
Iterative Poisson Surface Reconstruction (iPSR) for Unoriented Points
FEI HOU, CHIYUWANG, andWENCHENGWANG, State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences & University of Chinese Academy of Sciences, China
HONG QIN, Department of Computer Science, Stony Brook University, USA
CHEN QIAN, SenseTime Research & Tetras.AI, China
YING HE∗, School of Computer Science and Engineering & S-Lab, Nanyang Technological University, Singapore

Fig. 1. Our method extends the popular Poisson surface reconstruction technique by eliminating the requirement of point orientation. As a result, it can
directly apply to points without normal information. Left: an indoor scene with 17 million points [Park et al. 2017]. Right: an outdoor scene with 1.89 million
points [Choi et al. 2016]. We set the octree depth 12 in both examples.

Poisson surface reconstruction (PSR) remains a popular technique for recon-
structing watertight surfaces from 3D point samples thanks to its efficiency,
simplicity, and robustness. Yet, the existing PSR method and subsequent
variants work only for oriented points. This paper intends to validate that
an improved PSR, called iPSR, can completely eliminate the requirement
of point normals and proceed in an iterative manner. In each iteration,
iPSR takes as input point samples with normals directly computed from
the surface obtained in the preceding iteration, and then generates a new
surface with better quality. Extensive quantitative evaluation confirms that
the new iPSR algorithm converges in 5-30 iterations even with randomly
initialized normals. If initialized with a simple visibility based heuristic, iPSR
can further reduce the number of iterations. We conduct comprehensive

∗Corresponding author

Authors’ addresses: Fei Hou, houfei@ios.ac.cn; Chiyu Wang, wangcy@ios.ac.cn;
Wencheng Wang, whn@ios.ac.cn, State Key Laboratory of Computer Science, Institute
of Software, Chinese Academy of Sciences & University of Chinese Academy of Sci-
ences, Beijing, China; Hong Qin, qin@cs.stonybrook.edu, Department of Computer
Science, Stony Brook University, New York, USA; Chen Qian, qianchen@sensetime.com,
SenseTime Research & Tetras.AI, Beijing, China; Ying He, yhe@ntu.edu.sg, School
of Computer Science and Engineering & S-Lab, Nanyang Technological University,
Singapore.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/7-ART128
https://doi.org/10.1145/3528223.3530096

comparisons with PSR and other powerful implicit-function based methods.
Finally, we confirm iPSR’s effectiveness and scalability on the AIM@SHAPE
dataset and challenging (indoor and outdoor) scenes. Code and data for this
paper are at https://github.com/houfei0801/ipsr.

Additional Key Words and Phrases: Unoriented points; Poisson surface
reconstruction; Iterative algorithm

ACM Reference Format:
Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying
He. 2022. Iterative Poisson Surface Reconstruction (iPSR) for Unoriented
Points. ACM Trans. Graph. 41, 4, Article 128 (July 2022), 13 pages. https:
//doi.org/10.1145/3528223.3530096

1 INTRODUCTION
For more than a decade, Poisson surface reconstruction (PSR) [Kazh-
dan et al. 2006; Kazhdan and Hoppe 2013] has been a well-known
technique for producing watertight surfaces from oriented point
samples. Its key idea is to compute a signed distance field by solving
Poisson’s equation, resulting in a sparse linear system, hence is com-
putationally efficient and also works for large-scale inputs. Other
noticeable advantages include being resilient to noisy data and toler-
ant to registration artifacts. Nevertheless, its strong requirement on
point orientation severely confines its potentially widespread appli-
cations. Despite significant research progress pertinent to machine
learning in recent years, precisely predicting point orientation from
raw, noisy points remains an insurmountable challenge.

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

ar
X

iv
:2

20
9.

09
51

0v
1

 [
cs

.G
R

]
 2

0
Se

p
20

22

HTTPS://ORCID.ORG/0000-0001-8226-6635
HTTPS://ORCID.ORG/0000-0002-6427-2211
HTTPS://ORCID.ORG/0000-0001-5094-4606
HTTPS://ORCID.ORG/0000-0001-7699-1355
HTTPS://ORCID.ORG/0000-0002-6749-4485
https://orcid.org/0000-0001-8226-6635
https://orcid.org/0000-0002-6427-2211
https://orcid.org/0000-0001-5094-4606
https://orcid.org/0000-0001-7699-1355
https://orcid.org/0000-0002-6749-4485
https://doi.org/10.1145/3528223.3530096
https://github.com/houfei0801/ipsr
https://doi.org/10.1145/3528223.3530096
https://doi.org/10.1145/3528223.3530096

128:2 • Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying He

Some recent works have shown earlier attempts in bridging such
gaps, with an ultimate goal of inferring implicit surfaces from unori-
ented points. Huang et al. [2019] formulated an elegant variational
framework using Duchon’s energy [Duchon 1977]. Their method,
called variational implicit point set surfaces (VIPSS), does not need
domain discretization and works well for both exact interpolation
and approximation towards linear geometry reproduction. However,
it involves densematrix formulation, thereby is only limited to small-
scale point clouds. Metzer et al. [2021] addressed the problem of
orienting point clouds by separating its global and local components
into two sub-problems. In the local phase, it trains a deep neural
network to learn a coherent normal direction per patch, while in
the global phase, it propagates the orientation across all coherent
patches using a dipole propagation. Their method is able to predict
accurate normals for most of the samples, yet there are frequently
a few patches whose normals are flipped, yielding artifacts in the
corresponding reconstructed regions. Deep learning based surface
reconstruction methods [Erler et al. 2020; Groueix et al. 2018; Park
et al. 2019] were proposed recently. Although they are excellent to
reconstruct data belonging to the same class of the training data
with strong prior knowledge, they are not robust to the reconstruc-
tion of other classes of data, so they are not ideal for general purpose
usage.
This paper showcases our new research effort towards an en-

hanced PSR without the need of point orientation information (crit-
ical to surface reconstruction in prior algorithms). We wish to val-
idate that an improved PSR can completely eliminate the strong
requirement of point normals and naturally proceed towards the
final reconstruction in an iterative manner. The key insight in our
pursuit of the new algorithm is that, when assigning random nor-
mals to the input points, PSR generates a surface that is often far
from the correct final shape, but this intermediate surface can still
afford valuable information for updating point orientations, from
which an even better surface can be generated. Specifically in each
iteration, our new algorithm takes as input point samples with nor-
mals directly computed from the surface obtained in the preceding
iteration, and then reconstructs a new surface with better quality.
Because of the algorithm’s iterative nature, we call our method iter-
ative Poisson surface reconstruction, or iPSR. Extensive quantitative
evaluation on the AIM@SHAPE dataset confirms that the new iPSR
algorithm converges in 5-30 iterations (with average 10 iterations)
even with completely randomized normals at the initialization stage.
One observation during our extensive experiments is that, when ini-
tialized with a simple visibility based heuristic [Katz et al. 2007], our
iPSR can further reduce the number of iterations by 45% on models
with 100K+ points. We conduct thorough, in-depth comparisons
with PSR and other powerful implicit-function based techniques
through comprehensive experiments, which all ascertain iPSR’s ef-
fectiveness and scalability on benchmark dataset and challenging
scene data. It is also worth mentioning that other inherent advan-
tages include being robust to outliers, noisy, non-uniform, and/or
sparse point cloud data.

2 RELATED WORK

2.1 Implicit Function Methods
A large repository of existing techniques result from implicit meth-
ods, which essentially generate a distance field and extract iso-
surface to reconstruct the surface. In principle, the implicit method
can guarantee a watertight surface reconstruction, where the gen-
erated surface may not pass through the sample points, but it tends
to be more robust for noisy inputs.

