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We approach the problem of high-DOF reaching-and-grasping via learning
joint planning of grasp and motion with deep reinforcement learning. To
resolve the sample efficiency issue in learning the high-dimensional and
complex control of dexterous grasping, we propose an effective represen-
tation of grasping state characterizing the spatial interaction between the
gripper and the target object. To represent gripper-object interaction, we
adopt Interaction Bisector Surface (IBS) which is the Voronoi diagram be-
tween two close by 3D geometric objects and has been successfully applied
in characterizing spatial relations between 3D objects. We found that IBS is
surprisingly effective as a state representation since it well informs the fine-
grained control of each finger with spatial relation against the target object.
This novel grasp representation, together with several technical contribu-
tions including a fast IBS approximation, a novel vector-based reward and
an effective training strategy, facilitate learning a strong control model of
high-DOF grasping with good sample efficiency, dynamic adaptability, and
cross-category generality. Experiments show that it generates high-quality
dexterous grasp for complex shapes with smooth grasping motions.
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1 INTRODUCTION

Robotic grasping is an important and long-standing problem in
robotics. It has been drawing increasingly broader attention from
the fields of computer vision [Saxena et al. 2010], machine learn-
ing [Kleeberger et al. 2020] and computer graphics [Liu 2009; Pollard
and Zordan 2005], due to the interdisciplinary nature of its core
techniques. Traditional methods typically approach grasping by
breaking the task into two stages: static grasp synthesis followed
by motion planning of the gripper. In the first stage, a few can-
didate grasp poses are generated. The second stage then plans a
collision-avoiding trajectory for the robotic arm and gripper to se-
lect a feasible grasp and execute it. The main limitation of such a
decoupled approach is that the two stages are not jointly optimized
which could lead to suboptimal solutions.

An integrated solution to grasp planning and motion planning,
which is often referred to as the reach-and-grasp problem, remains a
challenge [Wang et al. 2019]. A fewworks have attempted integrated
grasp and motion planning by formulating a joint optimization prob-
lem. The advantage of an integrated planner is that motion planning
and grasp planning impose constraints on each other. However,
these existing methods still rely on pre-sampled grasp candidates
over which a probabilistic distribution for selection is computed,
making it highly reliant on the quality of the candidates. Wang et
al. [2019] introduce online grasp synthesis to eliminate the need
for a perfect grasp set and grasp selection heuristics. Nevertheless,
such an approach optimizes over a discrete set of grasp candidates,
which limits the grasping space explored.

Reinforcement learning (RL) [Sutton and Barto 2018] models offer
a counterpoint to the planning paradigm. Rather than optimizing
for grasp selection and motion planning, the idea is to use closed-
loop feedback control based on sensory observations so that the
agent can dynamically update its strategy while accumulating new
observations. More recent advances of RL allow for continuous, high-
dimensional actions which are especially suitable for continuous
exploration of reach-and-grasp planning. Albeit offering promising
solutions, the sample efficiency issue of RL hinders its application
in highly complex control scenarios, such as dexterous grasping of
a high-DOF robotic hand (e.g., a 24-DOF five-fingered gripper).

We argue that the main cause of the limitation above is the lack of
an effective representation of observations. Indeed, even with deep
neural networks as powerful function approximators, it is still too
difficult to fit a function mapping raw sensory observations (camera
images) to low-level robot actions (e.g., motor torques, velocities,
or Cartesian motions). Therefore, learning complicated control of

high-DOF grippers calls for an informative representation of the
intermediate states during the reaching-and-grasping process. Such
representation should well inform the RL model about the dynamic
interaction between the gripper and the target object.

In this work, we advocate the use of Interaction Bisector Surface
(IBS) for representing gripper-object interaction in RL-based reach-
and-grasp learning. IBS, computed as the Voronoi diagram between
two geometric objects, was originally proposed for indexing and
recognizing inter-protein relation in the area of biology [Kim et al.
2006]. In computer graphics, it has been successfully applied in
characterizing fine-grained spatial relations between 3D objects [Hu
et al. 2015; Zhao et al. 2014]. We found that IBS is surprisingly
effective as a state/observation representation in learning high-
DOF reach-and-grasp planning. Gripper-object IBS well informs
the global pose of the gripper and the fine-grained local control of
each finger with spatial relation against the target object, making
the map from observation to action easier to model. For different
initial configuration of the gripper, i.e., different relative pose to the
object, our method is able to provide different motion sequences
and form different final graspings as shown in Figure 1. Moreover,
during the reaching-and-grasping process, the dynamic change of
relationship between the gripper and object can be well-reflected
by the corresponding IBS, which enables our method to deal with
moving objects with dynamic pose change, going beyond static
object grasping of most previous works. In addition, as IBS is defined
purely based on the geometry of the gripper and the object without
any assumption of the object semantics or affordance, our method
can generalize well to objects of unseen categories.

To speed up the computation of IBS for efficient training and test-
ing, we propose a grid-based approximation of IBS as well as post-
refinement mechanism to improve accuracy. Empirical studies show
that the approximation is accurate to capture the important inter-
action information and fast enough to enable online computation
in an interactive frame rate. To capture richer information of in-
teraction, we propose a combination of local and global encoders
for multi-level feature extraction of IBS, based on its segmentation
corresponding to the different components of the gripper.

We adopt Soft Actor-Critic (SAC) [Haarnoja et al. 2018], an off-
policy model, as our RL framework. Aside from the core design
of state representation, we introduce two other critical designs to
make our model more sample efficient and easier to train. To learn
collision-avoiding finger motions, we impose finger-object contact
information as a constraint of RL. A straightforward option is to
design the reward to punish finger-object penetration. This can
greatly complicate model training. Thus, our first key design is to
enhance the standard scalar Q value into a vector storing finger-wise
contact information. Such disentangled Q representation provides a
more informative dictation on learning contact-free motions.

To deal with the continuous action space in grasp planning, we opt
to learn from imperfect demonstrations synthesized offline with
heuristic planning from different initial configurations to the final
grasp poses generated GraspIt! [Miller and Allen 2004]. The demon-
stration grasping trajectories, possibly containing gripper-object
penetration, are stored in the experience replay buffer [Mnih et al.
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2015] of SAC. Our second key design is to bootstrap the learning
with a bootstrapping replay buffer containing imperfect demonstra-
tions possibly with collision. We then inject the replay buffer with
an increasing amount of experiences sampled from the currently
learned policy and rectified to be collision-free. This forms an en-
hanced replay buffer based on which a gradually refined policy can
be learned. Such a double replay buffer scheme helps learn a strong
control planning model fairly efficiently.

Our method generates high-quality dexterous grasps for unseen
complex shapes with smooth grasping motions. Furthermore, our
method can dynamically adjust and adapt to object movement dur-
ing grasping, thus allowing to grasp moving objects. When com-
pared to other baseline methods, our method consistently achieves a
higher success rate on different datasets. Our method is also robust
to partial observations of target objects. Our contributions include:

• A novel state representation for learning reach-and-grasp plan-
ning based on gripper-object interaction bisector surface, along
with an accurate approximation for fast training.

