ + 1) + 2σ + 1}, or

3. {rj−1 + (k − 1)(2σ + 1) + 2σ + 2, . . . , rj−1 + (k − 1)(2σ + 1) + 3σ + 1}.

The local rounds in the first range are the σ rounds preceding the start of the k’th transmission
block, which means that they are either the last σ rounds of the previous transmission block, or
the last σ rounds of the previous phase. In both cases, by the definition of the DRIP, v̂ does
not transmit in these rounds. The local rounds in the third range are the σ rounds after the end

13

of the k’th transmission block, which means that they are either the first σ rounds of the next
transmission block, or the σ rounds at the end of phase Pj . In both cases, by the definition of the
DRIP, v̂ does not transmit in these rounds. The local rounds in the second range are the 2σ + 1
rounds of the k’th transmission block in phase Pj in the execution by v̂. Moreover, node v̂ may
only transmit in the (σ + 1)’th round of the transmission block (which corresponds to local round
rj−1+(k−1)(2σ+1)+σ+1). Setting rj−1+(k−1)(2σ+1)+h−(tv̂−tv) = rj−1+(k−1)(2σ+1)+σ+1,
we see that this is the case if and only if h = σ + 1 + tv̂ − tv, as desired.

An important relationship between Classifier and the canonical DRIP DG is that all nodes
that are placed in the same equivalence class by an iteration j of Classifier have the same history
up to the end of phase Pj in the execution of DG. This is because the label vLBL assigned to each
node v in one iteration of Classifier accurately “encodes” the history of v’s execution in the
corresponding phase of the canonical DRIP, as we demonstrate in the next result. Further, we
verify that a node v’s equivalence class number in Classifier is equal to the transmission block
number in which it transmits in DG.

Lemma 3.8. For every j ≥ 1 such that Lj[1] 6= “terminate”, the following two statements hold
for each node v in G:

(1) If j ≥ 2, then for each local round t in phase Pj−1 such that t is the bth round within
transmission block a for some a ∈ {1, . . . , numClassesG,j−1} and b ∈ {1, . . . , 2σ + 1}:

• Hv,DG
[t] = (‘1’) if and only if there exists a triple (a, b, 1) in vLBL,j.

• Hv,DG
[t] = (∗) if and only if there exists a triple (a, b, ∗) in vLBL,j.

(2) Node v transmits in transmission block k of phase Pj in its execution of the canonical DRIP
DG if and only if vCLASS,j = k in the execution of Classifier.

Proof. The proof proceeds by induction on the value of j.
Base Case: For the base case, consider j = 1.
Statement (1) is vacuously true as j < 2.
To prove statement (2), it is sufficient to prove that, for each v in G, we have vCLASS,1 = 1

and v transmits in transmission block 1 of phase P1. In Init-Aug, each node v in G is assigned to
equivalence class 1, i.e., vCLASS,1 = 1. Moreover, in Init-Aug, the value of numClasses is set to 1,
i.e., numClassesG,1 = 1. Therefore, by the definition of DG, phase P1 has exactly one transmission
block. We verify that all nodes transmit in this transmission block. For an arbitrary node v, its
initial value for tBlock before the first phase is 1. By the definition of DG, when j = 1, each node
determines in which block it will transmit by comparing its initial value of tBlock to the first entry
of the tuple L1[1] = (1, null). Thus, v will set tBlock = 1 and transmit during transmission block
1, as required.

Induction Hypothesis: Assume that statements (1) and (2) hold for some j ≥ 1 such that
Lj[1] 6= “terminate”.

Inductive Step: Suppose that Lj+1[1] 6= “terminate”.

To prove (1), consider any local round t in phase Pj such that t is the bth round in transmission
block a for some a ∈ {1, . . . , numClassesG,j} and b ∈ {1, . . . , 2σ + 1}.

First, from the definition of DG, observe that v listens in its local round t, i.e., the bth round
within transmission block a, if and only if b 6= σ + 1 or v doesn’t transmit in transmission block a

14

of phase Pj at all. By statement (2) of the induction hypothesis, v doesn’t transmit in transmission
block a of phase Pj if and only if vCLASS,j 6= a.

Also, by Lemma 3.7, a node w transmits in the bth round within transmission block a of phase
Pj at node v if and only if b = σ+1+ tw − tv and w transmits in transmission block a of phase Pj

of its execution of DG. By statement (2) of the induction hypothesis, w transmits in transmission
block a of phase Pj of its execution of DG if and only if wCLASS,j = a.

Combining the above, we get that v listens in round t and w transmits in this round if and only
if b = σ + 1 + tw − tv and wCLASS,j = a and at least one of b 6= σ + 1 or vCLASS,j 6= a is true. In
particular, v listens in round t and w transmits in this round if and only if all of the following hold:

(i) a = wCLASS,j,

(ii) b = σ + 1 + tw − tv, and,

(iii) vCLASS,j 6= wCLASS,j or tw 6= tv.

We can now prove the two statements of (1):

• From the definition of Partitioner, note that a triple (a, b, 1) appears in vLBL if and only if
both of the following hold:

– there is a neighbour w of v (i.e., an iteration of the for loop at line 3) such that:

∗ the condition at line 4 is satisfied, i.e., if and only if (wCLASS 6= vCLASS) or (tw 6= tv),
and,

∗ the triple (a, b, 1) is added at line 13, i.e., a = wCLASS and b = σ + 1 + tw − tv,
– there is no other neighbour ŵ of v (i.e., no other iteration of the for loop at line 3),

such that line 9 is executed, i.e., no other neighbour ŵ of v such that the conditions on
lines 4 and 7 both hold. In other words, there is no node ŵ 6= w adjacent to v such
that (a = ŵCLASS) and (b = σ + 1 + tŵ − tv) and at least one of (wCLASS 6= vCLASS) or
(tw 6= tv) holds.

In particular, a triple (a, b, 1) appears in vLBL if and only if there is exactly one neighbour w of
v such that conditions (i) - (iii) all hold. We proved above that these conditions all hold for a
node w if and only v listens in its local round t and w transmits during this round. Therefore,
a triple (a, b, 1) appears in vLBL if and only if v listens in local round t and has exactly one
neighbour w that transmits in this round. According to DG, each transmission consists of
the string ‘1’, so we conclude that (a, b, 1) appears in vLBL if and only if Hv,DG

[t] = (‘1’), as
desired.

• From the definition of Partitioner, note that a triple (a, b, ∗) appears in vLBL if and only if
both of the following hold:

– there is a neighbour w of v (i.e., an iteration of the for loop at line 3) such that:

∗ the condition at line 4 is satisfied, i.e., if and only if (wCLASS 6= vCLASS) or (tw 6= tv),
and,

∗ the triple (a, b, 1) is added at line 13, i.e., a = wCLASS and b = σ + 1 + tw − tv,

15

– there is at least one other neighbour ŵ of v (i.e., at least one other iteration of the for

loop at line 3), such that line 9 is executed, i.e., at least one other neighbour ŵ of v such
that the conditions on lines 4 and 7 both hold. In other words, there is at least one node
ŵ 6= w adjacent to v such that (a = ŵCLASS) and (b = σ + 1 + tŵ − tv) and at least one
of (wCLASS 6= vCLASS) or (tw 6= tv) holds.

In particular, a triple (a, b, ∗) appears in vLBL if and only if there are at least two neighbours
of v such that conditions (i) - (iii) all hold. We proved above that these conditions all hold
for a node w if and only v listens in its local round t and w transmits during this round.
Therefore, a triple (a, b, ∗) appears in vLBL if and only if v listens in local round t and at
least two neighbours transmit in this round, i.e., a collision occurs. We conclude that (a, b, ∗)
appears in vLBL if and only if Hv,DG

[t] = (∗), as desired.
To prove (2), consider any node v in G. For any k ∈ {1, . . . , numClassesG,j+1}, denote the

tuple stored in Lj+1[k] by (oldClassk, labelk). From the description of DG, node v transmits in
transmission block k ∈ {1, . . . , numClassesG,j+1} of phase Pj+1 in its execution of DG if and only
if both of the following conditions are satisfied:

(a) oldClassk is the block in which v transmits in phase Pj .

(b) for each round t in phase Pj such that t = rj−1 + (a − 1)(2σ + 1) + b for some a ∈
{1, . . . , numClassesG,j} and b ∈ {1, . . . , 2σ + 1}:

• If Hv,DG
[t] = (‘1’), then there exists a triple (a, b, 1) in labelk.

• If Hv,DG
[t] = (∗), then there exists a triple (a, b, ∗) in labelk.

• If Hv,DG
[t] = (∅), then there exists no triple (a, b, 1) or (a, b, ∗) in labelk.