MPU [Ohtake et al. 2003] blends local quadratic functions to gen-
erate implicit fields. Poisson surface reconstruction [Bolitho et al.
2009; Kazhdan et al. 2006] as well as screened Poisson surface re-
construction [Kazhdan et al. 2020; Kazhdan and Hoppe 2013] fit a
smoothed 0-1 indicator function blurred near the modeled surface.
The gradient of the indicator function is derived from surface nor-
mals and the indicator function is fitted by a solvable (screened)
Poisson’s equation. Manson et al. [2008] reconstructed the indicator
function by wavelets. Calakli and Taubin [2011] generated a smooth
approximation to the signed distance field of a surface. Taking ad-
vantage of both indicator function and signed distance function, Lu
et al. [2018] generated the implicit field using a modified Gauss for-
mula with higher accuracy. However, all of them demand oriented
normals as input, which may not be easily obtained in advance.

Another group of methods try to infer normal directions automat-
ically from classic PCA [Hoppe et al. 1992] to Voronoi diagrams [Al-
liez et al. 2007; Merigot et al. 2011] to estimate normal directions, or
specially for surfaces with sharp features [Boulch and Marlet 2012;
Li et al. 2010]. But they fail to address the normal orientation prob-
lem. The consistent orientation is the key for surface reconstruction,
which can be classified into local or global methods [Kazhdan et al.
2020]. Local methods fit a local surface first and then blend them
together or propagate the normals greedily. Global methods infer
all the normals simultaneously by optimizing a global function.

Local Methods. The pioneering work [Hoppe et al. 1992] propa-
gates normal orientations along neighboring centers whose direc-
tions are nearly parallel, which is a greedy algorithm seeking to
orient normal on a minimum spanning tree. However, the neigh-
boring size is crucial to the algorithm [Mitra and Nguyen 2003].
More reliable measures are proposed later for orientation propaga-
tion [Xie et al. 2003][Huang et al. 2009][Huang et al. 2013]. Still,
the propagation strategy is greedy in nature. Some methods are
proposed to reconstruct surface of noisy point cloud by least square
fitting [Mitra and Nguyen 2003; Xie et al. 2003], yet they are not suit-
able for sparse point clouds. Inspired by dipole, Metzer et al. [2021]
proposed to orient points in the local and global phases, respectively.
The method is efficient, but is not robust to complicated data due to
its intrinsic propagation nature.

GlobalMethods. In contrast to the aforementioned local approaches,
global methods are more reliable to reconstruct 3D models. After es-
timating normal directions fromVoronoi diagram, Alliez et al. [2007]
evaluated the implicit field as well as orienting normals by solv-
ing a generalized eigenvalue problem to maximize an anisotropic
Dirichlet energy. Mullen et al. [2010] computed an unsigned dis-
tance approximation of the input data first, and then estimated its
sign by minimizing a quadratic energy. Their method is robust to

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

Iterative Poisson Surface Reconstruction (iPSR) for Unoriented Points • 128:3

noise and outliers. Schertler et al. [2017] proposed a global graph-
based minimization approach to orienting normals. Most of the
approaches decompose the estimation of normal directions and
orientations into two steps. Wang et al. [2012] proposed a varia-
tional framework, which integrates the two steps together. Recently,
Huang et al. [2019] fitted surface and normals by Duchon’s energy.
It works well for sparse uniform samples and wireframes, but it fails
to reconstruct dense point clouds due to high computational cost.
Peng et al. [2021] exploited fast Fourier transform based Poisson
solver to differentiate the indicator function with respect to point
positions and normals, so that they optimize point positions and
the corresponding normals to minimize reconstruction error. It is
much more reliable than previous methods since both point posi-
tions and normals are optimized in a unified framework to minimize
the reconstruction error. However, it requires thousands of epochs
to converge, hence too slow to reconstruct large-scale models. In
addition, in our experiments we observe that it is not robust to
reconstructing high-genus models.

2.2 Other Techniques
Besides implicit methods, there are a plethora of earlier works in
surface reconstruction using combinatorial methods, such as ball-
pivoting [Bernardini et al. 1999], power crust [Amenta et al. 2001],
and tight cocone [Dey and Goswami 2003]. Since these methods
rely on either Delaunay triangulation or its dual Voronoi diagram,
they do not require point normals and can be directly applied to raw
points. However, they are vulnerable to noise and outliers, and fail to
function with sparse points. Lazar et al. [2018] formulated an elegant
combinatorial optimization for surface reconstruction subject to
topological constraints. The method is robust and can be applied
to reconstruction from cross-sectional slices and iso-surfacing an
intensity volume. However, it requires topological constraints (i.e.,
genus) as input, which is hard to obtain as prior knowledge for
models with complex geometry and/or arbitrary topology.

Recently, as an emergingmethod, deep learning has shown promise
in point orientation and surface reconstruction. Using an automati-
cally generated prior shape as the initial mesh, Point2Mesh [Hanocka
et al. 2020] continuously deforms it to shrink-wrap the input point
cloud and generates a watertight triangle mesh of the same topology.
It works well for genus-0 models, but extending it to high-genus
models is non-trivial due to lack of techniques for generating initial
meshes. Point2Surf [Erler et al. 2020] and Iso-Points [Wang et al.
2021] are appropriate for dense noisy point clouds, but they are not
able to reconstruct sparse points such as the wireframe samples
used in [Huang et al. 2019]. IGR [Gropp et al. 2020] uses a multilayer
perceptron to represent 3D shapes and adopts a simple regulariza-
tion term to train it. The method works for raw points, but it is
sensitive to noisy input. Implicit occupancy network represents 3D
surfaces as a continuous decision boundary of a deep neural network
classifier [Mescheder et al. 2019]. It does not require discretization
and can represent shape in a continuous manner. However, due to
fully-connected network architecture, it cannot reconstruct high
frequency surface detail. Later, Peng et al. [2020] proposed convo-
lutional occupancy network to handle surface details and scenes.
IM-Net [Chen and Zhang 2019], as an implicit field decoder, trains

a binary classifier to indicate whether a point is outside a shape or
not. It can be used for 3D reconstruction with good visual quality.
The local implicit grid representations [Jiang et al. 2020] learn shape
priors at a micro scale and leverage them in a macro scale for 3D
reconstruction. The method works well for 3D scenes containing
man-made objects that are smooth at a “part” scale, however, it
cannot deal with models with rich geometric detail. DeepSDF [Park
et al. 2019] encodes a shape into a feature vector applicable for shape
interpolation and completion, but it is not used for surface recon-
struction. In essence, the deep learning based methods always rely
on the training process of certain datasets, which are specifically
tailored for certain types of models and their subsequent recon-
struction task. In contrast, our newly-developed iPSR is a general
purpose framework well suitable in a wide range of model types,
without the need of point orientation information at all.