• A combination of local and global encoders for multi-level fea-
ture extraction of IBS to capture richer information of gripper-
object interaction.

• A new vector-based representation of Q value encoding not
only regular rewards but also finger-wise contact information
for efficient learning of contact-free grasping motion.

• Adouble replay buffermechanism for learning collision-avoiding
grasping policy from imperfect demonstrations.

2 RELATED WORK

Robotic grasping has a large body of literature. Existing approaches
can generally be classified into analytical and data-driven meth-
ods. Analytical (or geometric) approaches analyze the shape of the
target object to synthesize a suitable grasp [Sahbani et al. 2012].
Data-driven (or empirical) approaches based on machine learning
are gaining increasing attention in recent years [Bohg et al. 2013;
Kleeberger et al. 2020] .

Analytical robotic grasping.With known object shapes, analyti-
cal methods search for grasp poses that maximize a certain grasp
quality metric, and these methods can mainly be classified into dis-
crete sampling-based techniques or continuous optimization tech-
niques. Some sampling-based techniques search in the space of
grasp poses [Miller and Allen 2000, 2004], while others search con-
tact points or contact areas on surfaces of objects and then searches
for collision-free grasp poses that realize the given set of contact
points or areas [Chen and Burdick 1993; Hang et al. 2017; Liu et al.
2020a; Pan et al. 2022]. Compared to sampling-based techniques,
continuous optimization techniques plan grasp poses by optimiz-
ing differentiable losses [Kiatos and Malassiotis 2019; Maldonado
et al. 2010], which are more efficient. Recent work [Liu et al. 2020b]
proposes a differentiable grasp quality, which can be used for con-
tinuous optimization and deep learning methods. For high-DOF
grippers, however, sampling-based techniques are computationally
costly due to the large search space. Continuous optimization tech-
niques for high-DOF grasp planning apt to find local optimal grasp

poses. Moreover, analytical methods are difficult to generalize to
incomplete or unknown objects.

Learning-based robotic grasping. Learning-based methods are
typically split into supervised learning and reinforcement learning.
For supervised learning, grasp annotations can be collected either
by humans [Depierre et al. 2018], with simulation [Mahler et al.
2016], or through real robot tests [Levine et al. 2018]. Supervised
grasp learning can be categorized as discriminative or generative
depending on whether the grasp configuration is the input or out-
put of the learned model. While discriminative approaches sample
grasp candidates and rank them using a neural network [Mahler
et al. 2018], generative approaches directly generate suitable grasp
poses [Morrison et al. 2018].

Early learning-based works mainly focus on generating grasps for
target objects with low-DOF grippers (such as parallel-jaw grip-
pers) [Gualtieri et al. 2016; Saxena et al. 2007]. Such work learns to
regress grasp quality or to predict grasp success [Fang et al. 2018; Lu
et al. 2020a,b; Mahler et al. 2017, 2016; Van der Merwe et al. 2019],
but still needs sampling-based techniques to search for better grasps.
Liu et al. [2019; 2020b] use deep neural networks to directly regress
high-DOF grasps based on the input of voxels or depth images.

Reinforcement learning for robotic grasping. Deep reinforce-
ment learning (RL) has been shown as a promising and powerful
technique to automatically learn control policies by trial and error.
Based on raw sensory inputs, dexterous grasping behaviors can
be performed. A comparative study of RL-based grasping methods
is given in [Quillen et al. 2018]. QT-Opt [Kalashnikov et al. 2018]
learns various manipulation strategies with dynamic responses to
disturbances. Song et al. [2020] present an RL-based closed-loop 6D
grasping of novel objects with the help of human demonstrations.
The learned policy can operate in dynamic scenes with moving
objects. Rajeswaran et al. [2017] show that model-free RL can effec-
tively scale up to complex manipulation tasks with a high-DOF hand.
Mandikal and Grauman [2021] introduce an approach for learning
dexterous grasps, and the key idea is to embed an object-centric vi-
sual affordance model within a deep reinforcement learning loop to
learn grasping policies that favor the same object regions favored by
people. Andrychowicz et al. [2020] explore RL for dexterous in-hand
manipulation by reorientating a block. Starke et al. [2019] present
a good example of conditioning motion behavior on the geometry
of the surrounding 3D environment. Ficuciello et al. propose meth-
ods that use RL to search good grasp poses [2016] as well as good
grasp motion trajectories [2019] in a synergies subspace, and these
methods need good initial parameters to reduce the searching space
while finding initial parameters need additional imitation learning
or human efforts. To overcome this limitation, Ficuciello et al. [2019]
introduce a visual module to predict initial parameters given visual
information of objects. The main weakness of their methods is that
the learning process should be done for every object respectively to
achieve a good grasp.

Training RL models in the real environment is usually prohibitive
since it requires a large number of trials and errors. A straightfor-
ward approach is to train them in a simulation environment and
then transfer the learned policy to the real world with sim-to-real
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Fig. 2. Overview of one iteration of our grasping motion planning method. Given an object in a scene context with the current gripper configuration, our
method first generates the sampled IBS to represent the interaction between the scene and gripper, then a set of local and global features are extracted from
the given state to predict the action that changes the configuration of the gripper so that it moves closer to the given object and forms a better grasping. The
updated configuration after applying the predicted action is then passed through the same pipeline to predict the subsequent action.

techniques [James et al. 2019; Peng et al. 2018]. Our work trains an
RL model for dexterous high-DOF grasping. We focus on how to
train such complicated planning policies with the help of an effec-
tive representation of gripper-object interaction and leave the issue
of sim-to-real transfer for future work.

Grasp representation. Existing graspingmodels have adopted var-
ious representations to describe the shape of the target object to be
grasped, such as voxels [Varley et al. 2017], depth images [Viereck
et al. 2017], multi-view images [Collet and Srinivasa 2010], or geo-
metric primitives [Aleotti and Caselli 2012]. Some works represent
a grasp with Independent Contact Regions (ICRs) [Fontanals et al.
2014; Roa and Suárez 2009]. These regions are defined such that if
each finger is positioned on its corresponding contact region, a force-
closure grasp [Nguyen 1988] is always obtained, independently of
the exact location of each finger.

Our work opts to characterize the interaction between the grip-
per and the object using Interaction Bisector Surface (IBS) [Zhao
et al. 2014]. Interaction Bisector Surface (IBS) captures the spatial
boundary between two objects. It can provide a more detailed and
informative interaction representation with both geometric and
topological features extracted on the IBS. Hu et al. [2015] further
combined IBS with Interaction Region (IR), which is used to describe
the geometry of the surface region on the object corresponding to
the interaction, to encode more geometric features on the objects.
Pirk et al. [2017] build a spatial and temporal representation of
interactions named interaction landscapes.