By statement (2) of the induction hypothesis, condition (a) is true if and only if vCLASS,j =
oldClassk. By statement (1) proven above, we have Hv,DG

[t] = (‘1’) if and only if there exists a
triple (a, b, 1) in vLBL,j+1, and Hv,DG

[t] = (∗) if and only if there exists a triple (a, b, ∗) in vLBL,j+1.
Thus, condition (b) is true if and only if vLBL,j+1 = labelk. By definition, (oldClassk, labelk) =
Lj+1[k] = (repsj[k]CLASS,j , repsj+1[k]LBL, j + 1), so we have shown that conditions (a) and (b) are
true if and only if vCLASS,j = repsj[k]CLASS,j and vLBL,j+1 = repsj+1[k]LBL,j+1. In other words,
the two conditions are true if and only if node v is in the same equivalence class as node repsj[k]
at the end of iteration j − 1 of Classifier, and node v is assigned the same label as repsj[k]
during phase Pj , and this occurs if and only if the two conditions at line 7 in the execution of
Refine are satisfied. The two conditions at line 7 are satisfied if and only if line 8 is executed, i.e.,
vCLASS,j+1 = k, as desired.

The crucial relationship between Classifier and the canonical DRIP DG is the following: two
nodes are in different equivalence classes at the end of iteration j of Classifier if and only if the
two nodes have different histories after executing phase Pj of the canonical DRIP. This relationship
will form the basis of the proof of correctness of Classifier: if Classifier outputs “Yes” for
a configuration G, then Classifier creates at least one equivalence class that consists of exactly
one node, and therefore this node has a unique history in the execution of DG, and can be chosen
as leader of G; conversely, if G is feasible, we will be able to show that DG elects some leader v in
G, which implies v has a unique history in the execution of DG, and therefore Classifier puts v
in its own equivalence class, so Classifier outputs “Yes” for configuration G.

16

Lemma 3.9. For any two nodes v,w in G and any j ≥ 1, we have Hv,DG
[0 . . . rj−1] = Hw,DG

[0 . . . rj−1]
if and only if vCLASS,j = wCLASS,j.

Proof. The proof proceeds by induction on j. For the base case, consider j = 1. The state-
ment is vacuously true in both directions. First, for all v,w in G, note that Init-Aug assigns all
nodes to equivalence class 1, i.e., vCLASS,1 = wCLASS,1 = 1. Conversely, by Lemma 3.6, all nodes
wake up spontaneously when executing DG, so Hv,DG

[0 . . . r0] = Hv,DG
[0] = (∅) = Hw,DG

[0] =
Hw,DG

[0 . . . r0].
As induction hypothesis, assume that for any two nodes v,w in G and some j ≥ 1, we have

Hv,DG
[0 . . . rj−1] = Hw,DG

[0 . . . rj−1] if and only if vCLASS,j = wCLASS,j.
For the induction step, consider any two nodes v,w in G.
Nodes v and w are placed in the same equivalence class k by Refine if and only if the two

conditions at line 7 in the execution of Refine are satisfied for v and w for the same value of k. In
other words, vCLASS,j+1 = wCLASS,j+1 if and only if vCLASS,j = wCLASS,j and vLBL,j+1 = wLBL,j+1.
By the induction hypothesis, we know that vCLASS,j = wCLASS,j if and only if Hv,DG

[0 . . . rj−1] =
Hw,DG

[0 . . . rj−1].
Next, by statement (1) of Lemma 3.8, we know that for each local round value t such that t is

the bth round within transmission block a of phase Pj , a triple (a, b, 1) contained in a node’s label
corresponds to a (‘1’) in entry t of the node’s history, and a triple (a, b, ∗) contained in a node’s
label corresponds to a (∗) in entry t of the node’s history. Thus, vLBL,j+1 = wLBL,j+1 if and only if
Hv,DG

[t] = Hw,DG
[t] for all rounds in phase Pj , i.e., Hv,DG

[rj−1 + 1 . . . rj] = Hw,DG
[rj−1 + 1 . . . rj].

Thus, we have shown that Hv,DG
[0 . . . rj] = Hw,DG

[0 . . . rj], as required.

Finally, we give a bound on the time complexity of the canonical DRIP.

Lemma 3.10. In the execution of the canonical DRIP DG, each node terminates within O(n2σ)
rounds.

Proof. By Lemma 3.4 and the definition of DG, the number of phases will be at most ⌈n/2⌉. Each
phase consists of at most n transmission blocks (one per equivalence class) and exactly σ additional
rounds. Each block consists of 2σ + 1 rounds.

3.3.3 Correctness of Classifier: “Yes” Instances

In this section, we prove the correctness of Classifier in cases where it outputs “Yes” for input
configuration G. To do so, we construct a dedicated leader election algorithm for configuration G
using the canonical DRIP along with an appropriate decision function.

Lemma 3.11. If Classifier outputs “Yes” for input G, then G is a feasible configuration.

Proof. From the specification in Algorithm 4, Classifier outputs “Yes” only if, for exactly one j ∈
1, . . . , ⌈n/2⌉, there exists an m ∈ {1, . . . , numClassesG,j+1} such that exactly one node v ∈ Gaug

has vCLASS,j+1 = m. Let m̂ be the smallest suchm and let v̂ be the node in class m̂. By Lemma 3.9,
for all w 6= v̂, we have Hv̂,DG

[0 . . . rj] 6= Hw,DG
[0 . . . rj]. As Classifier terminates after iteration

j, it follows that Lj+1 consists of the string “terminate”, by definition. So, by the definition of
DG, all nodes terminate in their local round rj + 1. Thus, donev = rj + 1 for all v in G. Define a
decision function f as follows: set f(Hv̂,DG

[0 . . . donev̂]) = 1 and set f(Hw,DG
[0 . . . donew]) = 0 for

all w 6= v̂. It follows that (DG, f) solves leader election with v̂ as the unique leader.

17

3.3.4 Correctness of Classifier: “No” Instances

In this section, we prove the correctness of Classifier in cases where it outputs “No” for input
configuration G. It is sufficient to show that, if G is feasible, then Classifier outputs “Yes” on
configuration G. At a high level, we prove that if a configuration G is feasible, then at the start of
some phase in the execution of the canonical DRIP by the nodes of G, there is a node with a unique
history (which is sufficient to solve leader election). This fact is not immediately obvious: the fact
that G is feasible means that there is some dedicated leader election algorithm A for G, and the
DRIP used in algorithm A might behave very differently than the canonical DRIP. Our proof has
two main steps. First, we prove that if a configuration G is feasible, then there exists a dedicated
leader election algorithm for configuration G whose DRIP is patient. This will allow us to restrict
attention to patient DRIPs, which are much easier to reason about. Then, we prove that if there
exists a dedicated leader election algorithm for configuration G whose DRIP is patient, then there
exists a dedicated leader election algorithm for configuration G whose DRIP is the canonical DRIP.

We proceed by considering an arbitrary leader election algorithm for configuration G, and
constructing a patient DRIP that can be used to solve leader election in configuration G. The
idea is to construct a DRIP where each node starts its execution with a listening period of length
σ (which ensures that all nodes wake up spontaneously) and then have each node simulate the
original algorithm. This simulation will begin in local round σ + 1 if the node doesn’t receive any
messages in rounds 0, . . . , σ, or in an earlier round if it receives a message in one of the rounds
0, . . . , σ (as it must simulate a forced wakeup).

Lemma 3.12. For any configuration G, if G is feasible then there exists a patient DRIP Dpat and
a decision function fpat such that (Dpat, fpat) is a dedicated leader election algorithm for G.

Proof. Consider an arbitrary configuration G and suppose that there exists a DRIPD and a decision
function f such that (D, f) is a dedicated leader election algorithm for configuration G. We define
a new DRIP Dpat executed locally at each node w: listen for each of the first sw = min{σ, rcvw}
rounds after wakeup, where rcvw is the first local round in which a message is received, and then
execute D starting in round sw + 1. More formally, for each round i > sw, the action performed
by w in its local round i is given by Dpat(Hw,Dpat[0 . . . i− 1]) = D(Hw,Dpat[sw . . . i− 1]).

We also define a new decision function fpat that, when given the entire history of a node w in
the execution of Dpat, evaluates f with the suffix of w’s history starting from round sw. Formally,
fpat(Hw,Dpat[0 . . . donew,Dpat]) = f(Hw,Dpat[sw . . . donew,Dpat]).

First, we prove that Dpat is a patient DRIP, i.e., that no node transmits in global rounds
0, . . . , σ.

Claim 1. In the execution of Dpat by all nodes in G, no node transmits in any of the global rounds
0, . . . , σ. Equivalently, each node in G wakes up spontaneously in the execution of Dpat.