3 PRELIMINARIES
Poisson surface reconstruction [Kazhdan et al. 2006] takes as input a
set of oriented points {𝑠𝑖 }𝑚𝑖=1 sampling the boundary of a watertight
surface. Throughout the paper, we denote by𝑀 the solid bounded
by the watertight surface. Then 𝜕𝑀 is the 2-manifold closed surface
that we aim to reconstruct. Assume the input model is uniformly
scaled into a unit box, we denote by ®𝑛(𝑥) the given unit inward
normal for a sample point 𝑥 = 𝑠𝑖 . Transform the discrete vectors ®𝑛
into a continuous vector field ®𝑉 using a smoothing filter 𝐹 (·),

®𝑉 (𝑥) =
∮
𝜕𝑀

𝐹𝑦 (𝑥) ®𝑛(𝑦)𝑑𝑦,

where 𝐹𝑝 (𝑞) = 𝐹 (𝑞−𝑝) is the translation to point 𝑝 . In [Kazhdan et al.
2006], 𝐹𝑦 (𝑥) is the Gaussian function centered at 𝑥 . The Poisson
surface reconstruction algorithm [Kazhdan et al. 2006] computes
an indicator function 𝜒 : R3 → R whose gradient approximates 𝑉
by minimizing the energy∫

[0,1]3

∇𝜒 (𝑥) − ®𝑉 (𝑥)𝑑𝑥 .
The indicator function is defined to have value 1 inside and value 0
outside the model. Thus, the function value is 1

2 for points on the
surface 𝜕𝑀 . Using the Euler-Lagrange formulation, the minimum is
obtained by solving Poisson’s equation

Δ𝜒 (𝑥) = ∇ ·𝑉 ,

with Dirichlet boundary condition 𝜒 (𝑥) = 0 for 𝑥 on the boundary
of [0, 1]3. Using octree for decomposing the domain and locally
supported basis functions for domain discretization, Kazhdan et al.
showed that the Poisson equation becomes a well-defined sparse
linear system, which can be solved easily and efficiently.

The screened Poisson surface reconstruction algorithm [Kazhdan
and Hoppe 2013] adds into the energy an additional term that pe-
nalizes the surface from deviating the samples. Minimizing such an
energy can be interpreted as a screened Poisson equation, which is
also a sparse linear system.

4 METHOD
Motivation. Given sample points with incorrect normals, PSR

produces an iso-surface F which is usually highly twisted and has

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

128:4 • Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying He

(a) 3 layers (b) 2 layers

Fig. 2. Illustration of the 𝑘-nearest neighbor searching using 2D examples.
The blue curve represents part of the boundary surface of a solid 𝑀 , on
which sample points (blue dots) are located. The black curve is part of the
iso-surface F produced by screened PSR. Due to incorrect normals used by
PSR, the computed iso-surface F is twisted and has different topology than
𝜕𝑀 . After applying the marching cube algorithm, we obtain a triangular
mesh representing F. We draw the center of each triangular face as a black
dot. The green dashed lines show the relation between triangle centers and
sample points. To avoid visual clutter, we set a small 𝑘 = 3 in both examples,
i.e., each black dot is linked to 3 closest green dots. Consider two samples 𝑠𝑖 ,
𝑖 = 1, 2 and denote by 𝑛𝑖 the number of centers associated to sample 𝑠𝑖 . We
show two representative layered structures in (a) and (b), respectively. (a) is
odd-layered and we have 𝑛1 = 4 and 𝑛2 = 7. (b) is even-layered and 𝑛1 = 3
and𝑛2 = 5. We then update the normal of sample 𝑠𝑖 byweighted averaging
the normals of the associated black dots. It is worth noting that the parity of
𝑛𝑖 is not important, since we adopt weighted average to update normals, i.e.,
the normal of each black dot is multiplied by the triangle area. As a result,
what matters most is whether these black dots are from an odd-layered
structure. We observe that (1) if the iso-surface has an odd-layer structure,
it is very likely that the weighted average of normals is inward; and (2) if the
iso-surface has an even-layer structure locally, weighted normal averaging
will turn the structure into odd-layered in future iterations.

multiple connected components. Each of the connected components
is a closed surface. Figure 5 (column 2) shows a few such examples.
Let 𝑠 be an arbitrary sample point. Consider a ray which is from
the interior of solid𝑀 to infinity and is perpendicular to 𝜕𝑀 at 𝑠 so
that the ray may intersect the iso-surface F at locations near 𝑠 . The
key observation is that if the starting point of the ray is also inside
the iso-surface F , the ray crosses F an odd 1 number of times, say
2𝑛 + 1, no matter how many connected components F has. Since all
connected components of the iso-surface F are closed surfaces, we
can compute the inward normal for each intersection point, i.e., the
normal is towards the interior of the component the point belonging
to. Among the intersections, there are 𝑛 + 1 points whose normals
of the iso-surface F are towards the interior of solid 𝑀 . For the
rest, their normals are pointing to the exterior of 𝑀 . Assume the
normals are almost collinear. Then, averaging the normals of the
2𝑛 + 1 intersections yields an inward normal of𝑀 .
Inspired by this observation, we adopt the following strategy to

update normals. We call the local neighborhood of an iso-surface
around an intersection point a “layer”. Notice that the intersections
are located at an odd number of layers of the iso-surface produced
by PSR. Therefore, one could use the representative points on each
layer to correct normals instead of explicitly finding the intersection
points.

Let the iso-surface F be discretized by marching cubes [Lorensen
and Cline 1987]. Assume the discretization resolution is sufficiently
1If the ray is tangential to an iso-surface, we count two intersection points.

Algorithm 1: iPSR
input :Unoriented points P = {𝑝1, 𝑝2, . . . , 𝑝𝑚 }, the

maximum octree depth 𝐷 , the convergence
threshold 𝛿 and the screened PSR weight 𝛼

output :A watertight surface approximating the points

construct an octree of depth 𝐷 to discretize P;
S ← nodes of the octree;
𝑛 ← |S|;
construct a kd-tree for S for nearest sample searching;
initialize normal for each sample 𝑠𝑖 ∈ S randomly;
while not convergence or exceeding maximum number of
iterations do

compute indicator function 𝜒 by applying screened PSR
with parameter 𝛼 to S;
extract the iso-surface F with iso-value 1

𝑛

∑𝑛
𝑗=1 𝜒 (𝑠 𝑗) by

marching cubes;
for each sample 𝑠 𝑗 ∈ S do

𝑠 𝑗 .face_list← ∅
end
for each triangular face 𝑓𝑗 ∈ F do
®𝑛 𝑗 ← 𝑓𝑗 ’s inward normal, i.e., towards interior of the
component 𝑓𝑗 belonging to;
𝑎 𝑗 ← the area of triangle 𝑓𝑗 ;
use kd-tree to find top-𝑘 samples in S that are closest
to 𝑓𝑗 ;
add 𝑓𝑗 to the associated face list of each of the 𝑘
samples;

end
for each sample 𝑠 𝑗 ∈ S do
®𝑛(𝑠 𝑗) ←

∑𝑚 𝑗

𝑖=1 𝑎 𝑗𝑖 ®𝑛 𝑗𝑖 ; /∗𝑚 𝑗 = 𝑠 𝑗 .face_list.count() ∗/
normalize ®𝑛(𝑠 𝑗);

end
𝑑 ← the average of top 0.1% normal difference of samples
between the previous and the current iterations;
if 𝑑 < 𝛿 then

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ← 𝑡𝑟𝑢𝑒

end
end
apply screened PSR to the sample points {𝑠𝑖 } with predicted
normals ®𝑛(𝑠𝑖) and return the iso-surface F extracted from
the computed indicator function;

high so that the resulting triangle mesh preserves the topology
of the layered structures, i.e., there are mesh vertices sampled on
each layer. For each triangular face of the discretized iso-surface,
we find 𝑘 sample points that are nearest to it. Going through all
the faces, we can connect the input points with the triangles of
F . As a result, we can use the triangular faces associated to each
sample point as the representatives of the layered structure around
it. In particular, for each sample 𝑠 , we compute the area-weighted
sum of the normals of its associated triangular faces. Also, we can
view each layer as a plane whose normal represents the layer’s
normal. Thus, the resulting average normal can be viewed as the

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

Iterative Poisson Surface Reconstruction (iPSR) for Unoriented Points • 128:5

(a) (b) (c) (d) (e) (f) (g)

triple layers single layer double layers single layer single layer single layer single layer single layer single layer
Iteration 1 Iteration 2 Iteration 3

Fig. 3. Layered structure and normal updating. In the close-up views, we shade the exterior region and draw only part of the normals to avoid visual clutter.
See the texts for details.

