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ABSTRACT
Since interactions with social robots are novel and exciting for many
people, one particular concern in this specific area of human-robot
interaction (HRI) is the extent to which human users will experience
the interactions positively over time, when the robot’s novelty is
particularly salient. In the current paper, we investigated users’
experience in long-term HRIs; how users perceive the ongoing
interactions and the robot’s ability to sustain it over time. Therefore,
here we examine the effect of the repeated measures (10 testing
sessions) and the discussion theme (Covid-19 related vs general)
on the way participants experienced the interaction quality with a
social robot and perceived the robot’s communication competency
over time. We found that despite individual differences between
the participants, over time participants found the interactions with
Pepper to be of higher quality and that Pepper’s communication
skills got better. Nevertheless, our results also stressed that the
discussion theme has no meaningful nor significant effect on the
way people perceive Pepper and the interaction.
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1 INTRODUCTION
Social robots can elicit socially meaningful behaviours and emo-
tions from humans across several experimental and real-world con-
texts [5, 6, 9]. Nevertheless, one of the challenges to human-robot
interaction (HRI) research is replicating and extending lab-based
findings to better understand how short, constrained laboratory
manipulations might translate to real-world scenarios. Since inter-
actions with social robots are novel and exciting for many people,
one particular concern in this specific area of HRI is the extent
to which human users will experience the interactions positively
over time, when its novelty is particularly salient [12]. In the cur-
rent paper, we were particularly interested in users’ experience in
long-term HRIs; how users perceive the interaction and the robot’s
ability to sustain it over time. Therefore, here we examine the effect
of the repeated measures (10 testing sessions) and the discussion
theme (Covid-19 related vs general) on the way participants ex-
perienced the interaction with a social robot and perceived the
social robot Pepper (SoftBank Robotics). To evaluate the way partic-
ipants perceived and experienced the interaction and the robot we
are using measurements of interaction quality and communication
competency.

2 METHODS
The study methodology followed an experimental design protocol
for mediated online experimental design with a social robot [10].
For a detailed description of the experimental design, stimuli, task,
procedure and measurements, please see the experimental design
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protocol [10]. All study procedures were approved by the research
ethics committee of the University of Glasgow. A 2 (Discussion
Theme: Covid-19 related or general) by 10 (chat sessions across
time) between-groups repeated measures experimental design was
followed with 39 participants. Participants were randomly assigned
to one of the two discussion topic groups, according to which they
conversed with the robot Pepper (SoftBank Robotics) via Zoom
video chats about general everyday topics (e.g., social relationships,
work-life balance, health and well-being; see [10]). One group’s
conversation topics were framed within the context of the Covid-19
pandemic (e.g., social relationships during the pandemic, sustaining
mental health during the pandemic, etc.), whereas the other group’s
conversation topics were similar, except that no explicit mention of
the Covid-19 pandemic was ever made. Each interaction consisted
of the social robot Pepper asking the participant 3 questions (x3
repetitions). The topic of each interaction was assigned randomly
before the experimental procedure started, as was the order of
the questions. Participants were scheduled to interact with the
robot twice a week for five weeks during prearranged times. Each
interaction with the robot lasted between 5 to 10 minutes, and
another 10-20 minutes for completing questionnaires. After each
interaction participants answered several short questionnaires.

2.1 Measurements
2.1.1 Interaction quality. This scale was aimed at capturing how
participants perceived and evaluated the interaction with Pepper
using an adapted and adjusted version by [3] for a scale by [2].
Each interaction included two random items out of six, except for
the mid-session (session 5) and the last session (session 10) which
included all six items of the scale. These items were evaluated on
a seven-point scale ranging from 1 (not at all) to 7 (extremely).
Accordingly, a mean scale was constructed (𝑀 = 5.45, 𝑆𝐷 = 1.58)
which was found to be reliable (Cronbach’s 𝛼 = .96).

2.1.2 Communication competence. This scale was aimed at captur-
ing how participants experienced and evaluated Pepper’s communi-
cation competency using an adapted and adjusted version by [3] for
a scale by [4]. The scale included three items that were evaluated
on a seven-point scale ranging from 1 (not at all) to 7 (extremely).
Accordingly, a mean scale was constructed (𝑀 = 5.76, 𝑆𝐷 = 1.18)
which was found to be reliable (Cronbach’s 𝛼 = .93).