Karunratanakul et al. [2020] proposes an implicit representation
to encode hand-object grasps by defining the distance to human
hand and objects for points in space, and then use it to generate the
grasping hand pose for a given static shape. In contrast, our method
utilizes constantly updated IBS as state representation to plan the
dynamic motion of the gripper for the object reach-and-grasp task.

3 OVERVIEW

Given the input scene segmented into foreground object and back-
ground context and the initial configuration of the gripper, our goal
is to output a sequence of collision-free actions which move the

gripper towards the object to perform a successful grasping. We
train a deep reinforcement learning model in which the state is
given by the gripper-object interaction and the actions are designed
as the gripper configuration changes. Figure 2 gives an overview of
one step of the planned reaching-and-grasping motion.

Our method starts by extracting an informative representation of
the interaction between the given object and the current gripper
configuration. A set of local and global features are extracted from
the given state to predict the action that changes the configuration
of the gripper so that it moves closer to the given object and forms
a better grasping. The updated configuration after applying the
predicted action is then passed through the same pipeline to predict
the subsequent action.

Interaction extraction. We use IBS [Zhao et al. 2014] to repre-
sent the interaction. Since the computation of accurate IBS is time-
consuming, we design an IBS sampler to obtain a discretized and
simplified version of IBS in a much more efficient manner. The set
of sampled IBS points is then moved to be closer to the exact IBS.

State encoding. The gripper configuration is encoded by its global
position and orientation as well as local joint angels with (6+18)-
DOF. Based on the part components of the gripper model, i.e., five
fingers and one palm, we adopt a multi-level representation of IBS
inspired by the work of Zhao et al. [2017]. More specifically, for each
sampled IBS point, we first find its nearest points on the scene and
the gripper, and then encode it with a set of information, consisting
of its own coordinate, the component labels of those two nearest
points as well as the spatial relationship relative to each nearest
point. Therefore, the components of the gripper model, including
five fingers and one palm, naturally induce a segmentation of the IBS
based on the association between the gripper and the IBS. We then
combine local features extracted separately for each IBS segment
and global feature for the entire IBS to form a multi-level description
of gripper-object interaction.

Action prediction. To predict the action given the current state,
we design a policy network that takes both local and global fea-
tures from the current configuration and outputs the configuration
change of the gripper and terminate value. The policy network
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Fig. 3. Examples of IBS sampled in two intermediate states when the gripper
moves towards the object. For each state, we only show one vertical slice
of the grids around the gripper to view the change of the IBS more clearly.
Grids that are closer to the object are colored in red, and others are colored
in blue. The IBS by definition is located on the boundary of those two colored
regions, and we take the grid points in blue cells on the boundary to be the
set of sampled IBS points.

is trained via reinforcement learning using the Soft Actor-Critic
method [Haarnoja et al. 2018]. To avoid gripper-scene collision
and self-collision of the gripper during the reaching-and-grasping
process, we design a new vector-based representation of Q value
encoding not only regular rewards but also finger-wise contact in-
formation for efficient learning of contact-free grasping motion.
To further accelerate the training, we generate a set of imperfect
demonstration data to bootstrap the learning and to converge to
the final policy in a more efficient and effective manner.

4 METHOD

4.1 IBS sampler

The IBS is essentially the set of points equidistant from two sets
of points sampled on the scene and the gripper, respectively. The
computation of exact IBS requires the extraction of the Voronoi dia-
gram, which is time-consuming. To trade-off between efficiency and
accuracy, we compute IBS only within a given range and discretize
the space to obtain an approximation of IBS, as shown in Figure 3.

More specifically, IBS is only computed within the sphere which is
located at the centroid of the palm with a radius of 𝑟 . The bounding
box of the sphere is discretized into a 𝑘3 grid for IBS point sampling.
For each of the grid points, i.e., the center of each grid cell, we
compute its distances to both the scene 𝑑𝑠 and the gripper 𝑑𝑔 , and
the points having 𝛿 = 𝑑𝑔 − 𝑑𝑠 = 0 are IBS points. To find such
set of points, we store the 𝛿 values on grid cells and extract the
zero-crossing points on the fly. Note that to accelerate the whole
process, the 𝛿 values on only a partial set of cells around the exact
IBS are computed in a region growing manner. More specifically,
we first find the cell that is closest to the middle position of the line
connecting the centroid of the foreground object in the scene and
the palm, and compute its 𝛿 value. Then the computation grows
outwards with the neighboring cells until sufficient grid cells that
share the same sign have been found.

Figure 3 shows the sampling process of IBS in two different states.
We can see that the grid is divided by IBS into two parts, i.e., one
with points closer to the scene (in red color) and the other with

points closer to the gripper (in blue color). Only the 𝛿 values on
the grid cells close to the exact IBS are computed to get the initial
set of sampled IBS points (highlighted with solid colors). Note that
such set of sampled IBS contains two layers of grid points which has
redundant information, thus we only keep the layer corresponding
to the gripper as our IBS point set (the solid layer in blue).

Since the initial set of sampled IBS points are grid centers and the
approximation accuracy is highly affected by the grid resolution, we
further refine the locations of these points to make them approach
the exact IBS. For each point 𝑝 , we first locate its nearest points on
scene 𝑝𝑠 and gripper 𝑝𝑔 . Without loss of generality, let us assume
that the distance 𝑑𝑔 between the point to the gripper is larger than
the distance 𝑑𝑠 between the point and the scene. We then need to
move 𝑝 towards 𝑝𝑔 to make it closer to the exact IBS: 𝑝 ′ = 𝑝 + Δ𝑝 ×
−−→
𝑝𝑝𝑔 . The detail of how to derive an appropriate Δ𝑝 can be found in
the supplementary material. Once the location of point 𝑝 is updated,
we update its nearest points on the scene and on the gripper.

To gauge how close the sampled IBS is to the exact IBS as well as
the effectiveness of our refinement method, we measure the IBS
approximation error using the Chamfer distance between the points
sampled from the grids and those sampled on the exact IBS surface.
Figure 4 shows how the Chamfer distance changes during the reach-
and-grasp process before and after the refinement under different
grid resolutions 𝑘 = 20, 40, and 80. We can find several interesting
properties. Firstly, approximation error is relatively stable during
the reach-and-grasp process for each setting and gets slightly higher
towards the end as the IBS surface becomes more complex. Secondly,
approximation error drops significantly after the refinement for
different grid resolutions, which shows the effectiveness of the
refinement process. Thirdly, approximation error generally increases
with the decrease of grid resolution, especially when no refinement
is involved. However, the computation time increases with the grid
resolution. To obtain a good balance, we set grid resolution 𝑘 = 40
and sample 𝑛 = 4096 points for IBS approximation.

4.2 State and action representation

State representation. Finding an informative representation for
a given state is the key to guiding the movement of the gripper
towards a successful grasping of the object. Our key observation is
that the IBS between the scene and gripper together with the gripper
configuration provide rich information about the intermediate state.