Random normals Iteration 1 Iteration 2

Iteration 3 Iteration 4 Output

Fig. 4. Illustration of the algorithmic pipeline on a 2D model. In each iteration, we show the color-coded indicator function, the extracted iso-curve and the
updated normals (only part of the normals are shown to avoid visual clutter).

average of the normals of all the layers around 𝑠 . If there are an
odd number of layers around sample 𝑠 , the average of layer normals
is towards the interior of solid 𝑀 . This implies that the parity of
the number of associated representative triangular faces to each
sample 𝑠 does not matter. As long as these faces are located on
the layers, they can be used to represent the layered structure so
that the area-weighted averaging yields a vector approximating the
average of the normals of all layers. Therefore, the average of layer
normals is conceptually equivalent to the average of the normals of
the 2𝑛 + 1 intersection points along the ray from interior of 𝑀 to
infinity (which is mentioned at the beginning of Section 4).

We call the local neighborhood of a sample 𝑠 “odd-layered” (resp.
“even-layered”) if there are an odd (resp. even) number of layers of
the iso-surface around 𝑠 . When the normals for points around 𝑠 are
perturbed, the indicator function usually has oscillations, leading
to small, fragmented iso-surfaces in the local neighborhood of 𝑠 .
As a result, a ray starting from an exterior point of the iso-surface
F , crossing 𝑠 and travelling to infinity produces an even-layered
structure. We observe that even with randomly initialized normals,
the iso-surface computed in the first iteration has a large number

of odd-layered structures. Moreover, an even-layered structure can
turn into odd-layered in the future iterations, but not the other
way around. As a result, through the iterative procedure, more and
more samples exhibit an odd-layered structure around them, and
our area-weighted normal averaging strategy can make the normals
more and more accurate. See Figure 2 for a 2D illustration of the
normal updating strategy.

Overview. Our method is a fairly straightforward realization of
the aforementioned normal averaging strategy detailed in Algo-
rithm 1. Given a set of unoriented points P as input, we first con-
struct an octree with maximum depth 𝐷 (specified by the user) and
use the octree nodes as the sample set S. To facilitate sample search,
we also construct a kd-tree for the samples. We initially assign each
sample a random normal vector, before our method proceeds in an
iterative manner. In each iteration, we apply the screened PSR to
the sample set S with the current normals and obtain an indicator
function 𝜒 . We apply the octree-oriented marching cube [Kazhdan
et al. 2006; Kazhdan and Hoppe 2013] to extract the iso-surface F
with iso-value 1

𝑛

∑𝑛
𝑖=1 𝜒 (𝑠𝑖), where 𝑛 = |S| is the number of sam-

ples. Then we update the normal for each sample by averaging the

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

128:6 • Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying He

Fig. 5. Given points with randomly assigned normals, our method iteratively applies screened PSR to reconstruct a watertight surface, from which it updates
the normals of all points. The algorithm terminates when normal changes are smaller than a threshold. It takes iPSR 4, 5, 7, and 7 iterations to converge on
Torus, Bimba, Walrus and Trebol, respectively, so there are 5, 6, 8, and 8 reconstructed surfaces shown here. See also the accompanying video for animation.

iso-surface’s inward normals of triangular faces associated with 𝑠 .
The algorithm continues until the point normals do not change any
more. Figure 4 illustrates the entire pipeline using a 2D example,
and Figure 5 shows the iterative results on 4 typical 3D models. We
document more implementation details next.

Visibility-based initialization. Although our algorithm converges
with random initialization, in practice it can run faster if given a
better initialization. Besides random initialization, we adopt a simple
visibility based method [Katz et al. 2007] to estimate initial normals.
Specifically, we scale the input points into a unit cube and create a
concentric cube with edge length three. Then we set 26 viewpoints
(camera positions) using the large cube: 8 are at the corners of the
cube, 6 at the face centers, and 12 at the edge midpoints. From each
viewpoint 𝑣𝑖 , we apply the hidden point removal operator [Katz et al.
2007] to determine the samples that are visible from 𝑣𝑖 . Then we
initialize the normal for every sample by averaging the directions of
all visible rays. If a sample 𝑠 𝑗 is invisible to any of the viewpoints, we
simply assign a fixed normal [1, 0, 0]. Katz et al.’s method is simple
and highly efficient thanks to its linear time and space complexities.
Experimental results on the Aim@Shape dataset show that the
visibility initialization can reduce the number of iterations by 45%
on models with more than 100K points.

Normal processing. We first apply the octree-oriented marching
cube [Kazhdan et al. 2006; Kazhdan and Hoppe 2013] to extract the
iso-surface 𝜒0, which may contain multiple connected components

especially in the first few iterations, and obtain a triangulated mesh.
Then we compute the normal vector for each face using a cross
product. For each triangular face of the iso-surface, we find the top-
𝑘 samples that are closest to it. In this way, we build relationship
between triangular faces and samples. Finally, we update the normal
®𝑛(𝑠𝑖) by computing the average of the normals of the faces which
are linked with 𝑠𝑖 . In our implementation, we empirically set 𝑘 = 10.
See Section 5 for discussions on the choice of 𝑘 .

Terminating condition. We compute the normal variance between
the samples of the current and the preceding iterations. The algo-
rithm terminates when the average of normal variance is less than
a user-specified threshold 𝛿 .

A 2D toy example. Figure 3 illustrates the layered structure of the
iso-surface using an ellipse. (a) Each sample point is initialized with a
random normal. Among them, 49% normals are inward, and the rest
are either outward or tangential to the curve. (b) Applying screened
PSR produces many disconnected closed curves in the first iteration.
Let us examine 3 samples 𝐴, 𝐵 and 𝐶 , whose local neighborhoods
exhibit different layered structures. Sample 𝐴 is triple-layered, 𝐵
single-layered and 𝐶 double-layered. Using the average normals of
representative points on the layers, we make 𝐴’s and 𝐵’s normals
inward, while 𝐶’s normal is still outward. (c) The normal averaging
strategy improves the normals effectively, and 78% of normals be-
come inward after the first iteration. (d) Taking the updated normals
as input, screened PSR produces a much-improved shape, which is

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

Iterative Poisson Surface Reconstruction (iPSR) for Unoriented Points • 128:7

already simply connected. All of the three representative samples𝐴,
𝐵 and 𝐶 exhibit odd-layered structures. (e) After iteration 2, 100%
normals are inward. (f) Applying screened PSR yields an almost
correct ellipse. (g) shows the averaged normals of (f).

5 EXPERIMENTAL RESULTS
Experimental setup. We implemented iPSR in C++ and tested it

on a workstation with Intel Core i9-11900K CPU, 64 GB RAM and
Nvidia GeForce RTX 3090 GPU with 24GB memory. The visibil-
ity based normal initialization [Katz et al. 2007] was implemented
in Matlab and we simply used files to exchange data. The perfor-
mance of visibility initialization could be further improved if imple-
mented in C++. We carried our experiments on the AIM@SHAPE
dataset2. Since PSR reconstructs watertight surfaces, we removed
open meshes and kept the remaining 351 closed models in our test.
For each mesh model, we simply used the mesh vertices as the
raw points. For models with multiple connected components, we
kept only the largest one. After computing the signed distance field
𝜒 , we applied the marching cube algorithm [Lorensen and Cline
1987; Wilhelms and Van Gelder 1992] to extract the iso-surface with
iso-value 1

𝑛

∑𝑛
𝑖=1 𝜒 (𝑠𝑖). Then we used the Metro tool [Cignoni et al.

