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Fig. 1. Motivation. We focus on a scenario where a service robot operates in a specific indoor environment (e.g., household, office, or museum). Therefore, it
can collect information of the closed scene in an offline stage, then provide effective amodal scene understanding with a single panoramic capture of the room,
which facilitates high-level tasks and delivers immersive synchronized free-viewpoint touring with illumination variation and scene editing.

We, as human beings, can understand and picture a familiar scene from
arbitrary viewpoints given a single image, whereas this is still a grand chal-
lenge for computers. We hereby present a novel solution to mimic such
human perception capability based on a new paradigm of amodal 3D scene
understanding with neural rendering for a closed scene. Specifically, we
first learn the prior knowledge of the objects in a closed scene via an offline
stage, which facilitates an online stage to understand the room with unseen
furniture arrangement. During the online stage, given a panoramic image of
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the scene in different layouts, we utilize a holistic neural-rendering-based
optimization framework to efficiently estimate the correct 3D scene layout
and deliver realistic free-viewpoint rendering. In order to handle the domain
gap between the offline and online stage, our method exploits compositional
neural rendering techniques for data augmentation in the offline training.
The experiments on both synthetic and real datasets demonstrate that our
two-stage design achieves robust 3D scene understanding and outperforms
competing methods by a large margin, and we also show that our realis-
tic free-viewpoint rendering enables various applications, including scene
touring and editing. Code and data are available on the project webpage:
https://zju3dv.github.io/nr_in_a_room/.

CCS Concepts: • Computing methodologies → Computer vision; Ren-
dering.
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ing, Amodel perception
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1 INTRODUCTION
Given a photo of our living room, as human beings, we can vividly
picture the whole layout in our mind, including how the furniture
is placed in 3D space and how the environment looks from any
viewpoint, evenwhen objects are re-arranged differently in the room.
Granting the computer similar skills would require reliable indoor
scene 3D semantic understanding and free-viewpoint rendering
capabilities, which ideally are all fulfilled from widely available
input, e.g., a single photo. Over decades, enormous efforts have been
made in the field of computer vision and graphics [Dai et al. 2020;
Gortler et al. 1996; Levoy and Hanrahan 1996; Mildenhall et al. 2020;
Nie et al. 2020; Zhang et al. 2021a], yet the gap with the human
perception is still huge. Despite this, we argue that likely humans
are better at this task for places they are familiar with, and the
learned prior knowledge on the objects and their arrangement in a
closed room are the key to the success.
In this paper, we present a novel solution for reliable 3D indoor

scene understanding and free-viewpoint rendering in a closed scene
– a.k.a. a room with a fixed set of pre-captured objects but placed
under unknown arrangements and diverse illuminations. Inspired
by human amodal perception, our method takes advantage of an
offline stage to collect prior knowledge of the target scene, where
models for each object, e.g., for localization or neural rendering,
can be built with an affordable workload and then fine-tuned in the
specific scenario for better performance. With the help of this strong
prior knowledge, during the online stage, our method only needs
light-weighted input, i.e., a single panoramic image taken from the
scene, and can reliably recognize and localize objects in 3D space
and render the scene from arbitrary camera viewpoints via amodal
3D understanding. While general scene understanding [Nie et al.
2020; Zhang et al. 2021a] makes the best effort to make predictions
under unseen environments but still suffers from generalization
issues, our amodal scene understanding aims at an accurate and
reliable scene understanding for familiar scenes.

A flexible yet effective scene representation is critical to the con-
sidered task. Traditional representations such as texturedmeshes [Iza-
dinia et al. 2017; Liu et al. 2019; Waechter et al. 2014] or voxels [Kim
et al. 2013; Song et al. 2017] generally have some drawbacks, e.g.,
limited rendering quality [Liu et al. 2019] and resolution [Song et al.
2017], requiring pre-built CAD furniture model for scene reconstruc-
tion [Izadinia et al. 2017] and explicit lighting/material definitions
for lighting variations [Li et al. 2020; Matusik et al. 2003], which
prohibits fine-grained scene rendering and understanding. We thus
choose the neural implicit representation [Mildenhall et al. 2020] as
it enables geometric reconstruction with photo-realistic volumetric
rendering, and it could be extended to support functionalities such
as appearance variation [Martin-Brualla et al. 2021] and scene graph
decomposition [Ost et al. 2021] with rendering-based optimization.