3 RESULTS
3.0.1 Interaction quality. We used and lme4 [1] for R to perform a
linear mixed effects analysis of the effect of session number, discus-
sion theme and their interaction term on participants’ perception of
the interaction quality. As fixed effects, we entered the session or-
der, the discussion theme and their interaction term into the model.
To control for the part of the overall variance that can be accounted
by the participant themselves (rather than the previous exposure
and topic) we included a random effect intercept for the partici-
pants; which will not be further analysed but increases the power
of the analysis. Significance was calculated using the lmerTest pack-
age [7], which applies Satterthwaite’s method to estimate degrees
of freedom and generate p-values for mixed models. The model
explains 66.3% (Pseudo 𝑅2 = .663) of the variance in participants’
perceptions of the interaction quality, whereas the fixed effects in

the model explain 4% (Pseudo 𝑅2 = .039) of the variance in partici-
pants’ perceptions of the interaction quality. The results stress that
despite the variance between the participants (𝑆𝐷 = 1.26), the ses-
sion number has a significant positive fixed effect on participants’
perceptions of the interaction quality (𝛽 = .10, 𝑆𝐸 = .02, 𝑝 < .001).
Nevertheless, there were no significant fixed effects in terms of the
discussion theme (𝛽 = -.16, 𝑆𝐸 = .45, 𝑝 = .730), and the interaction
term of the session number and discussion theme (𝛽 = .03, 𝑆𝐸 = .03,
𝑝 = .394).

Figure 1: Mean scores of participants’ perceptions of the in-
teraction quality by the fixed effect of session number. Error
bars: 95%CI.

3.0.2 Communication competence. We used and lme4 [1] for R to
perform a linear mixed effects analysis of the effect of session num-
ber, discussion theme and their interaction term on participants’
perception of Pepper’s communication competence. As fixed effects,
we entered the session order, the discussion theme and their inter-
action term into the model. To control for the part of the overall
variance that can be accounted by the participant themselves (rather
than the previous exposure and topic) we included a random effect
intercept for the participants; which will not be further analysed
but increases the power of the analysis. Significance was calcu-
lated using the lmerTest package [7], which applies Satterthwaite’s
method to estimate degrees of freedom and generate p-values for
mixed models. The model explains 70% (Pseudo 𝑅2 = .697) of the
variance in participants’ perceptions of Pepper’s communication
competency, whereas the fixed effects in the model explain 1.2%
(Pseudo 𝑅2 = .012) of the variance in participants’ perceptions of
Pepper’s communication competence. The results stress that de-
spite the variance between the participants (𝑆𝐷 = 1.00), the session
number has a significant positive fixed effect on participants’ per-
ceptions of Pepper’s communication competence (𝛽 = .03, 𝑆𝐸 = .02,
𝑝 = .046). Nevertheless, there were no significant fixed effects in
terms of the discussion theme (𝛽 = -.16, 𝑆𝐸 = .35, 𝑝 = .641), and the
interaction term of the session number and discussion theme (𝛽 =
.02, 𝑆𝐸 = .02, 𝑝 = .448).

4 CONCLUSIONS
Here we evaluated users’ experience of long-term human-robot in-
teraction via mediated zoom online chats. We assessed participants’
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Figure 2: Mean scores of participants’ perceptions of Pepper’s
communication competence by the fixed effect of session
number. Error bars: 95%CI.

perceptions of the robot’s communication competency and interac-
tion quality. We found that despite individual differences between
the participants, over time participants found the interactions with
Pepper to be of higher quality and that Pepper’s communication
skills were better. These results are in line with some of our previous
studies’ results (see [11]). Nevertheless, our results also stress that
the discussion theme has no meaningful nor significant effect on
the way people perceive Pepper and the interaction. These prelimi-
nary results provide important evidence concerning the potential
of introducing social robots in real-life applications for long-term
use and establishing meaningful relationships with these agents
over time (see [8]).
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