1998] to measure the distance Y between the reconstructed mesh
and the original mesh as the quality measure. To make the measure
unitless, the measure is divided by the model scale.

Parameters. iPSR has 4 parameters, which are the maximum oc-
tree depth 𝐷 , the screened PSR weight 𝛼 , the convergence threshold
𝛿 , and the neighborhood parameter𝑘 . Among them, the octree depth
𝐷 and weight 𝛼 are the parameters of screened PSR [Kazhdan and
Hoppe 2013]. The screened PSR weight 𝛼 trades off the importance
of fitting the gradients and fitting the values [Kazhdan and Hoppe
2013]. We set the default weight 𝛼 = 10 and keep it a constant in
the iterative procedure of iPSR.

We determine the convergence threshold 𝛿 as follows. We notice
that after a few iterations, the normals of most of the samples be-
come stable, but there are still some regions requiring further local
improvement. Such regions might not receive enough care if using
a global average of normal variance. So in our implementation, we
use the average of the top 0.1% of the 𝐿2 normal variance and em-
pirically set the convergence threshold 𝛿 = 0.175. For noisy and/or
incomplete models, we also set a maximal iteration number 30 to
prevent excessive iterations.
In iPSR, the neighborhood parameter 𝑘 , which is the number of

neighboring samples associated to each triangular face, is a pre-
defined, fixed constant. On one hand, the value of 𝑘 should not
be too small, otherwise we may not obtain any candidate points
for a sample. On the other hand, 𝑘 cannot be too large, since a
large 𝑘 means searching is not within a local region. We tested the
influence of 𝑘 on three representative models, Bunny (Figure 14, row
4), Walrus (Figure 13, row 6, left) andMetatron (Figure 13, row 2, left)
with 𝑘 ranging from 5 and 50. The running time of iPSR is linearly
proportional to the number of iterations. Walnus is sparse and
structured, its reconstruction time decreases as 𝑘 increasing, since
the total number of iterations decreases. For uniformly sampled
models (Bunny and Metatron), we did not observe a strong relation
2http://visionair.ge.imati.cnr.it/ontologies/shapes/link.jsp

between 𝑘 and the number of iterations. For example, for all values
of 𝑘 , it takes iPSR 4 iterations to converge on Bunny, and 9-11
iterations on Metatron. Also, for Bunny and Metatron, the value of
𝑘 has little effect on the reconstruction quality. However, forWalnus,
we observed that the optimal range is 𝑘 ∈ [10, 20]. See Figure 6 (row
1). Thus, we set 𝑘 = 10 in our experiments.

The user-specified parameter 𝐷 is the maximum octree depth
for domain discretization. The actual depth, which depends on geo-
metric complexity of the input model, may be smaller than 𝐷 . The
parameter 𝐷 plays a critical role in reconstruction accuracy. In gen-
eral, the deeper the depth of the octree, the more accurate results
iPSR yields, and of course the longer computation time that it takes.
The typical range of 𝐷 is between 8 and 12. We tested the effect
of 𝐷 on three representative models, Bunny (𝑚 = 36𝐾), Raptor
(𝑚 = 1.5𝑀) and Walnus (𝑚 = 1𝐾) in Figure 6 (row 2). Notice that
Walnus is highly sparse and its actual octree depth never exceeds
8, since octree decomposition stops when each cell contains only
a single input point. As a result, increasing the depth parameter 𝐷
does not increase the actual octree depth, thereby having no effect
on the reconstruction quality. Since Bunny is also small and smooth,
its reconstruction quality remains almost unchanged for 𝐷 > 8. In
contrast to Bunny and Walnus, the Raptor model (Figure 16, row
2) has very rich geometric detail, therefore a shallow depth 𝐷 = 8
is not sufficient to produce enough octree nodes to represent the
shape. We must increase 𝐷 to reduce the reconstruction error, but at
the cost of longer computation time and higher memory consump-
tion. In our implementation, the default octree depth is 10, but the
user can increase or decrease the value 𝐷 by judging the geometric
complexity of the input model.
In our implementation, we only use the Dirichlet energy rather

than Neumann boundary condition in screened PSR so that we
can ensure the reconstructed surface does not exceed the domain
boundary [Kazhdan and Hoppe 2013].

Results. Figure 7 shows the histogram of the number of itera-
tions on the AIM@SHAPE dataset. We observe that iPSR converges
quickly with random initialization. It takes no more than 6 iterations
for 58% of the testing models and the median is 6. There are also
39 models that requires iPSR more than 30 iterations to converge
with random initialization. Since the improvements are not visually
significant in the final iterations, we simply force iPSR to stop at
the 30th iteration. Visibility initialization is effective for large mod-
els and can further reduce 5 iterations on average for models with
more than 100K points. We notice that there are a few test models
with very poor and/or uneven sampling rates. iPSR cannot recover
geometry if the sample rates are too low. Figure 18 shows two such
failed examples.

Large-scale data. We applied iPSR to the Lucy model, which con-
tains 14 million samples. As shown in Figure 8, setting the maximum
octree depth 𝐷 = 14, iPSR can preserve fine detail well in the recon-
structed surface. We also tested our method on indoor and outdoor
scenes [Chang et al. 2015; Park et al. 2017]. Figure 1 illustrates two
examples of large-scale 3D scene reconstruction using iPSR. The
indoor scene is scanned by a Lidar scanner [Park et al. 2017], and
we used the merged and resampled points as our input. The outdoor
scene is scanned by a RGBD camera [Choi et al. 2016]. As only raw

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

http://visionair.ge.imati.cnr.it/ontologies/shapes/link.jsp

128:8 • Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying He

(a) Number of iterations (b) Reconstruction error (c) Peak memory (MB) (d) Time (s)

Fig. 6. Stress tests of neighborhood parameter 𝑘 and the maximum octree depth 𝐷 . We examine 𝑘 ∈ [5, 50] and 𝐷 ∈ [8, 12] on 3 representative models.
The vertical axes are the number of iterations, reconstruction error, peak memory and running time, and the horizontal axes are the values of 𝑘 (top) and 𝐷

(bottom).

Random initialization Visibility initialization

Fig. 7. Histograms of the number of iterations on the AIM@SHAPE dataset.
The horizontal axis is the number of iterations that iPSR takes.

Fig. 8. Reconstruction of Lucy with 14 million unoriented points. Setting
the maximum octree depth 𝐷 = 14 yields 20 million points in the recon-
structed surface with fine detail. Using the visibility-based initialization,
iPSR converges in only 5 iterations and takes about 1.2 hours.

Input DPSR Dipole iPSR

Fig. 9. Man-made models.

depth images and the reconstructed surface mesh are available, we
took the mesh vertices as the input to iPSR. Note that the scene
models have various types of defects, such as noise, outliers, missing
parts, and non-uniform sampling. Nevertheless, iPSR can produce
visually pleasing results.

Structured and sparse data. iPSR inherits the smooth approxima-
tion property of screened PSR and can generate a smoothwater-tight
surface well approximating given points. As a result, iPSR works for
sparse but structured inputs. Figure 10 (left) shows a sparse Bunny

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

Iterative Poisson Surface Reconstruction (iPSR) for Unoriented Points • 128:9

Fig. 10. Left: Given a structured, sparse input with 1.5K points, iPSR can
fill in the gaps between wireframes and produce a smooth shape. Right:
The input is un-structured and incomplete, iPSR cannot recover the missing
geometry.

model, whose points are sampled from the edges of a quadrilat-
eral tessellation. Since the points are structured, iPSR can generate
smooth patches to fill in the gaps between wires. However, if the
input model is incomplete and unstructured, iPSR is not intelligent
enough to figure out the missing shape. See Figure 10 (right).