For gripper configuration, we use a (6+18)-DOF Shadow Hand in
all our experiments, where the first 6-DOF encodes the global ori-
entation and position of the gripper and the remaining 18-DOF
encodes the joint angles. To better describe the local context around
the gripper to guide its configuration change, we set the origin of
the world coordinate to the centroid of the palm, as the setting in
the IBS sampling process, to encode the spatial interaction features
between the gripper and the scene. We found that our method gets
similar performance when using the centroid of the object as the
origin of the world coordinate.
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Fig. 4. IBS approximation error during the reaching-and-grasping pro-
cess before and after the refinement under different grid resolutions 𝑘 =

{20, 40, 80}. The line chart shows how the approximation error changes
during the process under different settings, and below we show the corre-
sponding IBS samples before and after refinement compared to the exact
IBS surface for three representative frames under 𝑘 = 40. We use the jet
colormap on the sampled points to indicate the approximation error, which
shows that the approximation accuracy is highly improved after refinement.

For each point 𝑝 on the sampled IBS, we store the following infor-
mation as illustrated in Figure 5:

• coordinate 𝑐 = (𝑥,𝑦, 𝑧) ∈ 𝑅3

• distance to the scene 𝑑𝑝𝑠 ∈ 𝑅

• unit vector pointing to the nearest point 𝑝𝑠 on the scene 𝑣
𝑝
𝑠 ∈ 𝑅3

• indicator of whether 𝑝𝑠 is located on the foreground object
𝑏
𝑝
𝑠 ∈ {0, 1}

• distance to the gripper 𝑑𝑝𝑔 ∈ 𝑅

• unit vector pointing to the nearest point 𝑝ℎ on the gripper
𝑣
𝑝
𝑔 ∈ 𝑅3

• one-hot indicator of the gripper component that 𝑝𝑔 belongs to
𝑐
𝑝
𝑔 ∈ {0, 1}6

• value defined on 𝑝𝑔 indicating which side of the gripper it lo-
cated on 𝑎

𝑝
𝑔 ∈ [−1, 1]

Here, 𝑎𝑝𝑔 = 𝑛𝑝 · 𝑑𝑢𝑝 is the dot product of the normal direction 𝑛𝑝
of point 𝑝𝑔 on gripper in rest pose and the upright direction 𝑑𝑢𝑝
perpendicular to the palm and pointing outwards.

Fig. 5. Informative representation of each sampled IBS point 𝑝 , which in-
cludes a set of relative spatial information to either the scene or the gripper.
A more detailed explanation of the notations can be found in Section 4.2.
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Fig. 6. Grasp planner network used in our work. Given the rich information
stored in the sampled IBS and current gripper configuration, we use both
global and local encoders to extract multi-level features from the sample
IBS and then concatenate them with the feature extracted from the gripper
via MLP. The concatenated feature is passed to two other MLPs to get the
final predicted action, one of which is defined as the global translation and
rotation of the gripper as well as the local joint rotation, and the other is
defined as the termination probability.

Action representation. The action consists of two parts. The first
part is defined as the gripper configuration change, which is also
with (6+18)-DOF. For each single action, we restrain the change
of each parameter within [−0.25𝑐𝑚, 0.25𝑐𝑚] for global translation
of the entire gripper, and [−0.025, 0.025] in radian for both global
rotation angle of the entire gripper or local rotation angle of each
joint. The other part is the stop action, defined as a termination
value to indicate the possibility of terminating the planning process.
The exact termination mechanism is provided in Section 4.3. .

4.3 Network and reward design

Network architecture. Figure 6 shows the network architecture
of our grasp planner (actor network). For the sampled IBS, both local
and global features are extracted to concatenate with the feature
extracted from the gripper configuration, and then the concatenated
feature is passed to two other MLPs to get the predicted action, one
for the gripper configuration change and the other for the terminal
value. We use PointNet [Qi et al. 2017] for both local and global
IBS encoder, and the global encoder takes the whole IBS as input
while the local encoder takes each IBS component corresponding to
different gripper components as input.
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Reward function. The reward function needs to reflect the quality
of an executed action. As our final goal is to perform a successful
grasping of the given object in the scene at the end of the planning,
we first define a grasp reward function 𝑅𝑔 to measure the grasp
quality when the whole process is terminated. Moreover, to further
encourage a more natural grasp pose with more gripper compo-
nents taking part in the grasping and avoiding collision with the
scene during the whole process, we define another reaching reward
function 𝑅𝑖𝑐 per gripper component 𝑔𝑖 to provide guidance for each
intermediate step.

We measure the grasp quality from two aspects. First is the com-
monly used execution success, which we use the success signal 𝑆
obtained from the Pybullet simulator when performing the final
grasp. We consider the grasp to be successful if and only if the object
can be lifted up by more than 0.2m as in the previous work [Xu et al.
2021]. More details about the simulator setup and how to perform
the grasp can be found in the supplementary material. However, this
sparse boolean value cannot provide enough guidance for high-DOF
grasping, thus we complement it with another well-known geomet-
ric measure 𝑄1 [Ferrari and Canny 1992]. But as the traditional 𝑄1
measure can only be computed when the gripper touches the object
without any collision and the computation becomes unstable during
the training, we adopt the generalized 𝑄1 measure proposed in [Liu
et al. 2020b] instead.

As those two grasp quality metrics are only computed when the
reach-and-grasp task is completed, to encourage a quick conver-
gence, we set a negative reward 𝑟 𝑓 for each intermediate step. So
the grasp reward function is defined as:

𝑅𝑔 =

{
𝜔𝑠𝑆 + 𝜔𝑞𝑄1, if the task is completed;
𝑟 𝑓 , otherwise.

where we set 𝜔𝑠 = 150, 𝜔𝑞 = 1000, and 𝑟 𝑓 = −3 in all our experi-
ments. To encourage the contact between the gripper and the object,
our planning process terminates requires that not only if a randomly
sampled value is smaller than the terminal value but also at least
two gripper components contact the object in the current step.

To determine whether a gripper component 𝑔𝑖 is contacting with
the object, we would like to ensure that there are enough points on
the gripper component that are close enough to the object while
not colliding with the scene. So we first count the number𝑚𝑖 of
IBS points determined together by the inner side of the gripper
component 𝑔𝑖 (𝑐

𝑝
𝑛 = 𝑖, 𝑎

𝑝
𝑔 ≥ 0) and the object (𝑏𝑝𝑠 = 1) with distance

to the object smaller than a given threshold 𝛿𝑑 = 0.5𝑐𝑚 (𝑑𝑝𝑠 < 𝛿𝑑 ),
i.e., IBS points with 𝑏𝑝𝑠 = 1, 𝑐𝑝𝑛 = 𝑖, 𝑎

𝑝

ℎ
≥ 0, 𝑑𝑝𝑠 < 𝛿𝑑 . Then we further

check if any of the IBS points determined by the gripper component
𝑔𝑖 (i.e., IBS points with 𝑐

𝑝
𝑛 = 𝑖) is on the inner side of the scene by

computing the angle between the corresponding vector 𝑣𝑝𝑠 pointing
from the IBS point to the nearest point on the scene and the normal
𝑛
𝑝
𝑠 of the nearest point 𝑝𝑠 . If the angle is smaller than 90 degrees,

we consider the IBS point is on the inner side of the scene, and
count the number 𝑛𝑖 of such IBS points. If 𝑛𝑖 ≥ 𝛿𝑛 , we consider
the gripper component is colliding with the scene. Therefore, if
the gripper component 𝑔𝑖 is not colliding with the scene (𝑛𝑖 < 𝛿𝑛)

and there are enough contacting points (𝑚𝑖 ≥ 𝛿𝑚), we consider the
gripper component is contacting the object.