Specifically, we first build object detection and 3D pose estimation
models for all the objects of interest as well as a neural rendering
model for each object, including the empty room. At run-time, given
a panoramic image taken from the room stuffed with pre-captured
objects in a new arrangement, the scene understanding task can be
achieved by 3D object detection and pose estimation, followed by an
optimization via differentiable rendering using the neural rendering

models. Additionally, the per-object neural rendering models can be
plugged in to support full scene free-viewpoint rendering.While this
framework is technically plausible, we find it suffers from several
challenges as follows, which we will address in this work:

Intensive Computation. Neural volume rendering methods are
typically computationally intensive since a tremendous number of
network queries are required for points densely sampling along
pixel rays, making it prohibitive for back-propagation-based op-
timization, like pose estimation, where the rendering needs to be
done repetitively. iNeRF [Yen-Chen et al. 2021] mitigates this issue
by restricting sample pixels inside the detected region of interest,
which reduces the computation cost and enables the camera pose
estimation with respect to a single object on a commodity-level GPU.
However, this is still not practical for room-scale scenarios when
multiple objects need to be jointly optimized in order to handle
mutual occlusions or physical relations. To tackle this challenge,
we learn an implicit surface model jointly with its radiance field,
inspired by NeuS [Wang et al. 2021a], which allows us to perform
efficient sphere tracing [Liu et al. 2020] at the early stage of the
rendering, leveraging the estimated ray-to-surface distances. Points
can then be sampled from regions close to the surface, and a small
number of points is sufficient for the optimization. In this way, we
significantly reduce the computational cost and make it feasible to
finish the joint optimization with multiple objects on a single GPU
in a reasonable amount of computation.

Incorrect Physical Relationship. Even though machine learning
models are trained per-scene, they could still make obvious mis-
takes like breaking the physical rules and resulting in implausible
novel view rendering, e.g., objects flying in the air or intersect-
ing with walls. To solve this problem, we propose several novel
physical losses and integrate a physics-based optimization into the
neural-rendering-based optimization, where the conformity to prior
knowledge and even pre-defined rules (e.g., a bed should attach to
the wall) are jointly optimized with the photometric error between
the rendered image and the observation. This significantly helps fix
errors made on individual objects and improves the overall object
pose accuracy, which further delivers context abides rendering.

Domain Gap. The lighting condition may inevitably vary in the
scene, and object renderings from the models trained at offline
stage may not be consistent with the environment, which will fur-
ther influence the rendering-based optimization. To mitigate this,
we propose to exploit compositional neural rendering to augment
the training data. In particular, we augment the pre-captured data
with environment maps sourced from polyhaven.com [Zaal et al.
2020], and learn the neural rendering models conditioned on light-
ing represented in a latent space. During the neural rendering based
optimization, the neural rendering model is able to respond to novel
illumination other than the one during the pre-capture stage, and
both the environment lighting and object pose can be successfully
optimized. We also synthesize objects with different scene layouts
and render photo-realistic images for the training of object predic-
tion, which empirically enhances model robustness.
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Fig. 2. During the offline stage, we learn a neural implicit renderer and object detectors with pre-captured scene and objects. During the online stage, given a
panoramic capture of a room, we first recognize object identities and estimate object meta information. Then, we generate object relations based on the
prediction and the geometric cues from the renderer. Finally, we conduct a holistic optimization to obtain 3D scene understanding by jointly optimizing all the
photometric and geometric cues.

Our contributions can be summarized as follows. We present a
practical solution for a novel task which aims at amodal 3D scene un-
derstanding and free-viewpoint rendering for indoor environments
from a single panoramic image. We design a two-stage framework
in which per-object pre-trained models are learned offline, and a
neural-rendering-based optimization is exploited for online 3D un-
derstanding. We analyze the technical challenges for this novel task
and propose mitigation techniques to improve run-time efficiency,
add physical constraints in the model, handle illumination changes,
and increase the data diversity that is hard to be ensured physi-
cally. Extensive experiments show that our method can achieve
significantly better 3D scene understanding performance than state-
of-the-art general 3D scene understanding methods and meanwhile,
deliver free-viewpoint rendering capability that supports high-level
applications like scene editing and virtual touring.

2 RELATED WORK

2.1 3D Scene Understanding
3D scene understanding is a popular topic in computer vision. Early
works mainly focus on room layout estimation with Manhattan
World [Coughlan and Yuille 1999; Ramalingam et al. 2013; Sun et al.
2019; Yan et al. 2020; Zou et al. 2018] or cuboid assumption [Das-
gupta et al. 2016; Mallya and Lazebnik 2015]. Song et al. [Song et al.
2015] attempts to reconstruct and recognize scene objects from a
domestic robot but requires laborious crowd-sourced annotations.
With the advance of neural networks, many works propose to esti-
mate both object poses and the room layout [Du et al. 2018; Huang
et al. 2018a; Zhang et al. 2017]. To recover object shapes, some
methods [Chen et al. 2019; Groueix et al. 2018; Wang et al. 2018]
reconstruct meshes from a template, and others [Huang et al. 2018b;
Izadinia et al. 2017] adopt shape retrieval approaches to search from
a given CAD database. Recently, some approaches [Dahnert et al.
2021; Nie et al. 2020; Popov et al. 2020; Yang and Zhang 2016; Yang
et al. 2019; Zhang et al. 2021b] enable 3D scene understanding by
generating a room layout, camera pose, object bounding boxes, or