6 COMPARISON
We compared our method with a few recent works for reconstruct-
ing from unoriented points, including Dipole [Metzer et al. 2021],
differentiable Poisson surface reconstruction (DPSR) [Peng et al.
2021] and variational implicit point set surfaces (VIPSS) [Huang
et al. 2019]. DPSR has two versions, which are based on optimization
and deep learning, respectively. To make fair comparison to our
work, we used the optimization-based DPSR in the paper.

Running time Memory

Fig. 11. Scalability. Wemeasure the running time and memory consumption
on models with 100, 1K, 10K, 100K, 1M and 10M points, respectively. We
set the maximum octree depth 𝐷 = 10 for iPSR. For the 10M-point-model,
Dipole orients normals for representative points only, so there is a sudden
drop in GPU memory consumption the plot. DPSR uses fixed resolution
to voxelize the indicator function, so its memory consumption is almost a
constant.

6.1 Efficiency and Scalability
VIPSS is an elegant method for reconstructing smooth surfaces
from sparse input. However, it works only for input with up to a
few thousand points due to high memory consumption. iPSR and
VIPSS run on CPUs, whereas Dipole and DPSR perform most of the

computational tasks on GPUs. Therefore, the RAM consumption of
Dipole and DPSR is loosely related to the input size, but their CUDA
memory consumption increases rapidly when the number of input
points goes up. Moreover, DPSR fixes the resolution of indicator
functions 256×256×256, since the current GPUs cannot afford higher
resolutions. To deal with large models (e.g., with more than 1 million
points), Diople adopts a strategy that processes representative points
instead of all input points due to the CUDA memory constraint.
iPSR can work for large-scale models and recover fine geometry
detail thanks to the efficiency and scalability of screened PSR. See
Figure 11.

Method % of models with Y < 2% Mean Median
iPSR 72.1 3.18% 0.71%
DPSR 63.8 3.83% 0.60%
Dipole 31.1 7.75% 4.76%

Fig. 12. Histogram of reconstruction error Y on the AIM@SHAPE dataset.
The horizontal axis shows the normalized error and the vertical axis is the
frequency. Our method with random initialization is more accurate than
DPSR and Dipole.

6.2 ReconstructionQuality and Robustness
We measured the quality of the reconstructed surfaces for all meth-
ods using reconstruction error Y. We noticed that most of DPSR
results contain multiple connected components even though the
input points are samples from a single component. Therefore, we
used only the largest component to measure the accuracy of all the
methods for fair evaluation. Table 1 reports the statistics for a few
representative models. Figure 12 shows the histogram of reconstruc-
tion error of the AIM@SHAPE dataset. For 72.1% of the models, our
results have reconstruction error less than 2%. The mean error 3.18%
and median 0.71% are also quite low, demonstrating the high quality
of the reconstructed surfaces.

Figure 13 shows the results of robustness test. Since iPSR inherits
the robust features of screened PSR, we observed that it is resilient
to noise, outliers, high genus, non-uniform, missing regions and
sparse-but-structured inputs. In contrast, each of the other methods
has one or more weaknesses. We set the screened weight 𝛼 = 10 of
iPSR for all models. For the two noisy hand models, we run iPSR
with 𝛼 = 10 till convergence and then applied screened PSR with
𝛼 = 0 to produce the final results. The final results of DPSR and

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

128:10 • Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying He

Table 1. Statistics.𝑚: the number of input points;𝑇 /𝑇𝑟 /𝑇𝑣 : the running time in seconds; 𝐼𝑟 /𝐼𝑣 : the number of iterations of iPSR, where the subscripts r and
v indicate random and visibility initialization, respectively;𝑀CPU and𝑀GPU: the peak memory consumption in MB for CPU and GPU respectively; Y (%):
the normalized reconstruction error in percentage measured by Metro [Cignoni et al. 1998]. Asterisk ∗ indicates models whose errors are measured by the
Hausdorff distance between points due to lack of ground-truth meshes. We set the maximum octree depth 𝐷 = 10 for all models. Random initialization was
used when measuring the peak memory𝑀CPU and the reconstruction error Y of iPSR.

Model (𝑚) DPSR Dipole VIPSS iPSR
𝑇 𝑀CPU 𝑀GPU Y (%) 𝑇 𝑀CPU 𝑀GPU Y (%) 𝑇 𝑀CPU Y (%) 𝑇𝑟 𝐼𝑟 𝑇𝑣 𝐼𝑣 𝑀CPU Y (%)

Fertility (4.4K, Fig. 13) 140.2 1146.1 327.6 9.62 14.8 5269.1 3031.8 8.98 1161.6 13184.3 3.08 16.9 14 15.6 11 93.1 6.70
Noisy Hand 1 (8.7K, Fig. 13) 148.2 1146.8 288.7 0.72 26.5 5271.4 3232.8 6.77 8650.7 51855.4 86.89 9.4 6 11.6 3 119.7 0.91
Noisy Hand 2 (8.7K, Fig. 13) 153.3 1146.1 245.8 2.17 27.6 5267.6 3356.7 5.84 8920.3 51867.6 67.54 14.4 11 16.0 8 119.4 1.76
High Genus 2 (9.5K, Fig. 13) 186.3 1145.9 346.8 8.61 28.0 5270.1 3212.7 13.15 10782.3 61942.9 1.45 8.0 5 8.8 3 105.8 0.42

Chair (10K, Fig. 9) 128.6 1145.3 245.8 22.30 28.5 5270.2 3386.3 13.87 - - - 35.5 30 38.6 30 109.6 0.18
Woodfish (12.9K, Fig. 13) 131.7 1145.2 245.8 2.85 36.2 5264.6 3276.4 8.67 - - - 18.8 12 15.3 7 128.8 1.56
Pinion (15.6K, Fig. 9) 176.7 1145.3 290.7 11.82 34.9 5274.1 3138.8 11.40 - - - 33.2 19 34.5 18 133.0 2.50

320-wrl (27.4K, 1% outliers, Fig. 13) 146.1 1145.8 245.8 1.38 65.9 5280.2 3575.8 1.10 - - - 11.9 6 11.1 3 141.8 0.48
Bimba (50.5K, non-uniform, Fig. 13) 154.0 1145.9 288.7 1.52 101.3 5291.7 4587.5 3.92 - - - 33.2 10 19.8 4 220.4 1.72

High Genus 1 (69.2K, Fig. 13) 273.0 1145.7 245.8 4.88 166.3 5303.9 3784.5 11.38 - - - 42.8 10 21.5 3 312.6 0.31
Bimba (80.8K, 1% outliers, Fig. 13) 175.6 1146.1 245.8 4.54 163.3 5309.0 5241.1 0.70 - - - 32.2 7 23.1 3 320.4 0.36

Anchor (85.1K, Fig. 9) 182.6 1146.5 245.8 13.27* 170.9 5312.8 4205.3 7.83* - - - 43.1 10 36.1 7 423.8 9.47*
Four Children (660K, Fig. 13) 597.7 1143.0 545.5 2.74 2578.0 5633.6 12719.7 8.82 - - - 259.1 10 160.8 4 2125.9 1.45

N.A.

N.A. N.A.

N.A. N.A.

N.A.

Input DPSR Dipole VIPSS iPSR Input DPSR Dipole VIPSS iPSR

Fig. 13. Robustness. From top to bottom: noisy data, high-genus models, models with 1% outliers, non-uniform points, incomplete models and sparse points.
VIPSS cannot work for high resolution models due to high memory consumption. Images are rendered in high resolutions, allowing zoom-in examination.