To prove the claim, we proceed by induction on the global round number r. In the base case,
r = 0, all nodes with wakeup tag greater than 0 are not awake, and those with wakeup tag equal
to 0 start executing their local algorithm in global round 1. Thus, no node transmits in global
round 0. As induction hypothesis, assume that no node transmits in global rounds 0, . . . , k − 1 for
some k ∈ {1, . . . , σ}. We consider the behaviour of an arbitrary node v in global round k. By the
induction hypothesis, v does not receive any messages in global rounds 0, . . . , k − 1. We consider
two cases:

18

• if v has wakeup tag greater than or equal to k, then the fact that v does not receive any
messages in global rounds 0, . . . , k − 1 implies that v is not awake before global round k.
Therefore, v does not start executing its local algorithm until global round k + 1 or later, so
v does not transmit in global round k.

• if v has wakeup tag less than k, then, from the description of Dpat, node v listens in global
round k as it has not received a message before global round k and its local clock is less than
σ + 1. To justify this last fact, note that a local clock value is always bounded above by the
global clock value, which in this case is k ≤ σ.

In all cases, v does not transmit in round k, so it follows that no node transmits in global rounds
0, . . . , k, which completes the inductive step. This completes the proof of Claim 1.

Next, we set out to prove that (Dpat, fpat) solves leader election when executed by configuration
G. We first prove a claim that essentially shows that the local experience of each node w is the
same when executing D and Dpat, as long as we ignore the first sw rounds of w’s execution of Dpat.
In other words, we show that, for each node w, the history of w’s execution of Dpat starting at
local round sw is identical to the history of w’s execution of D starting at local round 0. This fact
will later be used to show that, at each node, fpat outputs the same value as f , which we assumed
evaluates to 1 for exactly one node in G.

Claim 2. Consider an arbitrary configuration G. Let ψ be the execution of DRIP D by the nodes
of G, and let ψpat be the execution of DRIP Dpat by the nodes of G. For any r ≥ 0:

(1) for all nodes x in G, node x transmits in global round r of ψ if and only if x transmits in
global round r + σ of ψpat, and,

(2) for all nodes x in G, node x wakes up in global round r of ψ if and only if, in ψpat, the value
of sx is r − tx + σ, and,

(3) for all nodes x in G, if x is awake in global round r of ψ, then Hx,Dpat[sx . . . sx + r(x)] =

Hx,D[0 . . . r
(x)] where r(x) is the local round at x corresponding to global round r.

We proceed by induction on the global round number r. For the base case, consider r = 0.
To prove (1), note that no node transmits in global round 0 of ψ. Further, by Claim 1, no node

transmits in global round σ in ψpat. Therefore, both directions of the biconditional statement are
vacuously true.

To prove (2), consider an arbitrary node w in G. First, suppose that w wakes up in round 0 of
ψ. It follows that w’s wakeup tag tw is 0: node w’s wakeup is not forced since no node transmits in
global round 0 (as no node wakes up before round 0, and, by the definition of the model, no node
transmits in its wakeup round). Since tw is 0, node w wakes up spontaneously in global round 0 of
ψpat as well. By Claim 1, no node transmits in global rounds 0, . . . , σ, so it follows that, in ψpat,
the value of sw is min{σ, rcvw} = σ. Thus, sw = r − tw + σ, as required. Next, for the converse
direction, suppose that sw = r − tw + σ in ψpat. As r = 0 and Dpat is a patient DRIP, it follows
that the global round corresponding to w’s local round sw in ψpat is sw + tw = σ. By Claim 1,
no node transmits in global round σ of ψpat, which implies that sw 6= rcvw, i.e., sw = σ. Setting
σ = r − tw + σ, it follows that tw = 0, which implies that w wakes up in global round 0 of ψ, as
required.

To prove (3), consider an arbitrary node w in G. Suppose that node w is awake in global round 0
of ψ. As no node wakes up before global round 0, it follows that w wakes up in this round. Further,

19

as no node transmits in the round it wakes up, node w does not receive a message in global round
0 (i.e., its local round 0), so it follows that Hw,D[0] = ∅ and tw = 0. As tw = 0, node w wakes up
spontaneously in global round 0 of ψpat. By (2), in ψpat, the value of sw is r− tw + σ = σ. But, as
w wakes up in global round 0 in ψpat, it follows that local round σ at node w is global round σ in
ψpat, and, by Claim 1, no node transmits in global round σ of ψpat. Therefore, w does not receive
a message in local round σ in ψpat, and it follows that Hw,Dpat[sw] = Hw,Dpat[σ] = ∅ = Hw,D[0], as
required.

As induction hypothesis, assume that the three statements of the claim hold for some r ≥ 0.
We proceed to prove the induction step for the three statements of the claim.

To prove (1), consider an arbitrary node w in G. We consider two cases:

• Suppose that w does not wake up in any of the global rounds 0, . . . , r of ψ. Note that this
means that w does not transmit in global round r + 1 of ψ (as r + 1 is its earliest possible
wakeup round and no node transmits in its wakeup round) so one direction of the biconditional
statement holds vacuously. For the other direction, note that if w does not wake up in any of
the global rounds 0, . . . , r, then by statement (2) of the induction hypothesis, it follows that
sw > r − tw + σ, i.e., sw ≥ (r + 1) − tw + σ. By the definition of Dpat, node w listens in
the sw rounds after wakeup. In particular, this means that w does not transmit in its local
round (r + 1) − tw + σ. But, by Claim 1, node w wakes up spontaneously, which occurs in
global round tw by the definition of the model, so its local round (r+1)− tw+σ corresponds
to global round r + 1 + σ. Thus, w does not transmit in global round r + 1 + σ of ψpat, as
required.

• Suppose that w wakes up in some global round r′ ∈ {0, . . . , r} of ψ. By statement (2) of
the induction hypothesis, it follows that sw = r′ − tw + σ. Also, by statement (3) of the
induction hypothesis, it follows that Hw,Dpat[sw . . . sw + r(w)] = Hw,D[0 . . . r

(w)], where r(w) is
the local round at w corresponding to global round r of ψ. By the definition of Dpat and the
two preceding facts, we get that

Dpat(Hw,Dpat[0 . . . r − tw + σ]) = D(Hw,Dpat[sw . . . r − tw + σ])

= D(Hw,Dpat[sw . . . r
′ − tw + σ + (r − r′)])

= D(Hw,Dpat[sw . . . sw + (r − r′)])
= D(Hw,D[0 . . . (r − r′)])

In other words, the above equality means that the action performed by w in local round
r − tw + σ + 1 in its execution of DRIP Dpat is equal to the action performed by w in local
round r − r′ + 1 in its execution of DRIP D. As Dpat is a patient DRIP, we know that w
wakes up spontaneously, i.e., in global round tw of ψpat, and, by the definition of r′, we know
that w wakes up in global round r′ of ψ. So, translating from local rounds to global rounds,
the above statement is equivalent to the following: the action performed by w in global round
r+σ+1 in its execution of DRIP Dpat is equal to the action performed by w in global round
r + 1 in its execution of DRIP D. This implies the desired result.

As the statement holds in both cases, this concludes the proof of statement (1).
To prove statement (2), consider an arbitrary node w in G. There are several cases to consider:

• Suppose that node w does not wake up in global round r+1 of ψ. There are two possibilities:

20

– w wakes up in some global round r′ < r+1 of ψ. By statement (2) of the induction
hypothesis, the value of sw is r′ − tw + σ, which does not equal (r + 1) − tw + σ, as
desired.

– w wakes up after global round r+ 1 of ψ. It follows that r+ 1 < tw and that node
w does not receive a message in global round r + 1 of ψ. To obtain a contradiction,
assume that sw = (r + 1) − tw + σ in ψpat. Recall that sw is defined as min{σ, rcvw},
where rcvw is the first round in which w receives a message. The fact that r + 1 < tw
rules out the possibility that sw = σ. The remaining possibility is that sw = rcvw, i.e.,
w receives a message in local round sw = (r + 1) − tw + σ of its execution of Dpat. We
obtain a contradiction by showing that this implies that w receives a message in global
round r+1 of ψ. Indeed, as Dpat is a patient DRIP, w wakes up spontaneously in round
tw, so w’s local round sw corresponds to global round sw + tw = (r + 1) + σ in ψpat.
As w receives a message in local round sw, it follows that w listens and has exactly one
neighbour in G that transmits in global round (r + 1) + σ of ψpat. By statement (1)
applied to w and all of its neighbours, it follows that node w listens and has exactly one
neighbour in G that transmits in global round r + 1 of ψ, so w receives a message in
global round r + 1 of ψ. As this contradiction was reached under the assumption that
sw = (r + 1)− tw + σ in ψpat, it follows that sw 6= (r + 1)− tw + σ, as desired.