Thus we define the reaching reward function 𝑅𝑖𝑐 per gripper com-
ponent 𝑔𝑖 as follows to encourage a more effective reaching-and-
grasping process with more contacting but not colliding points:

𝑅𝑖𝑐 =

{
−100, 𝑛𝑖 ≥ 𝛿𝑛 (collide with the scene);
𝑅𝑖contact, otherwise.

𝑅𝑖contact =

{
min{[,𝑚𝑖 }, 𝑚𝑖 ≥ 𝛿𝑚 (have enough contact);
0, otherwise.

In all our experiments, we set 𝛿𝑛 = 𝛿𝑚 = 3 and [ = 40.

4.4 Network training

To train the network, we adopt the well-known off-policy method
Soft Actor-Critic [Haarnoja et al. 2018] and make some small modi-
fications to the Q-network to make the training more effective.

SAC has two networks, i.e., the policy network (also known as the
actor network) and theQ-network (also known as the critic network).
The policy network outputs a Gaussian distribution 𝜋 (∗|𝑠;\ ) to
sample action for an input state 𝑠 , where \ are the parameters of
the network. Q-network outputs the evaluation value 𝑄 (𝑠, 𝑎;Φ) for
given part state 𝑠 and action 𝑎, where Φ are the parameters of the
network. SAC uses an addition target Q-network to calculate target
value for temporal difference (TD) update, whose parameters are
denoted byΦ′. A transition is denoted as a tuple {𝑠, 𝑎, 𝑅, 𝑠 ′, 𝑑}, where
𝑅 is the reward and 𝑑 indicates whether state 𝑠 ′ is a terminated state.
All the transitions will be stored in a replay buffer 𝐷 and those two
networks are trained by the data sampled from 𝐷 .

The key change to the original SAC networks is that instead of
outputting a single scale value to estimate the reward, we let the
Q-network output a vector (𝑄𝑔, 𝑄

0
𝑐 , . . . , 𝑄

5
𝑐 ) to estimate both 𝑅𝑔

and 𝑅𝑖𝑐 . Accordingly, the reward 𝑅 in each experience is a vector
of (𝑅𝑔, 𝑅0𝑐 , . . . , 𝑅5𝑐 ). Note that only 𝑅𝑔 is accumulated while 𝑅𝑖𝑐 is
computed for each single step. We found that this change made the
training more stable and prevented the collision more effectively
than directly combining all rewards together.

The loss function for training the Q-network is then determined by
temporal difference (TD) update:

𝐿𝑄 (Φ) = [(𝑄𝑔 (𝑠, 𝑎;Φ) − 𝑦𝑔 (𝑅𝑔, 𝑠 ′, 𝑑))2 +
5∑︁

𝑖=0
(𝑄𝑖

𝑐 (𝑠, 𝑎;Φ) − _𝑅𝑖𝑐 )2)]

(1)
with _ = 0.25 balancing the two type of rewards and target value
𝑦𝑔 for 𝑅𝑔 defined as:

𝑦𝑔 (𝑅𝑔, 𝑠 ′, 𝑑) = 𝑅𝑔 + 𝛾 (1 − 𝑑) [𝑄𝑔 (𝑠 ′, 𝑎′;Φ′) − 𝛼 log𝜋 (𝑎 |𝑠 ′;\ )], (2)

where 𝑎′ ∼ 𝜋 (∗|𝑠 ′;\ )) is the sampled action. 𝛾 = 0.99 is the discount
factor, and 𝛼 is the temperature parameter that can be adjusted
automatically to match an entropy target in expectation, to balance
exploring the environment and maximizing reward.
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Fig. 7. Method for demonstration generation. Given a valid grasping (a),
we first push the gripper away from the object along the direction pointing
from the object center to the palm center to reach a given distance, and then
reset the gripper configuration with some random Gaussian noise to get the
initial gripper configuration (b). The final demonstration (c) is generated
by first moving the gripper close enough to the final position and then
transiting to the final grasping configuration using linear interpolation.

For the policy network, in order to avoid self-collision of the gripper,
i.e., the collision among different gripper components, we add a self-
collision loss 𝐿self adapted from [Liu et al. 2020b] to the original
loss:

𝐿(\ ) = 𝐿𝑄 (\ ) + 𝜔𝐿self (\ ), (3)

where 𝜔 = 100 is the parameter to balance the two loss terms.
The original loss function 𝐿𝑄 (\ ) and the self-collision loss 𝐿self for
training the policy network are defined as:

𝐿𝑄 (\ ) = [𝑄𝑔 (𝑠, 𝑎(𝑠;\ )) + (
5∑︁

𝑖=0
𝑄𝑖
𝑐 (𝑠, 𝑎(𝑠;\ )) − 𝛼 log𝜋 (𝑎 |𝑠;\ )], (4)

𝐿self (\ ) =
𝐿∑︁
𝑖=1

𝑁∑︁
𝑗=1

max(𝐷 (𝑝 𝑗 (𝑠, 𝑎(𝑠;\ )), 𝐻𝑖 (𝑠, 𝑎(𝑠;\ ))), 0), (5)

where𝑎 ∼ 𝜋 (∗|𝑠 ;\ )) is the sampled action based on current state and
network parameters, 𝐿 the number of gripper links, 𝑁 the number
of points 𝑝 𝑗 (𝑠;\ ) sampled from each link, 𝐻𝑖 (𝑠;\ ) the convex hull
of each link after performing action 𝑎 on state 𝑠 , and 𝐷 the signed
distance from a point to a convex hull. More details about the self-
collision loss 𝐿self can be found in [Liu et al. 2020b]. The reason why
we add the self-collision loss directly for the policy network instead
of defining a corresponding reward function is that the self-collision
loss is differentiable and thus can be optimized directly.

Training with demonstration. Note that the searching space of
the action is extremely large and to make the training more efficient,
we adopt the popular training with demonstration strategy. To gen-
erate the demonstrations, as shown in Figure 7, we first generate
a valid grasp pose for the given object, and then move the gripper
away from the object along the direction pointing from the object
center to the palm center until the distance reaches 𝑑 = 20𝑐𝑚, and
then we reset the gripper configuration by setting all joint angles to
be zero and add some random Gaussian noise scaled based on the
rotation limit of each joint to the gripper configuration to generate a
random initial configuration. After getting the initial configuration
of the gripper, to generate a motion sequence towards the corre-
sponding final grasp pose and use it as the demonstration, we simply
first move the gripper to the final position and then transit to the
final grasping configuration using linear interpolation.