even meshes from a single view, automatically completing and an-
notating scene meshes [Bokhovkin et al. 2021] or predicting object
alignments and layouts [Avetisyan et al. 2020] from an RGB-D scan.
Inspired by PanoContext [Zhang et al. 2014] that panoramic images
contain richer context information than the perspective ones, Zhang
et al. [Zhang et al. 2021a] propose a better 3D scene understand-
ing method with panoramic captures as input. For amodal scene
completion, Zhan et al. [Zhan et al. 2020] propose to decompose
cluttered objects of an image into individual identities. However,
these works still suffer from limited generalization in real-world
environments and do not allow fine-grained scene presence from
arbitrary views.

2.2 Neural Rendering
Neural rendering methods aim at synthesizing novel views of ob-
jects and scene by learning scene representation from 2D observa-
tions in various forms, such as voxels [Lombardi et al. 2019; Sitz-
mann et al. 2019a], point clouds [Dai et al. 2020], meshes [Riegler
and Koltun 2020, 2021], multi-plane images [Mildenhall et al. 2019;
Tucker and Snavely 2020; Wang et al. 2021b] and implicit func-
tions [Mildenhall et al. 2020; Niemeyer et al. 2020; Sitzmann et al.
2019b]. NeRF [Mildenhall et al. 2020] uses volume rendering to
achieve photo-realistic results; follow up works extend the model to
multiple tasks, such as pose estimation [Yen-Chen et al. 2021], dense
surface reconstruction [Oechsle et al. 2021; Wang et al. 2021a; Yariv
et al. 2021] and scene editing [Granskog et al. 2021; Guo et al. 2020;
Yang et al. 2021]. Meanwhile, other methods [Riegler and Koltun
2020, 2021] also show impressive free-viewpoint rendering capabil-
ity in the wild, or scene rendering [DeVries et al. 2021; Luo et al.
2020] of indoor environments. However, existing neural rendering
pipelines either need to be trained for a static scene thus do not gen-
eralize to dynamic environments, or require domain prior [Wang
et al. 2021b; Yu et al. 2021], limiting the free-viewpoint rendering in
unconstrained settings.
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3 METHOD
Given a panoramic image of a closed environment with unknown
furniture placement, our goal is to achieve reliable 3D scene un-
derstanding, including instance semantic detection, 3D geometry
of each object, and their arrangements (i.e., object positions) in
the room, utilizing the data pre-captured beforehand. We split the
whole pipeline into an offline stage and an online stage. During the
offline stage, we scan each object and the scene background with
an RGB-D camera, train a neural implicit renderer for every object
of interest in the room, and then fine-tune object detectors via com-
positional neural rendering. In the online stage, as shown in Fig. 2,
we first predict object meta information (i.e., poses, segmentation
and IDs) from the panoramic image, and then follow pre-defined
rules to generate object-object and object-room relations based on
the object prediction and geometric cues (e.g., physical distances
obtained from the encoded neural implicit model). Finally, to cor-
rectly estimate the scene arrangement and lighting condition that
visually fits the input panorama, we perform holistic optimization
with all the photometric and geometric cues, which further enables
free-viewpoint scene touring and scene editing.

3.1 Offline Stage
3.1.1 Neural Implicit Renderer.

Neural Implicit Model for Scene and Objects. We use a neural im-
plicit renderer that hierarchically encodes the room. Practically,
we choose the SDF-based implicit field for geometry representa-
tion [Wang et al. 2021a; Yariv et al. 2021]1, since it provides an
exact surface to facilitate geometric optimization, e.g., for collision
detection, while NeRF’s density field is too noisy or uncertain to
support a similar objective. As shown in Fig. 2, we separately express
geometry in SDF values (with SDF surface model 𝐹SDF) and colors
(with radiance model 𝐹R). We will show later that this formulation
enables efficient neural-rendering-based optimization by providing
geometric cues like ray intersection distances with sphere tracing.
Motivated by Yang et al. [Yang et al. 2021], we encode scene back-
ground and objects in two branches, and use the object code 𝒍obj
to control the visibility of a certain object, rather than per-model
per-object training. We render the object 𝑘 with sampled points
{x𝑖 |𝑖 = 1, ..., 𝑁 } along the ray 𝒓 , which is defined as:

𝐶 (𝒓)obj =
𝑁∑︁
𝑖=1

𝑇𝑖𝛼𝑖cobj𝑖 , 𝑇𝑖 =
𝑖−1∏
𝑗=1

(1 − 𝛼obj 𝑗 ),

𝛼obj 𝑗 = max
(
Φ𝑠 (SDF(x𝑖 ) 𝑗 ) − Φ𝑠 (SDF(x𝑖+1) 𝑗 )

Φ𝑠 (SDF(x𝑖 ) 𝑗 )
, 0
)
.