• Suppose that node w wakes up in global round r + 1 of ψ. There are two possibilities:

– w wakes up spontaneously in global round r + 1 of ψ. Then, by definition,
tw = r+ 1, and w does not receive a message in any of the global rounds 0, . . . , r + 1 of
ψ. By the induction hypothesis and the proof above, statement (1) holds for w and all
neighbours of w for each of the global rounds 0, . . . , r+1 of ψ, so it follows that w does
not receive a message in any of the global rounds σ, . . . , r + 1 + σ of ψpat. By Claim 1,
no nodes transmit in global rounds 0, . . . , σ of ψpat, so, along with the preceding fact, we
have that w does not receive a message in any of the global rounds up to and including
r + 1 + σ. As Dpat is a patient DRIP, w wakes up in global round tw of ψpat, so global
round r + 1 + σ corresponds to w’s local round r + 1 + σ − tw = σ. Thus, w does not
receive a message in any round up to and including its local round σ, which implies that
sw = min{σ, rcvw} = σ = (r + 1)− tw + σ, as desired.

– w wakes up due to receiving a message from a neighbour in global round

r + 1 of ψ. As w did not spontaneously wake up before round r + 1, it follows that
tw ≥ r+ 1. Also, as w wakes up in global round r+ 1, we know that w does not receive
a message in any of the global rounds 0, . . . , r of ψ, and receives a message in global
round r+1 of ψ. By the induction hypothesis and the proof above, statement (1) holds
for w and all neighbours of w for each of the global rounds 0, . . . , r+1 of ψ, so it follows
that w does not receive a message in any of the global rounds σ, . . . , r + σ of ψpat, and
receives a message in global round r + 1 + σ of ψpat. By Claim 1, no nodes transmit in
global rounds 0, . . . , σ of ψpat, so, along with the preceding fact, we have that w does
not receive a message in any of the global rounds up to and including r+σ, and receives
a message in global round r + 1 + σ of ψpat. As Dpat is a patient DRIP, w wakes up
spontaneously in global round tw of ψpat, so global round r + 1 + σ corresponds to w’s
local round r+1+σ−tw. In particular, we have shown that w’s local round r+1+σ−tw
is the first round in which w receives a message in ψpat, i.e., rcvw = r + 1 + σ − tw. As

21

tw ≥ r + 1, it follows that rcvw = r + 1 + σ − tw ≤ σ, so min{σ, rcvw} = rcvw. Thus,
sw = rcvw = (r + 1)− tw + σ, as desired.

This concludes the proof of statement (2).
To prove statement (3), consider an arbitrary node w in G. Suppose that w is awake in global

round r + 1 of ψ. Let r′ ≤ r + 1 be the global round in ψ in which w wakes up. It follows
that global round r + 1 corresponds to local round r + 1 − r′ at node w. So, we must prove
that Hw,Dpat[sw . . . sw + (r + 1 − r′)] = Hw,D[0 . . . r + 1 − r′]. In fact, it suffices to show that
Hw,Dpat[sw + (r+1− r′)] = Hw,D[r+1− r′], as we already know that the remainder of the entries
are equal, either due to statement (3) of the induction hypothesis, or in the case that r′ = r+1. In
other words, we must show that the history of w in its local round r+1− r′ of ψ is the same as the
history of w in its local round sw+(r+1−r′) of ψpat. To do so, we first state this equivalently with
respect to global rounds. As node w wakes up in round r′ of ψ, it follows that local round r+1− r′
at node w corresponds to global round r + 1 of ψ. As Dpat is a patient DRIP, node w wakes up
spontaneously in round tw of ψpat, so local round sw + (r+1− r′) at node w corresponds to global
round sw + (r + 1 − r′) + tw of ψpat. However, by statement (2), the value of sw is r′ − tw + σ,
so sw + (r + 1 − r′) + tw = r + 1 + σ. So, equivalently, we must prove that the history of w in
global round r+1 of ψ is the same as the history of w in global round r+ 1+ σ of ψpat. However,
this statement is seen to be true by applying statement (1) to w and all of w’s neighbours. This
concludes the proof of statement (3).

As the three statements of the Claim have been proven, the induction step is complete, which
concludes the proof of Claim 2.

Next, from statement (3) of Claim 2 with x = w and r(w) = donew,D, we get that

Hw,D[0 . . . donew,D] = Hw,Dpat[sw . . . sw + donew,D] (1)

for any node w in G. Note that sw + donew,D = donew,Dpat: in the execution of D by all nodes,
donew,D is the first round in which the DRIP D outputs terminate, and since Dpat is executing D
starting in round sw and the history is the same up to round sw + donew,D, the DRIP Dpat will
first output terminate in round sw + donew,D. Therefore, it follows from equation (1) that

Hw,D[0 . . . donew,D] = Hw,Dpat[sw . . . donew,Dpat] (2)

for any node w in G.
Using equation (2) along with the definition of fpat, it follows that

fpat(Hw,Dpat[0 . . . donew,Dpat]) = f(Hw,Dpat[sw . . . donew,Dpat])

= f(Hw,D[0 . . . donew,D])

for an arbitrary node w. As f(Hw,D[0 . . . donew,D]) = 1 for exactly one node w in G, it follows that
fpat(Hw,Dpat[0 . . . donew,Dpat]) = 1 for exactly one node w in G, which completes the proof that
(Dpat, fpat) is a leader election algorithm for configuration G.

Lemma 3.12 shows that if a configuration G is feasible, then there exists a patient DRIP that
can be used to solve leader election in G. The main goal of the remainder of the proof is to consider
any patient DRIP used in a leader election algorithm for a configuration G, and show that the
canonical DRIP can do no worse at breaking symmetry between nodes in G. In particular, if two

22

nodes have different histories at some time during the execution of an arbitrary patient DRIP, then
they will have different histories at the start of some phase during the execution of the canonical
DRIP.

The following result will be helpful in proving that two nodes v and w have different histories
in the execution of the canonical DRIP. In particular, if a neighbour v̂ of v transmits in v’s local
round r and a neighbour ŵ of w transmits in w’s local round r′ 6= r, then this will continue to
happen in all future phases. Essentially, once a neighbour of v and a neighbour of w have been
“separated” with respect to when they transmit, then they “stay separated”.

Lemma 3.13. Consider any nodes v,w in G, let v̂ be any neighbour of v, and let ŵ be any neighbour
of w. Suppose that there exists a j′ ≥ 1 such that, in the execution of the canonical DRIP, the local
round in phase Pj′ at node w in which ŵ transmits is different than the local round in phase Pj′ at
node v in which v̂ transmits. Then, for all j ≥ j′, in the execution of the canonical DRIP, the local
round in phase Pj at node w in which ŵ transmits is different than the local round in phase Pj at
node v in which v̂ transmits.

Proof. Consider any j′ ≥ 1 such that, in the execution of DG, the local round in phase Pj′ at node
w in which ŵ transmits is different than the local round in phase Pj′ at node v in which v̂ transmits.
Define hv, kv such that v̂ transmits in the hv’th round of the kv’th transmission block in phase Pj′

of node v’s execution of the canonical DRIP, and define hw, kw such that ŵ transmits in the hw’th
round of the kw’th transmission block in phase Pj′ of node w’s execution of the canonical DRIP.
By the choice of j′, it must be the case that hv 6= hw or kv 6= kw.

First, suppose that kv 6= kw. Therefore, there are two different equivalence classes kv, kw with
representatives repsj′[kv] and repsj′[kw], respectively. By Lemma 3.9, it follows thatHrepsj′ [kv],DG

[0 . . . rj′−1] 6=
Hrepsj′ [kw],DG

[0 . . . rj′−1]. By statement (2) of Lemma 3.8 and the definitions of kv and kw, we know

that Hv̂,DG
[0 . . . rj′−1] = Hrepsj′ [kv],DG

[0 . . . rj′−1] and Hŵ,DG
[0 . . . rj′−1] = Hrepsj′ [kw],DG

[0 . . . rj′−1],

so it follows thatHv̂,DG
[0 . . . rj′−1] 6= Hŵ,DG

[0 . . . rj′−1]. For any j ≥ j′, the fact thatHv̂,DG
[0 . . . rj′−1] 6=

Hŵ,DG
[0 . . . rj′−1] implies thatHv̂,DG

[0 . . . rj−1] 6= Hŵ,DG
[0 . . . rj−1], since the prefixes of length rj′−1

are different. So there cannot be a single value of k such thatHv̂,DG
[0 . . . rj−1] = Hrepsj[k],DG

[0 . . . rj−1]
and Hŵ,DG

[0 . . . rj−1] = Hrepsj[k],DG
[0 . . . rj−1], which means that v̂ and ŵ transmit in different

transmission blocks of phase Pj of the executions of nodes v and w, respectively, and thus their
transmissions cannot occur in the same local rounds at v and w, respectively.

Next, suppose that hv 6= hw. By Lemma 3.7, hv = tv̂ − tv + σ+1 and hw = tŵ − tw + σ+1. In
particular, note that the values of hv and hw depend only on the relative wakeup times of v, v̂ and
w, ŵ. In other words, every time v̂ transmits, it will happen in local round hv at v within some
transmission block of some phase, and every time ŵ transmits, it will happen in local round hw
at w within some transmission block of some phase. So, even if the transmissions by v̂ and ŵ in
phase Pj occur in the same transmission block locally at nodes v and w, respectively, the fact that
hv 6= hw means that they do not have the same offset from the start of the transmission block, so
they do not occur in the same local rounds at v and w, respectively.