Note that the demonstration generated in this way is imperfect since
the gripper may collide with the scene during the whole process,
so unlike previous methods that usually use imitation learning
for behavior cloning of the perfect demonstrations, we store the
generated imperfect demonstration into the bootstrapping replay
buffer and use reinforcement learning only.

In more detail, we use two replay buffers, one for demonstration
data with maximal size set to be 𝑛𝑑 = 5.0 × 104 and the other for
self-exploration data with maximal size set to be 𝑛𝑠 = 1.0 × 105.
Before training, we always fill up the demonstration buffer and keep
counting the total number 𝑛𝑡 of data generated in those two ways.
The probability of sampling data from the demonstration buffer is
set to be 𝑛𝑑/𝑛𝑡 . Thus, more demonstration data will be sampled in
the beginning to guide the network to learn a good initial policy
quickly and hence speed up the training process. Following [Vecerik
et al. 2017], these samples are included in the update of both the
actor and the critic.

5 RESULTS AND EVALUATION

We first explain the experiment setup, the dataset we used, and then
evaluate our method both qualitatively and quantitatively.

5.1 Data preparation

We first adopt the dataset provided by Liu et al. [2020b], which
consists of 500 objects collected from four datasets. We use the
objects from KIT Dataset [2012] and GD Dataset [2015] as training
data, and then test objects from YCB Dataset [2017] and BigBIRD
dataset [2014]. We then further test our method on more objects
from ContactPose Dataset [2020] and from 3DNet Dataset [2012]
when compared to baseline methods.

To generate the demonstrations to guide the training of our network,
we randomly select 100 grasp poses for each object in the training
set from the pose set associated with that object, and synthesize
imperfect reach-and-grasp motion as described in Section 4.4. Note
that since each object is placed on the table in our setting, we need
to first filter out invalid grasp poses which collide with the table.

To generate our self-exploration data, we need to sample the initial
configuration of the gripper. For each object, we use its center to
create a sphere with radius 𝑟 = 20𝑐𝑚, and sample points on the
upper hemisphere as the origin of the local coordinate system of
the gripper and rotate the gripper to make its palm face the object
center and its thumb point upwards.

As different initial configurations will lead to different reach-and-
grasp results, to remove the bias of such initialization, we set a fixed
set of initial configurations for each object to test. The initialization
details can be found in the supplementation material.

5.2 Qualitative results

Figure 8 shows the gallery of results obtained with our method,
where we show the initial input configuration of the gripper and
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Fig. 8. Gallery of results obtained with our method, where we show the
input initial configuration of the gripper and four sampled frames during the
approaching process with the final grasping pose on the right. The moving
trajectory of the whole reach-and-grasp process is shown with the purple
curve for each example.

four sampled frames during the approaching process with the final
grasp pose on the right. Note that each example is shown with a
view we selected to demonstrate the motion sequence more clearly,
and we further add a purple curve to visualize moving trajectory
together with sampled frames. When inspecting these results, we
see that the method is able to handle various shapes given different
initial configurations of the gripper. For example, for the small shark
model shown in the first row, our method can adjust the gripper pose
and joints precisely to pinch the model, while for the model shown
in the second row, although the gripper starts from the position close
to the table, our method is able to generate the moving sequence
with the final grasp on the top of the model to avoid collision with
the table. Our method is also able to deal with objects with more
complex geometry. For example, to grasp the binoculars shown in
the third row and the elephant shown in the fourth row, those four
fingers tend to move together to form the gripping grasp with the
thumb, while for the pitcher shown in the last row, fingers spread
widely to better wrap its top.

Moreover, Figure 9 shows examples of results where we fix the shape
and plan the grasping with different initial gripper configurations.
For each example, we show four different initial configurations on
the aligned hemisphere with purple dots on the left, and then their
corresponding final grasp poses on the right. We see that various
grasp poses can be generated even for the same shape when given
different initial configurations. For example, for the elephant model
shown in the first row, some final grasp poses tend to cover the

Fig. 9. Example results where we fix the shape and plan the grasping with
different initial gripper configurations. For each example, we show all four
different initial configurations on the aligned hemisphere with purple dot
on the left, and then their final grasping poses on the right.

�
��

�
�
��
�

Fig. 10. Visual comparisons of the final grasps generated by our method
to the corresponding demonstration with the same object and same initial
gripper configurations used for training. Note how our method is able to
generate different and more natural grasp poses.

head of the elephant while some others prefer wrapping the back of
the model. Similar results can also be observed for the shoe model
shown in the second row. For these models with far more complex
geometry than the models we have in the training set, the final
grasp poses obtained by our method can adapt well to their shapes
while avoiding collision with the table at the same time. Overall,
our method is quite robust and can successfully plan grasping for
different shapes with various geometries when given different initial
gripper configurations.

Note that all the objects tested in our experiments are unseen objects
from different datasets, which shows that our method can generalize
well to other objects instead of just remembering the grasp poses
shown in the demonstrations. To further justify this, we compare
the grasp pose synthesized by our method from the same initial
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Table 1. Ablation studies of our method. 𝑆 is the success rate of the final
grasp and 𝑄1 is the mean generalized 𝑄1 value of all successful grasps.
The percentages of successful grasps whose process penetration is smaller
than different thresholds 𝜏 = 1𝑚𝑚, 2𝑚𝑚 and 3𝑚𝑚 are also reported. More
details about themetrics and the settings of different versions of ourmethods
are provided in Section 5.3.

Method Final grasp Process penetration
𝑆 𝑄1 ≤ 1𝑚𝑚 ≤ 2𝑚𝑚 ≤ 4𝑚𝑚

IBS-G - - - - -
+ Demo 28.7% 0.217 30.8% 44.2% 54.7%
+ Q-Vec 65.8% 0.215 47.2% 63.3% 79.1%
+ IBS-L (Ours) 68.3% 0.207 58.3% 75.7% 89.7%
RGBD image 9.1% 0.173 59.6 % 68.8% 74.3%
Point cloud 17.3% 0.148 55.3% 65.9% 75.0%

configuration of the demonstration grasp in Figure 10. We can see
that even starting from the same initial configuration, our method
ends up with quite different and generally more natural grasp poses
based on the learned policy.

5.3 Quantitative evaluation

To quantitatively evaluate our method, we first conduct ablation
studies to justify several key design choices of our method, and then
we provide comparisons to several baseline methods to show the
superiority of our method.