Dipole on the two noisy hand models are also computed using 𝛼 = 0
for a fair comparison. Figure 9 shows results of man-made models.
We observed the iPSR is more robust to thin structures and holes
than DPSR and Dipole.

Figure 14 compares DPSR, Dipole, VIPSS and our method in terms
of reconstruction quality on Stanford Bunny with varying resolu-
tions. Except for VIPSS, all methods can produce results for the
highest resolution properly. As the number of points decreases,
defects of various degree show up on Bunny’s ears due to thin struc-
ture and relatively low local sampling rate. iPSR produces the least

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

Iterative Poisson Surface Reconstruction (iPSR) for Unoriented Points • 128:11

453 pts (5.31%,136.2s) (11.96%,7.9s) (23.91%,6.3s) (9.96%,7.6s) -

1,889 pts (3.77%,139.2s) (4.76%,10.3s) (3.81%,132.0s) (3.00%,26.8s) -

8,171 pts (3.60%,142.3s) (3.53%,26.5s) (49.07%,7271.1s) (3.19%,5.5s) -

N.A.

35,947 pts (3.54%,154.0s) (3.56%,87.6s) (-,-) (3.10%,9.7s) -
Input DPSR Dipole VIPSS iPSR GT mesh

Fig. 14. Stanford Bunny in different resolutions. The 2-tuple below each
figure is the reconstruction error and running time (seconds).

Dipole iPSR Dipole iPSR

Fig. 15. Comparing randomly-initialized iPSR with Dipole on orientation
prediction. Points are rendered as oriented disks with grey front side and
black back side. The black disks indicate the points with flipped normals.

artifacts among all the methods. We also observed that Dipole may
produce flipped normals (see Figure 15). Such normal inconsistency
leads to incorrect local shapes, e.g., the large defects at the legs of
Raptor (Figure 16). iPSR is insensitive to initialization and can yield
visually identical results with random initialization and visibility
initialization. See Figure 16 (top). With a properly chosen octree
depth, iPSR can recover fine detail well. See Figure 16 (bottom). In
contrast, DPSR can only generate a rough model due to its fixed
voxelization resolution.

7 DISCUSSION AND CONCLUSION
We extended the popular Poisson surface reconstruction method
by eliminating its requirement of point orientation. We proposed
a simple yet effective orientation strategy and showed that even
with randomly initialized point normals, our enhanced Poisson
surface reconstruction can proceed iteratively and yield visually
pleasing, smooth surfaces. Our iPSR method inherits the scalability
and robustness features of PSR, and works well for both sparse
and dense raw points. Throughout the paper, we demonstrated

GT mesh screened PSR iPSR+random iPSR+visibility
(437K vertices) Y = 0.31% Y = 0.45% Y = 0.45%

Input DPSR Dipole iPSR+random GT mesh
(1.5M vertices) Y = 2.70% Y = 28.43% Y = 0.10%

Fig. 16. Reconstruction quality. Row 1: iPSR is insensitive to initialization.
Both random initialization (18 iterations) and visibility-based initialization
(9 iterations) yield visually identical final results, whose quality is compa-
rable to the screened PSR which takes correct normals as input. Row 2:
Comparison with DPSR and Dipole. DPSR cannot recover fine detail due
to its fixed voxelization resolution 256 × 256 × 256. Dipole can reconstruct
geometry detail well, but the flipped normals on the legs lead to large
artifacts.

𝑚 = 2, 500 iPSR 𝑚 = 5, 786 iPSR

GT mesh iPSR After post-processing

𝑚 = 6, 475 𝑚 = 38, 840 𝑚 = 155, 354

Fig. 17. Limitations. Row 1: iPSR with random initialization generates dis-
connected components when sampling rate is too low. Row 2: The output
is always a watertight surface. Row 3: It cannot preserve sharp edges and
corners.

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

128:12 • Fei Hou, Chiyu Wang, Wencheng Wang, Hong Qin, Chen Qian, and Ying He

Input GT mesh iPSR+random

Fig. 18. Failed cases. In the first example, the lower part is treated wrongly
as outliers due to lack of samples connecting the bottom and the top parts. In
the second example, 5 out of the 6 sides of the cube-like shape are sampled
in an very uneven manner.

high-fidelity reconstruction results on the AIM@SHAPE dataset
and large-scale 3D scenes.

Our approach calls for possible further improvements that must
be addressed in follow-up research. First, iPSR may fail on thin
structure with very low sampling rate. Consider the toy model as
an example (refer to Figure 17 (row 1)). With random initialization,
the shape is broken into many parts. This problem can be fixed
by adaptively increasing the sampling rate. It is also possible to
initialize normals by using some simple orientation methods that
can predict reasonable normals based on local information.

Second, our method can produce only a closed manifold surface.
For openmodels, we have to adopt simple post-processing to remove
the unnecessary fill. Specifically, for each vertex of the reconstructed
mesh, we compute the distance to the closest sample in the input. If
the distance is greater than a user-specified threshold, we discard
the vertex and its adjacent faces (refer to Figure 17 (row 2)).
Third, our method cannot preserve sharp features due to the

smooth nature of the solution of Poisson’s equation. Although in-
creasing the input sampling rate can reduce the blurring artifact
(refer to Figure 17 (row 3)), it is more desirable to introduce post-
processing to recover sharp edges and corners. Some advanced
isosurfacing methods, such as neural marching cube [Chen and
Zhang 2021], are also helpful to reconstruct sharp edges.

Fourth, in our current implementation, we simply treat the screened
PSR [Kazhdan and Hoppe 2013] in its entirety as a black box and
feed it with updated normals in each iteration. Notice that the sam-
ple positions remain unchanged throughout the iterative procedure,
implying that the Laplacian matrix of Poisson’s equation is fixed.
One possible way towards significant reduction of the running time
is to pre-factorize the Laplacian matrix (e.g., using Cholesky decom-
position). Then in each iteration, the sparse linear system can be

solved using backward substitution, which has (near-)linear time
complexity.

Fifth, although we have not seen any case that iPSR cannot con-
verge if the input points come from smooth models, we do not
have theoretical guarantee on convergence. We leave the rigorous
analysis of iPSR and the sufficient and necessary conditions of con-
vergence as an open problem.

Last but not the least, the odd-layered structure exhibited in the
implicit functions computed by iPSR plays a critical role in normal
correction. We think this type of structure is general for other im-
plicit function based methods, thereby worth further investigation.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their con-
structive comments. Special thanks go to Reviewer 1 for the careful
reviews and giving us concrete suggestions to improve exposition.
This research has been partially supported by National Natural
Science Foundation of China (61872347, 62072446), Special Plan
for the Development of Distinguished Young Scientists of ISCAS
(Y8RC535018), National Science Foundation (IIS-1715985 & 1812606
to Qin), Singapore Ministry of Education (MOE-T2EP20220-0005
and RG20/20) and RIE2020 Industry Alignment Fund – Industry
Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash
and in-kind contribution from the industry partner(s).

REFERENCES
Pierre Alliez, David Cohen-Steiner, Yiying Tong, and Mathieu Desbrun. 2007. Voronoi-

Based Variational Reconstruction of Unoriented Point Sets. In Proceedings of the
Fifth Eurographics Symposium on Geometry Processing. 39–48.

Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. 2001. The Power Crust. In
Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications. 249–
266.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel
Taubin. 1999. The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Trans-
actions on Visualization and Computer Graphics 5, 4 (oct 1999), 349–359.