We are now ready to prove the central fact that will be used to show that the canonical DRIP
for a feasible configuration G can be used to solve leader election in G: if two nodes v and w have
different histories up to some round in the execution of some patient DRIP, then v and w will have
different histories at the start of some phase Pj during the execution of the canonical DRIP.

23

Lemma 3.14. For any configuration G, any patient DRIP D, any i ≥ 0, and any two nodes v,w
in G, if Hv,D[0 . . . i] 6= Hw,D[0 . . . i], then in the execution of the canonical DRIP DG, there exists
a j ≥ 1 such that Hv,DG

[0 . . . rj−1] 6= Hw,DG
[0 . . . rj−1].

Proof. Consider an arbitrary configuration G and any patient DRIP D. The proof is by induction
on the global round number r. In particular, for each value r ≥ 0, we prove that for any two nodes
v,w in G that are both awake in global round r, if i = r −max{tv, tw} ≥ 0, then Hv,D[0 . . . i] 6=
Hw,D[0 . . . i] implies that there exists j ≥ 1 such that Hv,DG

[0 . . . rj−1] 6= Hw,DG
[0 . . . rj−1] in the

execution of the canonical DRIP DG. Doing so is sufficient to prove the result since for an arbitrary
pair of nodes v,w in G and any i ≥ 0, there exists a value for r such that v and w are both awake
in global round r and such that i = r −max{tv, tw}.

For the base case of the induction argument, consider r = 0 and any v,w in G that are both
awake in global round r. Since no node wakes up before global round 0, it follows that both v and
w wake up in global round r, so i = r−max{tv , tw} = 0. Since D is a patient DRIP, both v and w
wake up spontaneously, so Hv,D[0] = (∅) = Hw,D[0], and the desired statement is vacuously true.

As induction hypothesis, assume that for all k ∈ {0, . . . , r}, for any v,w in G that are both
awake in global round k, if i = k −max{tv , tw} ≥ 0, then Hv,D[0 . . . i] 6= Hw,D[0 . . . i] implies that
there exists j ≥ 1 such that Hv,DG

[0 . . . rj−1] 6= Hw,DG
[0 . . . rj−1] in the execution of the canonical

DRIP DG.
For the induction step, consider any v,w in G that are both awake in global round r + 1.

Suppose that i = r + 1−max{tv , tw} ≥ 0, and suppose that Hv,D[0 . . . i] 6= Hw,D[0 . . . i].
First, consider the case where the histories of v and w differ before round i in the execution

of D, i.e., assume there exists i′ ∈ {0, . . . , i − 1} such that Hv,D[0 . . . i
′] 6= Hw,D[0 . . . i

′]. Then,
the fact that i′ < i means that i′ = k −max{tv, tw} for some k ≤ r, so the induction hypothesis
implies that there exists j′ ≥ 1 such that Hv,DG

[0 . . . rj′−1] 6= Hw,DG
[0 . . . rj′−1] in the execution of

the canonical DRIP DG, as desired.
So the remainder of the proof assumes that i is the first local round where the histories of v

and w differ in the execution of D, i.e., Hv,D[0 . . . i− 1] = Hw,D[0 . . . i− 1] and Hv,D[i] 6= Hw,D[i].
Since Hv,D[0 . . . i− 1] = Hw,D[0 . . . i− 1], we know that v and w perform the same action in local
round i of the DRIP D. Further, we know that v and w must both listen in their local round i in
the execution of D, since otherwise we would have Hv,D[i] = (∅) = Hw,D[i], which contradicts our
assumption that Hv,D[i] 6= Hw,D[i].

Next, we prove a useful claim that, at a high level, shows that if a neighbour ŵ of w behaves
differently than a neighbour v̂ of v in the same local round i in the execution of D, then there is a
phase in the canonical DRIP where ŵ transmits in a different local round than v̂ does. This will
help us conclude that if v and w have different histories in local round i of D, then this difference
will be noticed in some phase of the canonical DRIP as well.

Claim 3. Let v̂ be an arbitrary neighbour of v in G and let ŵ be an arbitrary neighbour of w in G.
Suppose that v̂ transmits a message M in v’s local round i in the execution of D. Suppose that, in
w’s local round i in the execution of D, node ŵ does not transmit, or transmits a message M ′ 6=M .
Then there exists a j′ ≥ 1 such that, in the execution of DG, the local round in phase Pj′ at node w
in which ŵ transmits is different than the local round in phase Pj′ at node v in which v̂ transmits.

Proof of the Claim: We proceed in cases depending on the relationship between tv̂− tv and tŵ− tw.
• Suppose that tv̂ − tv 6= tŵ − tw. Consider phase P1. By Lemma 3.7, node v̂’s transmission
occurs in v’s local round r0+(k− 1)(2σ+1)+h = r0+(k− 1)(2σ+1)+ (tv̂ − tv +σ+1). To

24

obtain a contradiction, assume that ŵ transmits in a round corresponding to the same local
round at w, i.e., the h’th round of the k’th transmission block of phase P0 in w’s execution
of the canonical DRIP. By Lemma 3.7, the transmission by ŵ occurs in w’s local round
r0 + (k− 1)(2σ +1) + (tŵ − tw + σ+1). But if the local round at v and the local round at w
are equal, then r0+(k−1)(2σ+1)+(tv̂− tv+σ+1) = r0+(k−1)(2σ+1)+(tŵ− tw+σ+1),
which would imply that tv̂ − tv = tŵ − tw, a contradiction. So our assumption was incorrect,
i.e., for j′ = 1, it must be the case that w’s local round in phase Pj′ in which ŵ transmits is
different than v’s local round in phase Pj′ in which v̂ transmits.

• Suppose that tv̂ − tv = tŵ − tw. At a high level, we proceed by applying the induction
hypothesis to the transmissions by v̂ and ŵ, which will imply that they are placed in different
equivalence classes in some phase of the canonical DRIP, and thus transmit during different
transmission blocks, which will correspond to different local rounds at v and w.

We show that the conditions of the induction hypothesis hold for nodes v̂ and ŵ in their local
rounds i− (tv̂ − tv)− 1 in the execution of D.

First, we show that both v̂ and ŵ are awake in global round r in the execution of D. First,
suppose that tv ≥ tw. Since tv̂ − tv = tŵ − tw, it follows that tv̂ ≥ tŵ. Since i = r + 1 −
max{tv , tw} = r+1− tv, we know that v’s local round i corresponds to global round r+1. In
particular, this means that v̂ is awake and transmits in global round r+1 in the execution of
D, and thus is awake in round r (since, in our model, no node transmits in the same round as
it wakes up). Since tv̂ ≥ tŵ, it follows that ŵ is also awake in global round r in the execution
of D. Next, suppose that tw > tv. Since tv̂ − tv = tŵ − tw, it follows that tŵ > tv̂. Since
i = r + 1 −max{tv, tw} = r + 1 − tw, we know that w’s local round i corresponds to global
round r + 1. As node v spontaneously wakes up in global round tv, it follows that v’s local
round i occurs in global round tv + i = tv + (r + 1− tw) < r + 1, where the last inequality is
due to the fact that tw > tv. In particular, as v̂ transmits during v’s local round i, this means
that node v̂ transmits in or before global round r in the execution of D. As D is a patient
DRIP, no node transmits in global rounds 0, . . . , σ, which implies that r > σ. Moreover, every
node wakes up spontaneously in the round equal to their wakeup tag, so tŵ ≤ σ < r, which
implies that ŵ is awake in global round r. Since tŵ > tv̂, it follows that v̂ is also awake in
global round r. This concludes the proof that both v̂ and ŵ are awake in global round r in
the execution of D.