Ablation studies. As explained in Section 4.3, our goal is to learn
a reach-and-grasp planner with high-quality final grasps as well as
low penetration during the whole process, thus we use metrics to
measure the final grasp and process penetration, respectively. For
the final grasp, we first compute the success rate 𝑆 among the whole
testing set, where whether each final grasp is successful or not is
tested in the simulator. Then for all successful grasps, we compute
the average generalized 𝑄1 [Liu et al. 2020b] as a complementary
metric to get a more detailed grasp quality measure. For the pro-
cess penetration, we further compute the percentage of the testing
objects, of which the penetration of each frame during the whole
reach-and-grasp process is smaller than a given threshold 𝜏 , where
𝜏 = 1𝑚𝑚, 2𝑚𝑚 and 3𝑚𝑚.

Using IBS as the dynamic state representation is the key contri-
bution of our method. Based on this, we further propose to use
demonstrations, the vector-based representation of Q value, and a
combination of the local and global encoder to boost the training
and improve the performance. To show the importance of all those
design choices, we use the simplest version of our method as the
baseline, denoted as “IBS-G", which only uses a global encoder for
IBS and a standard scalar Q value and is trained without demon-
strations, and then gradually add those key components one by
one in the ablation studies to show how performance is boosted
accordingly. To further justify the superiority of IBS as the state
representation, we also compare different versions of our method
with either RGBD images or point clouds as state representation.
The evaluation results of the ablation studies are shown in Table 1.

Importance of demonstration. Trainingwith demonstrations is crucial
to make our network be able to learn meaningful policy. We can
see in the Table 1 that without demonstration, the baseline “IBS-G"
cannot learn any meaningful policy to perform valid grasping and
thus the evaluation metrics cannot be reported, due to the high
complexity of our problem and the corresponding large searching
space. When trained with demonstration, denoted as “+ Demo”,
The network is able to learn a reasonable policy now, although the
performance is not satisfactory enough with only 28.7% success rate.
Moreover, for the most of those successful grasps, the penetration
is higher than other settings.

Importance of vector-based representation of Q value. Making the
Q-Network output a vector instead of a single scale value provides
better control of each individual gripper component. To justify the
benefit of such a design, we further enable this feature in our method
and report the results in the third row of Table 1 , denoted as “+
Q-Vec". We see that compared to the results using a scalar Q value,
the performance gets highly boosted, including both success rate
and penetration avoidance. The main reason is that when combining
the grasp quality measure and the contacting measure together into
one single value, it’s hard for the network to learn which is the main
reason to cause the change of the value, while using a vector-based
representation can provide a more clear guidance for the network
to learn.

Importance of multi-level encoder. To further show the importance of
the multi-level encoder used for feature extraction of IBS, i.e., using
both global and local encoders and then concatenating the features
together, we further add the local encoder to get the full version of
our method, and the result is shown in the fourth row of Table 1 ,
denoted as “+ IBS-L". We can see that the performance is better than
other settings, which shows that the component-based IBS partition
and the corresponding local encoder can help get more information
and give better control of those gripper components.

Importance of IBS as state representation. The introduction of IBS to
represent the intermediate state during the whole planning process
and encode the interaction between the gripper and the scene is one
of our key contributions. To show the importance of our IBS encod-
ing, we compare our method to two alternative ways of interaction
representation, i.e., using either RGBD images or point clouds of the
scene and the gripper, while all the other design choices are the same
to our method, including using demonstrations and vector-based
representation of Q value.

For RGBD image presentation, we use visual information captured
by a simulated hand-mounted camera in its upright-oriented pose
that translates together with the hand but does not rotate. The
visual input consists of an RGBD image and the corresponding
segmentation information, where each pixel can belong to the object,
the gripper or the background. We then replace the encoder with
similar architecture to that of the network used in [Jain et al. 2019].
More details about this baseline can be found in the supplementary
material.

For point cloud representation, we use the scene point cloud and
gripper point cloud directly as input. For the features to be encoded,
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Table 2. Quantitative comparison to two-step baseline methods with “grasp
synthesis + motion planning”. where final grasp poses are synthesized using
different methods, including Liu[2020b], GraspIt! [Miller and Allen 2004],
and our method, and motions from the same gripper configuration to those
final grasp poses are planned using the same method. We conduct the
comparison on the YCB dataset, and report the success rates of the final
grasp, motion planning, and overall execution in the simulator, where “Avg"
refers to the average success rate among all testing samples and “ Top-1"
refers to the average success rate of all testing object. One test sample
means one object with one initial configuration.

Method Final grasp Motion Plan Overall
Avg Top-1 Avg Top-1 Avg Top-1

Liu[2020b] 13.6% 24.0% 34.4% 44.0% 8.0% 12.0%
GraspIt! 52.1% 62.0% 36.3% 54.0% 22.6% 42.0%
Ours 68.3% 100.0% 58.3% 100.0% 43.2% 90.0%

we remove the features that contain interaction information from
the list of features we defined for IBS points in Section 4.2 and keep
all the remaining ones, which include the coordinate 𝑐𝑠 ∈ 𝑅3 and
foreground/background indicator 𝑏𝑠 ∈ 0, 1 for each scene point
and coordinate 𝑐𝑔 ∈ 𝑅3, gripper component indicate 𝑐𝑔 ∈ {0, 1}6
and gripper side indicator 𝑎𝑔 ∈ [−1, 1] for each gripper point. The
encoder is similar to that we used for IBS-G. More details about this
baseline can also be found in the supplementary material.

The corresponding performances are shown in the last two rows of
Table 1, denoted as “RGBD image" and “Point cloud", respectively.
Note that our method with either setting performs poorly . We think
the main reason is that they cannot provide enough spatial informa-
tion between the object and the gripper when the demonstrations
provided are imperfect and with large variations in initial config-
urations and final grasp poses, while the IBS we used provides a
more informative representation.

Comparison to baselines. Strategies for the reach-and-grasp task
can be roughly divided into two categories, one synthesizes the
grasp first and then plans the transfer from the initial configuration
to the final grasp pose and the other optimizes the whole process
directly. To give more detailed comparisons to previous methods,
we organize the baseline methods according to those two different
types of strategies and analyze the results separately.

For the first type of baselines, we compare the final grasps obtained
using our method to those synthesized using the method in [Liu
et al. 2020b] and GraspIt! [Miller and Allen 2004]. For the final grasp
pose generated via GraspIt!, we select the one closest to the initial
gripper configuration from a pre-sampled set of candidate grasp
poses based on the distance metric proposed in [Di Gregorio 2008]
To further generate the whole reach-and-grasp process, we use
the same motion planning method [Kavraki et al. 1996] from The
Open Motion Planning Library (OMPL) [Sucan et al. 2012] to plan a
collision-free moving trajectory from the initial configuration to the
global pose of the final pose.We can execute thewhole process in our
dynamics simulator to see if the object can be successfully grasped
in the end to get an overall success. In more detail, once the gripper
in the rest pose reaches its final position and orientation following
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Fig. 11. Visual comparisons to two-step baseline method with “grasp syn-
thesis + motion planning” . For each example, we show the final grasp
synthesized by each method on the left and several key frames of the reach-
and-grasp process with the offline planned trajectory in purple on the right.

the planned trajectory, we start using the interface provided by the
simulator to move fingers towards the target joint states unless it
contacts with the scene. When all fingers stop moving, we use the
simulator to execute the grasping test. Accordingly, we can compute
the success rate for different stages. The first one is “final grasp”,
where we test whether the gripper with the given final configuration
can successfully grasp and lift the object in the dynamics simulator.
The second one is “motion plan”, where we check whether the given
planner can find a feasible trajectory to transit the gripper from
the initial configuration to the final configuration. The third one is
“overall”, where we consider the whole process to be successful if
and only if both final grasp and motion plan succeed.