Matthew Bolitho, Michael M. Kazhdan, Randal C. Burns, and Hugues Hoppe. 2009.
Parallel Poisson Surface Reconstruction. In Advances in Visual Computing, 5th
International Symposium, Proceedings, Part I. 678–689.

Alexandre Boulch and Renaud Marlet. 2012. Fast and Robust Normal Estimation for
Point Clouds with Sharp Features. Comput. Graph. Forum 31, 5 (aug 2012), 1765–
1774.

F. Calakli and G. Taubin. 2011. SSD: Smooth Signed Distance Surface Reconstruction.
Computer Graphics Forum 30, 7 (2011), 1993–2002.

Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3DModel Repository.
CoRR abs/1512.03012 (2015).

Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape
Modeling. In CVPR. 5932–5941.

Zhiqin Chen and Hao Zhang. 2021. Neural Marching Cubes. ACM Trans. Graph. 40, 6,
Article 251 (dec 2021), 15 pages.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. 2016. A Large
Dataset of Object Scans. arXiv:1602.02481 (2016).

P. Cignoni, C. Rocchini, and R. Scopigno. 1998. Metro: Measuring Error on Simplified
Surfaces. Computer Graphics Forum 17, 2 (1998), 167–174.

Tamal K. Dey and Samrat Goswami. 2003. Tight Cocone: A Water-Tight Surface
Reconstructor. In Proceedings of the Eighth ACM Symposium on Solid Modeling and
Applications. 127–134.

Jean Duchon. 1977. Splines minimizing rotation-invariant semi-norms in Sobolev
spaces. In Constructive Theory of Functions of Several Variables, Walter Schempp and
Karl Zeller (Eds.). 85–100.

Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J. Mitra, and Michael Wimmer.
2020. Points2Surf Learning Implicit Surfaces from Point Clouds. In ECCV. 108–124.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit
Geometric Regularization for Learning Shapes. In ICML, Vol. 119. 3789–3799.

Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu
Aubry. 2018. A Papier-Mache Approach to Learning 3D Surface Generation. In

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

Iterative Poisson Surface Reconstruction (iPSR) for Unoriented Points • 128:13

CVPR. 216–224.
Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: A

Self-Prior for Deformable Meshes. ACM Trans. Graph. 39, 4, Article 126 (jul 2020),
12 pages.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1992. Surface Reconstruction from Unorganized Points. SIGGRAPH 26, 2 (jul 1992),
71–78.

Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. 2009. Consolidation
of Unorganized Point Clouds for Surface Reconstruction. ACM Trans. Graph. 28, 5
(dec 2009), 7 pages.

Hui Huang, ShihaoWu, Minglun Gong, Daniel Cohen-Or, Uri Ascher, and Hao (Richard)
Zhang. 2013. Edge-Aware Point Set Resampling. ACM Trans. Graph. 32, 1, Article 9
(feb 2013), 12 pages.

Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational Implicit Point Set Surfaces.
ACM Trans. Graph. 38, 4, Article 124 (July 2019), 13 pages.

Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and
Thomas Funkhouser. 2020. Local Implicit Grid Representations for 3D Scenes. In
CVPR. 6000–6009.

Sagi Katz, Ayellet Tal, and Ronen Basri. 2007. Direct Visibility of Point Sets. ACM Trans.
Graph. 26, 3 (jul 2007), 12 pages.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Re-
construction. In Proceedings of the Fourth Eurographics Symposium on Geometry
Processing. 61–70.

Misha Kazhdan, Ming Chuang, Szymon Rusinkiewicz, and Hugues Hoppe. 2020. Poisson
Surface Reconstruction with Envelope Constraints. Computer Graphics Forum 39, 5
(2020), 173–182.

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction.
ACM Trans. Graph. 32, 3, Article 29 (July 2013), 13 pages.

Roee Lazar, Nadav Dym, Yam Kushinsky, Zhiyang Huang, Tao Ju, and Yaron Lipman.
2018. Robust Optimization for Topological Surface Reconstruction. ACM Trans.
Graph. 37, 4, Article 46 (jul 2018), 10 pages.

Bao Li, Ruwen Schnabel, Reinhard Klein, Zhiquan Cheng, Gang Dang, and Shiyao Jin.
2010. Robust normal estimation for point clouds with sharp features. Computers &
Graphics 34, 2 (2010), 94–106.

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’87). 163–169.

Wenjia Lu, Zuoqiang Shi, Jian Sun, and Bin Wang. 2018. Surface Reconstruction Based
on the Modified Gauss Formula. ACM Trans. Graph. 38, 1, Article 2 (dec 2018),
18 pages.

J. Manson, G. Petrova, and S. Schaefer. 2008. Streaming Surface Reconstruction Using
Wavelets. In Proceedings of the Symposium on Geometry Processing. 1411–1420.

Quentin Merigot, Maks Ovsjanikov, and Leonidas J. Guibas. 2011. Voronoi-Based Cur-
vature and Feature Estimation from Point Clouds. IEEE Transactions on Visualization
and Computer Graphics 17, 6 (jun 2011), 743–756.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space.
In CVPR. 4455–4465.

Gal Metzer, Rana Hanocka, Denis Zorin, Raja Giryes, Daniele Panozzo, and Daniel
Cohen-Or. 2021. Orienting Point Clouds with Dipole Propagation. ACM Trans.
Graph. 40, 4, Article 165 (July 2021), 14 pages.

Niloy J. Mitra and An Nguyen. 2003. Estimating Surface Normals in Noisy Point
Cloud Data. In Proceedings of the Nineteenth Annual Symposium on Computational
Geometry. 322–328.

Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-Steiner, and Pierre
Alliez. 2010. Signing the Unsigned: Robust Surface Reconstruction from Raw
Pointsets. Computer Graphics Forum 29, 5 (2010), 1733–1741.

Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel.
2003. Multi-Level Partition of Unity Implicits. ACM Trans. Graph. 22, 3 (jul 2003),
463–470.

Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Colored Point Cloud Registration
Revisited. In ICCV. 143–152.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In CVPR. 165–174.

Songyou Peng, Chiyu "Max" Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and
Andreas Geiger. 2021. Shape As Points: A Differentiable Poisson Solver. In NeurIPS.
13032–13044.

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.
2020. Convolutional Occupancy Networks. In ECCV. 523––540.

Nico Schertler, Bogdan Savchynskyy, and Stefan Gumhold. 2017. Towards Globally
Optimal Normal Orientations for Large Point Clouds. Comput. Graph. Forum 36, 1
(jan 2017), 197–208.

Jun Wang, Zhouwang Yang, and Falai Chen. 2012. A Variational Model for Normal
Computation of Point Clouds. Vis. Comput. 28, 2 (feb 2012), 163–174.

Yifan Wang, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. 2021. Iso-Points:
Optimizing Neural Implicit Surfaces With Hybrid Representations. In CVPR. 374–
383.

Jane Wilhelms and Allen Van Gelder. 1992. Octrees for Faster Isosurface Generation.
ACM Trans. Graph. 11, 3 (jul 1992), 201–227.

Hui Xie, Jianning Wang, Jing Hua, Hong Qin, and Arie Kaufman. 2003. Piecewise
C1 Continuous Surface Reconstruction of Noisy Point Clouds via Local Implicit
Quadric Regression. In Proceedings of the IEEE Visualization. 91–98.

ACM Trans. Graph., Vol. 41, No. 4, Article 128. Publication date: July 2022.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Implicit Function Methods
	2.2 Other Techniques

	3 Preliminaries
	4 Method
	5 Experimental Results
	6 Comparison
	6.1 Efficiency and Scalability
	6.2 Reconstruction Quality and Robustness

	7 Discussion and Conclusion
	Acknowledgments
	References