Next, we show that i − (tv − tv̂) − 1 = r − max{tv̂, tŵ}. If tv ≥ tw, then since i = r + 1 −
max{tv , tw}, we get that i− (tv̂− tv)−1 = (r+1−max{tv, tw})− (tv̂− tv)−1 = r− tv̂. Since
tv̂−tv = tŵ−tw, it follows that tv̂ ≥ tŵ, so r−tv̂ is equal to r−max{tv̂ , tŵ}. If tw ≥ tv, then note
that i−(tv̂− tv)−1 = i−(tŵ− tw)−1 from the assumption that tv̂− tv = tŵ− tw. Then, since
i = r+1−max{tv, tw}, we get that i−(tŵ−tw)−1 = (r+1−max{tv, tw})−(tŵ−tw)−1 = r−tŵ.
Since tv̂ − tv = tŵ − tw, it follows that tŵ ≥ tv̂, so r − tŵ is equal to r − max{tv̂, tŵ}. This
concludes the proof that i− (tv − tv̂)− 1 = r −max{tv̂ , tŵ}.
Finally, we prove that Hv̂,D[0 . . . i − (tv̂ − tv) − 1] 6= Hŵ,D[0 . . . i − (tŵ − tw)− 1]. To obtain
a contradiction, assume otherwise. Then nodes v̂ and ŵ would perform the same action
in their local rounds i − (tv̂ − tv) and i − (tŵ − tw), respectively, in their execution of D.
By Proposition 2.1, these rounds correspond to local round i at v and local round i at w,
respectively, in their execution of D. By assumption, v̂ sends message M in local round i at
v, so ŵ would also send message M in local round i at w. This contradicts the assumption

25

that either ŵ does not transmit, or transmits a message M ′ 6= M . This concludes the proof
that Hv̂,D[0 . . . i− (tv̂ − tv)− 1] 6= Hŵ,D[0 . . . i− (tŵ − tw)− 1].

Altogether, we have shown that v̂ and ŵ are awake in global round k = r, and for i −
(tv̂ − tv) − 1 = i − (tŵ − tw) − 1 = k − max{tv̂ , tŵ}, we have Hv̂,D[0 . . . i − (tv̂ − tv) − 1] 6=
Hŵ,D[0 . . . i − (tŵ − tw) − 1]. So, by the induction hypothesis, there exists j′ ≥ 1 such that
Hv̂,DG

[0 . . . rj′−1] 6= Hŵ,DG
[0 . . . rj′−1] in the execution of the canonical DRIP DG. So, by

Lemma 3.9, it follows that v̂CLASS,j′ 6= ŵCLASS,j′ . Then, by statement (2) of Lemma 3.8,
nodes v̂ and ŵ transmit in different transmission blocks of phase Pj′ , and it follows that the
local round at v in which node v̂ transmits is different than the local round at w in which ŵ
transmits.

In both cases above, we proved that w’s local round in phase Pj′ in which ŵ transmits is different
than v’s local round in phase Pj′ in which v̂ transmits. This concludes the proof of Claim 3.

Finally, to complete the induction step, we consider two cases that cover all possible scenarios
in which Hv,D[i] 6= Hw,D[i].

• Suppose that, for some z ≥ 1, node v has neighbours v1, . . . , vz that transmit

M1, . . . ,Mz, respectively, during v’s local round i in the execution of D. Suppose

that, in the execution of D, node w has no neighbour that transmits during w’s
local round i, or, has exactly one neighbour that transmits during w’s local round

i, and transmits a message M ′ such that M ′ 6=Mx for some x ∈ {1, . . . , z}.
Let v̂ be a neighbour of v that transmits a message during v’s local round i in the execution
of D such that the transmitted message M is not equal to a message transmitted by any
neighbour of w. Notice that Claim 3 applies to each neighbour ŵ of w in G. In particular,
this means that, for each neighbour ŵ of w, there exists a j′ ≥ 1 such that, in the execution
of DG, the local round in phase Pj′ at node w in which ŵ transmits is different than the local
round in phase Pj′ at node v in which v̂ transmits. We denote by jmax the maximum such j′

taken over all neighbours ŵ of w.

Let h ∈ {1, . . . , 2σ+1} and k ∈ {1, . . . , numClassesG,jmax} such that v̂ transmits in a round
corresponding to the h’th round of the k’th transmission block of phase Pjmax in v’s execution
of the canonical DRIP. By the choice of jmax and Lemma 3.13, we conclude that no neighbour
of w transmits in the h’th round of the k’th transmission block of phase Pjmax at w. In
particular, this meansHv,DG

[rjmax−1+(k−1)(2σ+1)+h] 6= Hw,DG
[rjmax−1+(k−1)(2σ+1)+h],

which implies that Hv,DG
[0 . . . rjmax] 6= Hw,DG

[0 . . . rjmax], as desired. Setting j = jmax + 1
gives the desired result.

• Suppose that, for some z ≥ 2, node v has neighbours v1, . . . , vz that all transmit

the same message M during v’s local round i in the execution of D. Suppose

that, in the execution of D, w has exactly one neighbour that transmits during

w’s local round i, and transmits the message M during this round.

Consider neighbours v1 and v2 of v that transmit the message M during v’s local round i in
the execution of D.

First, for each of v1 and v2, notice that Claim 3 applies to each neighbour ŵ of w that does
not transmit during w’s local round i. In particular, for each α ∈ {1, 2}, for each neighbour
ŵ of w that does not transmit during w’s local round i, there exists a j′α ≥ 1 such that, in

26

the execution of DG, the local round in phase Pj′α at node w in which ŵ transmits is different
than the local round in phase Pj′α at node v in which vα transmits. For each neighbour ŵ of w
that does not transmit during w’s local round i, we take the maximum of j′1 and j′2, and then
denote by jmax the maximum taken over all such ŵ. By Lemma 3.13, we have shown that,
for each neighbour ŵ of w that does not transmit during w’s local round i in the execution of
D, the local round in phase Pjmax at node w in which ŵ transmits is different than the local
round in phase Pjmax at node v in which v1 or v2 transmit.

Next, let w̆ be the neighbour of w that transmits during w’s local round i in the execution
of D. Observe that, since we assume that v1, v2, and w̆ transmit M during this round, we
cannot apply Claim 3. Instead, we consider the possible cases for when v1, v2, and w̆ transmit
during phase Pjmax in the execution of the canonical DRIP. Define the following:

– Let h1 ∈ {1, . . . , 2σ + 1} and k1 ∈ {1, . . . , numClassesG,jmax} such that v1 transmits in
a round corresponding to the h1’th round of the k1’th transmission block of phase Pjmax

in v’s execution of the canonical DRIP.

– Let h2 ∈ {1, . . . , 2σ + 1} and k2 ∈ {1, . . . , numClassesG,jmax} such that v2 transmits in
a round corresponding to the h2’th round of the k2’th transmission block of phase Pjmax

in v’s execution of the canonical DRIP.

– Let hw̆ ∈ {1, . . . , 2σ + 1} and kw̆ ∈ {1, . . . , numClassesG,jmax} such that w̆ transmits
in a round corresponding to the hw̆’th round of the kw̆’th transmission block of phase
Pjmax in w’s execution of the canonical DRIP.

We consider two cases:

– h1 = h2 and k1 = k2

It follows that a collision occurs in the h1’th round of the k1’th transmission block of
phase Pjmax in v’s execution of the canonical DRIP. But we already showed that, for all
neighbours ŵ 6= w̆ of w, the local round in phase Pjmax at node w in which ŵ transmits
is different than the local round in phase Pjmax at node v in which v1 transmits. In
particular, the node w̆ is the only possible neighbour of w that might transmit in the h1’th
round of the k1’th transmission block of phase Pjmax in w’s execution of the canonical
DRIP. This means that a collision will not happen in this round of w’s execution of the
canonical DRIP, so Hv,DG

[rjmax−1+(k1−1)(2σ+1)+h1] 6= Hw,DG
[rjmax−1+(k1−1)(2σ+

1)+ h1], which implies that Hv,DG
[0 . . . rjmax] 6= Hw,DG

[0 . . . rjmax]. Setting j = jmax +1
gives the desired result.

– h1 6= h2 or k1 6= k2

In this case, we cannot have hw̆ = h1 = h2 and kw̆ = k1 = k2. Without loss of
generality, assume that hw̆ 6= h1 or kw̆ 6= k1. In particular, this means that the node w̆
does not transmit in the h1’th round of the k1’th transmission block of phase Pjmax in
w’s execution of the canonical DRIP. Moreover, we already showed that, for all other
neighbours ŵ 6= w̆ of w, the local round in phase Pjmax at node w in which ŵ transmits is
different than the local round in phase Pjmax at node v in which v1 transmits. This means
that Hw,DG

[rjmax−1 + (k1 − 1)(2σ + 1) + h1] = (∅), and we know that Hv,DG
[rjmax−1 +

(k1− 1)(2σ+1)+h1] 6= (∅) due to v1’s transmission. It follows that Hv,DG
[0 . . . rjmax] 6=

Hw,DG
[0 . . . rjmax]. Setting j = jmax + 1 gives the desired result.

27

Lemma 3.14 shows that the canonical DRIP breaks symmetry among nodes at least as well as
any other DRIP. Using this fact, we show that the canonical DRIP for any feasible configuration
G can be used to solve leader election in G.

Theorem 3.15. For any configuration G, if G is feasible then there is a O(n2σ)-round dedicated
distributed leader election algorithm (DG, fG) for G.