Table 2 reports the success rate of the final grasp, motion plan, and
the overall process executed in the dynamic simulator . Note that the
success rates are computed for different settings. “Avg" refers to the
average success rate among all testing samples, while “ Top-1" refers
to the average success rate of all testing objects, where each object
is tested with a fixed set of initial configurations and is considered
to be successfully grasped if any of those initial configurations leads
to a successful grasp. We can see that using the final grasp obtained
via our method gets consistently better results.

Submission ID: 288. 2022-05-02 00:35. Page 11 of 1–14. , Vol. 1, No. 1, Article . Publication date: May 2022.



12 • Qijin She, Ruizhen Hu, Juzhan Xu, Min Liu, Kai Xu, and Hui Huang

Table 3. Quantitative comparison to the primitive-based method (PBM)
on four datasets. We report the overall success rates of execution in the
simulator, where “Avg" refers to the average success rate among all testing
samples and “ Top-1" refers to the average success rate of all testing object.
One test sample means one object with one initial configuration.

Method YCB* BIGBIRD* ContactPose 3DNet*
Avg Top-1 Avg Top-1 Avg Top-1 Avg Top-1

PBM 57.0% 92.0% 47.2% 89.0% 44.5% 84.0% 48.7% 90.0%
Ours 58.6% 100.0% 47.7% 95.6% 48.0% 88.0% 52.3% 100.0%

Figure 11 shows some visual comparisons of thosemethods. For each
example, we show the final grasp synthesized by eachmethod on the
left and several key frames of the reach-and-grasp process with the
offline planned trajectory in purple on the right. From the results,
the method of Liu et al. [2020b] cannot handle the tabletop well: It
tends to generate a grasp pose with finger touching the table and
does not form a valid grasp pose, especially for flat-shaped objects
shown in the first row. Although GraspIt! can generate much more
successful grasps, it usually fails to plan a collision-free moving path
for the gripper from the given initial configuration to the final pose,
and even with successfully planned path, the gripper configuration
is more likely to be changed during the reaching process to avoid
collision with the tabletop, which leads to a lower overall success
rate. Note how the final grasp pose after the reaching process is
different from the planned final poses shown in the fifth row. But
for the final grasp pose generated by our method, we have taken the
tabletop into the consideration during the whole reaching process,
thus on the one hand, our method gets a much higher success rate
of the final grasp, one the other hand, even using the same motion
planning method instead of the own motion planned by our method,
we can still get the best overall success rate.

For the second type of baselines, we compare the whole reach-and-
grasp process obtained via our method to a heuristic primitive-
based grasping method. Inspired by the work of [Della Santina
et al. 2019], we adopt three grasping primitives, including “Pinch",
“Top", and “Lateral", and for each testing initial configuration, we
select the closest primitive based on the geodesic distance on the
sphere to execute the corresponding grasp. Note that “Top" and
“Pinch" primitives have the same start gripper configurations, and
we choose the one that achieves higher performance to get the final
result. More details about this primitive-based method (PBM) can
be found in the supplementary material.

Table 3 reports the comparisons of “Avg" and “ Top-1" success rate of
overall execution in the simulator on four different datasets. We can
see that our method outperforms the primitive-based method on all
the datasets. The main reason is the reaching path of each primitive
grasp is fixed and cannot adapt well to the various geometry of
different objects, while our method can keep targeting the object
with the guidance of the encoded IBS. Figure 12 shows some visual
comparisons between our method and PBM. Note how the final
grasp poses of the primitive-based method deviate from the object
due to the shape complexity. For example, neither the final grasps
of PBM shown in the first and third examples touches the object.
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Fig. 12. Visual comparisons to the primitive-based method (PBM). For each
example, we show the initial configuration of the gripper on the left, final
grasping pose on the right, and three sampled frames during the reaching
process in the middle. The purple curve indicates the moving trajectory
before the current frame. From top to bottom, the primitives used in these
examples for PBM are “Pinch", “Top", and “Lateral", respectively.

One interesting aspect of our method we would like to highlight is
that when executing the reach-and-grasp process in the simulator,
the pose of the target object may change due to collision with the
gripper, and our method is still able to dynamically adapt to its
new pose, follow the moving object and grasp it successfully. See
the grasp result of the bottle shown in the fourth row of Figure 12.
Other than the adaption to dynamic changes of the target object,
our method is also robust to partial observations. Examples can be
found in the supplementary materials.

6 DISCUSSION AND FUTURE WORK

We have presented an RL-based method to jointly learn grasp and
motion planning for high-DOF grippers. We advocate the use of
Interaction Bisector Surface to characterize the fine-grained spatial
relationship between the gripper and the target object. We found
that IBS is surprisingly effective as a state/observation represen-
tation of deep RL since it well informs the fine-grained control of
each finger with spatial relation against the target object. Together
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Fig. 13. Failure cases. (a) Unnatural grasping poses. (b) Unsuccessful grasps
for flat-shaped target objects.

with a few critical designs of the learning model and strategy, our
method learns high-quality grasping with smooth reaching motion.

Our method has the following limitations:

• Our RL model adopts success signal in execution as well as
Q1 metric for measuring grasp quality and does not explicitly
define the naturalness of a grasp. Therefore, there is the case
that a generated grasp is successful but looks unnatural. For
example, some successful grasps could have an unbent finger
that looks implausible; see Figure 13(a).

• The other reward we use is devised to avoid collision during
the reach-and-grasp process. This makes our method unable to
learn picking up a flat shape lying on the table. See Figure 13(b)
for an example.

As future work, we would like to conduct further investigation on
the following four aspects:

• To further improve the performance of our method, we can
try more complicated feature encoding other than the current
PointNet andMPLs, and further, take more dynamic information
of each frame such as velocity into account.

• To generate more natural grasps, it is necessary to investigate
grasp quality metrics that can better reflect grasp naturalness.
This could be learned from human grasping datasets such as
ContactPose [Brahmbhatt et al. 2020] .

• To make our method be able to grasp flat-shaped objects, we can
relax the collision constraint and even utilize the collision with
the environment to help lift the object and achieve a successful
grasp as in [Eppner et al. 2015] .

• To be able to conduct real robot implementation, we need to
study how to perform sim-to-real policy transfer, overcoming
the domain gap between simulated observation and real visual
perception, as well as the gap between simplified static environ-
ment and real dynamic scenes.
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