Proof. By Lemma 3.12, if a configuration G is feasible, then there exists a patient DRIP Dpat and
a decision function fpat such that (Dpat, fpat) solves leader election in G. Suppose that node x is cho-
sen as leader by this algorithm, i.e., fpat(Hx,Dpat[0 . . . donex,Dpat]) = 1 and fpat(Hv,Dpat [0 . . . donev,Dpat]) =
0 for all v 6= x. As fpat is a well-defined function, we must have Hx,Dpat[0 . . . donex,Dpat] 6=
Hv,Dpat [0 . . . donev,Dpat] for all v 6= x. By Lemma 3.14, it follows that Hx,DG

[0 . . . donex,DG
] 6=

Hv,DG
[0 . . . donev,DG

] for all v 6= x. So, by defining a decision function fG by fG(Hx,DG
[0 . . . donex,DG

]) =
1 and fG(Hv,DG

[0 . . . donev,DG
]) = 0 for all v 6= x, we see that (DG, fG) solves leader election in G.

By Lemma 3.10, we know that each node will terminate its execution of DG in O(n2σ) rounds.

Finally, we are now ready to complete the proof that Classifier outputs “Yes” when given a
feasible configuration G as input. The idea is that, if G is feasible, then DG can be used to elect
some leader. When Classifier is executed with input G, this leader will eventually be placed in
its own equivalence class, and Classifier will output “Yes” and terminate.

Lemma 3.16. For any configuration G, if G is feasible then Classifier outputs “Yes” when
executed with G as input.

Proof. If G is feasible, then, by Theorem 3.15, after executing the canonical DRIP DG, there is
at least one node x such that fG(Hx,DG

[0 . . . donex,DG
]) = 1 and fG(Hv,DG

[0 . . . donev,DG
]) = 0 for

all v 6= x. It follows that Hx,DG
[0 . . . donex,DG

] 6= Hv,DG
[0 . . . donev,DG

] for all v 6= x. From the
definition of the canonical DRIP DG, the value of donev,DG

is the same for all v in G: there exists
some j, denoted by jterm, such that Lj [1] = “terminate”, and all nodes will terminate in local round
rj−1 + 1. So, donev,DG

= rjterm−1 + 1, and we have Hx,DG
[0 . . . rjterm−1] 6= Hv,DG

[0 . . . rjterm−1] for
all v 6= x. By Lemma 3.9, it follows that xCLASS,jterm 6= vCLASS,jterm for all v 6= x, i.e., the condition
on line 5 of Classifier is true after the execution of Partitioner(Gaug , jterm − 1). In the next
step, Classifier will output “Yes” and terminate.

Putting together Lemmas 3.5, 3.11 and 3.16 completes the analysis of Classifier.

Theorem 3.17. There is a O(n3∆)-round centralized algorithm that, when provided as input any
configuration G with maximum node degree ∆, decides whether or not G is feasible.

4 Negative results

In this section, we prove lower bounds on the complexity of dedicated leader election algorithms
for feasible configurations, and prove impossibility results concerning universal leader election and
distributed decision algorithms for anonymous radio networks. Our first negative result is a Ω(n)
lower bound on the complexity of leader election, even for some configurations with bounded span.

28

Proposition 4.1. There exists an infinite class of feasible configurations with span σ = 1, such
that, for each configuration G of this class, every dedicated leader election algorithm for G takes
time Ω(n), where n is the size of the configuration.

Proof. Consider the class of linear configurationsGm with nodes a1, . . . , am, b1, . . . , b2m+1, cm, . . . , c1,
listed from left to right, for m ≥ 2. For all i ∈ {1, . . . ,m}, the wakeup tags of nodes ai and ci are 0.
For all i ∈ {1, . . . , 2m + 1}, the wakeup tags of nodes bi are 1. By Lemma 3.11, all configurations
Gm are feasible: indeed, when Classifier is executed with input Gm, the central node bm+1 will
be in a one-element equivalence class after m iterations. Consider any leader election algorithm
for configuration Gm. For any local round and any i ∈ {1, . . . ,m}, the history of nodes ai and
ci is the same, and the history of nodes bi and b2m+2−i is the same, due to the symmetry of the
configuration. Moreover, for any local round t < m− 1, the history of nodes bm, bm+1, bm+2 is the
same: either all of them transmit or all of them listen and hear silence in each of these rounds.
Hence, in all local rounds t < m− 1 leader election is impossible. Since m ∈ Θ(n), this concludes
the proof.

In our remaining negative results, we will make use of the following class of configurations. For
each m ≥ 1, denote by Hm the linear configuration of size 4 consisting of nodes a, b, c, d, listed from
left to right, with the following wakeup tags: nodes b and c have tags 0, node a has tag m and
node d has tag m+ 1. The following lemma gives a lower bound on the number of rounds needed
to solve leader election in such configurations.

Lemma 4.2. Each configuration Hm is feasible, and every leader election algorithm for Hm takes
time at least m.

Proof. By Lemma 3.11, all configurations Hm are feasible: indeed, when Classifier is executed
with input Hm, each of the four nodes will be in a one-element class after iteration 1. Suppose that
there exists a leader election algorithm A for configuration Hm working in time less than m. In the
execution of A, nodes b and c with tag 0 must send their first message before round m, otherwise
all nodes would have the same history before round m (every entry equal to (∅)) and leader election
could not be correctly achieved. Further, nodes b and c send their first message in the same round,
as they wake up in the same global round and have the same history up to that round (every history
entry equal to (∅)). Suppose that nodes b and c send their first message in round t < m. Nodes a
and d are woken up by these messages, and, from round t onward, the histories of nodes a and d
are the same. The histories of nodes b and c were the same up to round t− 1 and will also be the
same from round t onward. This follows by induction on the round number. Hence algorithm A
cannot correctly elect a leader.

Lemma 4.2 implies our second negative result, which is a Ω(σ)-round lower bound on the
complexity of leader election, even for some configurations of bounded size.

Proposition 4.3. There exists an infinite class of feasible configurations of size n = 4, such that,
for each configuration G of this class, every dedicated leader election algorithm for G takes time
Ω(σ), where σ is the span of the configuration.

We now consider the question whether there exists a universal distributed algorithm that elects
a leader for all feasible configurations. Our next result shows that the answer is no. In fact, even
knowing the size of the configuration cannot help.

29

Proposition 4.4. There is no universal distributed algorithm that elects a leader for all feasible
configurations of size 4.

Proof. Suppose that such a universal algorithm U exists. If no node ever sends a message then
leader election is impossible. Consider the configurations Hm with m ≥ 1. By Lemma 4.2, they are
all feasible. Suppose that t is the first global round when nodes with tag 0 send a message. Both
nodes with tag 0 will send the same first message, as they both have the same history up to round
t (every entry equal to (∅)). Consider configuration Ht+1. Nodes a and d are woken up by the first
message of nodes b and c respectively, and, for all rounds after wakeup, the histories of nodes a
and d are the same. The histories of nodes b and c were the same up to round t− 1 and will also
be the same from round t onward, due to symmetry. Hence U does not correctly elect a leader on
configuration Ht+1, which is a contradiction.

Finally, we consider the question whether feasibility of a configuration can be decided in a
distributed way. Algorithm Classifier is a decision algorithm for the property of feasibility, but
it is centralized: the configuration is given to it as input and the algorithm correctly outputs the
decision. (Of course, such a centralized algorithm can be simulated in a distributed way if nodes get
the configuration as input). A hypothetical distributed decision algorithm would work as follows,
for all configurations: all nodes of a configuration output “yes” if the configuration is feasible, and
at least one node outputs “no” if the configuration is not feasible. Our next result shows that such
a distributed counterpart of Algorithm Classifier cannot exist.

Proposition 4.5. If nodes have no a priori knowledge, there is no distributed algorithm that decides
if a configuration is feasible.

Proof. Suppose that such a distributed decision algorithm D exists. We define a sequence of linear
configurations Sm, for m ≥ 1, as follows. The nodes of Sm are a, b, c, d, listed from left to right,
with the following wakeup tags: nodes b and c have tag 0, and nodes a and d have tag m. By
Lemma 3.16, the configurations Sm are not feasible: indeed, when Classifier is executed on Sm
for any m ≥ 1, the partition of nodes into equivalence classes after iteration 2 will be the same as
after iteration 1, and will consists of two classes with two elements each, so Classifier will output
“No”. However, recall from Lemma 4.2 that the configurations Hm are feasible for all m ≥ 1.

Algorithm D must instruct the nodes to send some message, otherwise no correct decision can
be made. Suppose that t is the first round when nodes with tag 0 send a message. Consider
configurations Ht+1 and St+1. The history of each of the nodes a, b, c, d is the same in both these
configurations, for all rounds. Hence, each of the nodes executing algorithm D must make the same
decision when D terminates in configurations Ht+1 and St+1. This is a contradiction, as one of
these configurations is feasible and the other one is not.

5 Conclusion

We characterized the configurations for which leader election is possible for anonymous radio net-
works, which is a particularly difficult scenario for this task. The characterization is done by a
centralized decision algorithm accompanied by a dedicated distributed leader election algorithm
for each feasible configuration. We proved the nonexistence of a distributed algorithm deciding
whether a configuration is feasible, and the nonexistence of a universal distributed leader election

30

algorithm working for all feasible configurations. Thus, in terms of feasibility, the problem of leader
election in anonymous radio networks is completely solved.

As far as time complexity is concerned, two problems remain open in the context of this work.
The first is the complexity of the centralized decision algorithm. Can the complexity O(n3∆) of
Algorithm Classifier be improved? What is the optimal time complexity of a centralized decision
algorithm for this task? As for distributed dedicated leader election algorithms, our algorithm using
the canonical DRIP for feasible configurations works in time O(n2σ) and we proved the lower bound
Ω(n+ σ) on the complexity of dedicated leader election for some classes of feasible configurations.
Hence a natural open problem is whether there exists a O(n+σ) dedicated leader election algorithm
for each feasible configuration.

References

[1] D. Angluin, Local and global properties in networks of processors. Proc. 12th Annual ACM
Symposium on Theory of Computing (STOC 1980), 82–93.

[2] H. Attiya and M. Snir, Better computing on the anonymous ring, Journal of Algorithms 12,
(1991), 204-238.

[3] H. Attiya, M. Snir, M. Warmuth, Computing on an anonymous ring, Journal of the ACM 35,
(1988), 845–875.

[4] R. Bar-Yehuda, O. Goldreich, A. Itai, On the time complexity of broadcast in radio networks:
an exponential gap between determinism and randomization, Journal of Computer and System
Sciences 45 (1992), 104-126.

[5] P. Boldi, S. Shammah, S. Vigna, B. Codenotti, P. Gemmell, J. Simon, Symmetry breaking in
anonymous networks: Characterizations. Proc. 4th Israel Symposium on Theory of Computing
and Systems, (ISTCS 1996), 16-26.

[6] P. Boldi, S. Vigna, Computing anonymously with arbitrary knowledge, Proc. 18th ACM Sym-
posium on Principles of Distributed Computing (PODC 1999), 181–188.

[7] J.E. Burns, A formal model for message passing systems, Tech. Report TR-91, Computer
Science Department, Indiana University, Bloomington, September 1980.

[8] J. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Transactions on Infor-
mation Theory 25 (1979), 505-515.

[9] A. Casteigts, Y. Métivier, J. Robson, A. Zemmari, Deterministic leader election in O(D +
log n) time with messages of size O(1), Proc. 30th International Symposium on Distributed
Computing (DISC 2016), 16-28.

[10] B. Chlebus, L. Ga̧sieniec, A. Östlin, J.M. Robson, Deterministic radio broadcasting. Proc. 27th
International Colloquium on Automata, Languages and Programming (ICALP 2000), LNCS
1853, 717–728.

[11] B.S. Chlebus, D. Kowalski, A. Pelc, Electing a leader in multi-hop radio networks, Proc. 16th
International Conference on Principles of Distributed Systems (OPODIS 2012), 106-120.

31

[12] M. Chrobak, L. Gasieniec, W. Rytter, Fast broadcasting and gossiping in radio networks,
Journal of Algorithms 43 (2002), 177–189.

[13] A.E.F. Clementi, A. Monti, R. Silvestri, Distributed broadcast in radio networks of unknown
topology, Theoretical Computer Science 302 (2003), 337-364.

[14] A. Czumaj, P. Davis, Faster deterministic communication in radio networks, Proc. 43th Inter-
national Colloquium on Automata, Languages and Programming (ICALP 2016), 139.1–139.14

[15] A. Czumaj, P. Davis, Exploiting spontaneous transmissions for broadcasting and leader elec-
tion in radio networks, Proc. 36th ACM Symp. on Principles of Distributed Computing (PODC
2017), 3-12

[16] D. Dereniowski, A. Pelc, Leader election for anonymous asynchronous agents in arbitrary
networks, Distributed Computing 27 (2014), 21-38.

[17] A. Derhab, N. Badache, A self-stabilizing leader election algorithm in highly dynamic ad hoc
mobile networks, IEEE Trans. on Parallel and Distributed Systems 19 (2008), 926-939.

[18] Y. Dieudonné, A. Pelc, Anonymous meeting in networks, Algorithmica 74 (2016), 908-946 .

[19] S. Dobrev and A. Pelc, Leader election in rings with nonunique labels, Fundamenta Informat-
icae 59 (2004), 333-347.

[20] M. Elkin, G. Kortsarz, Improved broadcast schedule for radio networks. Proc. 16th ACM-
SIAM Symposium on Discrete Algorithms (SODA 2005).

[21] P. Flocchini, E. Kranakis, D. Krizanc, F.L. Luccio and N. Santoro, Sorting and election in
anonymous asynchronous rings, Journal of Parallel and Distributed Computing 64 (2004),
254-265.

[22] G.N. Fredrickson and N.A. Lynch, Electing a leader in a synchronous ring, Journal of the
ACM 34 (1987), 98-115.

[23] E. Fusco, A. Pelc, How much memory is needed for leader election, Distributed Computing 24
(2011), 65–78.

[24] I. Gaber, Y. Mansour, Centralized broadcast in multihop radio networks. Journal of Algorithms
46 (2003), 1–20.

[25] L. Gasieniec, D. Peleg, Q. Xin, Faster communication in known topology radio networks,
Distributed Computing 19 (2007), 289-300.

[26] C. Glacet, A. Miller, A. Pelc, Time vs. information tradeoffs for leader election in anonymous
trees, ACM Transactions on Algorithms 13 (2017), 31:1-31:41.

[27] A.G. Greenberg, S. Winograd, A lower bound on the time needed in the worst case to resolve
conflicts deterministically in multiple access channels, Journal of the ACM 32 (1985), 589-596.

[28] J.F. Hayes, An adaptive technique for local distribution, IEEE Transactions on Communica-
tions 26 (1978), 1178-1186.

32

[29] D.S. Hirschberg, and J.B. Sinclair, Decentralized extrema-finding in circular configurations of
processes, Communications of the ACM 23 (1980), 627-628.

[30] P. Indyk, Explicit constructions of selectors and related combinatorial structures, with appli-
cations, Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), 697-704.

[31] R. Ingram, T. Radeva, P. Shields, S. Viqar, J. E. Walter, J. L. Welch, A leader election
algorithm for dynamic networks with causal clocks. Distributed Computing 26 (2013), 75-97.

[32] T. Jurdzinski, M. Kutylowski, J. Zatopianski, Efficient algorithms for leader election in radio
networks. Proc. 21st ACM Symp. on Principles of Distributed Computing (PODC 2002), 51-57.

[33] D. Kowalski, A. Pelc, Leader election in ad hoc radio networks: a keen ear helps, Journal of
Computer and System Sciences 79 (2013), 1164-1180.

[34] E. Kushilevitz, Y. Mansour, An Ω(D log(N/D)) lower bound for broadcast in radio networks,
SIAM Journal on Computing 27 (1998), 702-712.

[35] G. Le Lann, Distributed systems - Towards a formal approach, Proc. IFIP Congress, 1977,
155–160, North Holland.

[36] N.L. Lynch, Distributed Algorithms, Morgan Kaufmann Publ. Inc., San Francisco, USA, 1996.

[37] G.L. Peterson, An O(n log n) unidirectional distributed algorithm for the circular extrema
problem, ACM Transactions on Programming Languages and Systems 4 (1982), 758-762.

[38] B.S. Tsybakov, V.A. Mikhailov, Free synchronous packet access in a broadcast channel with
feedback, Prob. Inf. Transmission 14 (1978), 259-280.

[39] D.E. Willard, Log-logarithmic selection resolution protocols in a multiple access channel, SIAM
J. on Computing 15 (1986), 468-477.

[40] M. Yamashita and T. Kameda, Electing a leader when procesor identity numbers are not
distinct, Proc. 3rd Workshop on Distributed Algorithms (WDAG 1989), LNCS 392, 303-314.

[41] M. Yamashita and T. Kameda, Computing on anonymous networks: Part I - Characterizing
the solvable cases, IEEE Trans. Parallel and Distributed Systems 7 (1996), 69-89.

33

	1 Introduction
	1.1 The model and the problem
	1.2 Our results
	1.3 Related work

	2 Terminology and Notation
	2.1 Configuration
	2.2 Distributed Radio Interaction Protocol (DRIP)
	2.3 Leader Election Algorithm

	3 Efficient Classification of Feasible Configurations
	3.1 Definition of Classifier
	3.2 Time Complexity of Classifier
	3.3 Correctness of Classifier
	3.3.1 The Canonical DRIP
	3.3.2 Properties of DG
	3.3.3 Correctness of Classifier: ``Yes" Instances
	3.3.4 Correctness of Classifier: ``No" Instances

	4 Negative results
	5 Conclusion