(1)

Note that we omit the object index 𝑘 for brevity. 𝑇𝑖 is the accumu-
lated transmittance, Φ𝑠 is the logistic density distribution, SDF(x) =
𝐹SDF (x, 𝑙obj), and 𝛼obj is the opacity value derived from the SDF
surface model. cobj is the color defined as cobj = 𝐹R (x, v, 𝒍obj, 𝒍𝑎, 𝒍𝑙 ),
where v is the viewing direction, 𝒍𝑎 is the appearance code [Martin-
Brualla et al. 2021] that handles per-frame sensing variations (e.g.,
white balance and auto-exposure on real-world data), 𝒍𝑙 is the light
code introduced later. We supervise the renderer with color, depth
1In our paper, we use the formulation from NeuS [Wang et al. 2021a], but VolSDF [Yariv
et al. 2021] is also applicable.

Fig. 3. Lighting augmentation. We show how to leverage the neural
rendering model and pre-convolved HDR maps to synthesize novel lighting
conditions. See text for details.

and object masks, and jointly render multi-objects and scene back-
ground by ordering the distance of samples along the ray directions
and render pixels 𝐶 (𝒓) following the quadrature rules. More details
can be found in the supplementary material.

Lighting Augmentation & Light Code Learning. We learn a neu-
ral renderer conditioned on a latent lighting space 𝒍𝑙 , aiming at
modeling scene-level illumination variation and adapting to the
target scene depicted in the given panorama. Since it is non-trivial
to capture real-world images with thorough lighting variation, we
synthetically augment the captured image with diffuse shading ren-
dered from realistic HDR environment maps. Practically, we gather
100 HDRI indoor environment maps from the Internet [Zaal et al.
2020] and convolve them to diffuse irradiance maps [Debevec 2006].
Then we compute the per-pixel surface normal in the world coordi-
nate and retrieve the corresponding light intensity from the light
map. Finally, we multiply the light intensity to the input images.
However, for real-world data, reliable surface normals are not readily
available. To tackle this problem, we leverage a two-stage pipeline
by first training a naïve neural renderer without augmentation,
and then extracting mesh from the model for normal computation.
We show this procedure in Fig. 3, where the captured image has
been naturally augmented with two different light maps. During
the training stage, we randomly augment the input images with
pre-convolved light maps and feed the radiance model 𝐹R with a
learnable light code 𝒍𝑚

𝑙
, where𝑚 is the index of the light map. Al-

though such geometry-aware augmentation does not cover every
important aspect of the real-world physics and provides augmented
data only up to an approximation, it brings convenience to the of-
fline stage: the training data is collected only once under a mild
lighting condition, and the network empirically adapts to unseen
lighting decently (see Sec. 4.3).

3.1.2 3D Object Prediction Fine-tuning.

Module Design. As illustrated in Fig. 2 (on top left), we adopt the
object detector (ODN) from Zhang et al. [Zhang et al. 2021a, 2014]
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and Nie et al. [Nie et al. 2020] to detect scene objects and estimate
object poses w.r.t. the camera, and use an object identifier based on
NetVLAD feature similarity [Arandjelovic et al. 2016] to recognize
previously seen objects.

Data Augmentation with Neural Rendering. At training time for
each scene, instead of physically moving objects in the real-world,
we exploit compositional neural rendering with implicit neural
renderer (Sec. 3.1.1) to render labeled panorama for training, where
objects are randomly placed following user-defined rules (e.g., bed
and table should attach to the floor). Then, we perform a fast fine-
tuning for the pre-trained ODN network from Zhang et al. [Zhang
et al. 2021a] and also store the NetVLAD features for each object of
different views.

3.2 Online Stage
3.2.1 Bottom-up Initialization.

Object Prediction. We first feed panoramic images to the object
detector, and obtain object meta information including initial pose
estimation, instance / semantic segmentation and object identities.

Relation Generation. As demonstrated in [Nie et al. 2020; Zhang
et al. 2021a, 2014], indoor scenes are commonly well-structured (e.g.,
beds and nightstands are usually attached to the wall, desks and
chairs are often supported by the floor), and such prior knowledge
can be formulated as various relations to enhance arrangement
optimization. Therefore, we also generate a series of relations for
physical constraints optimization (Sec. 3.2.4), including object-object
support, object-wall attachment and object-floor support. Practically,
we directly infer relations based on object meta information and
geometric cues (extracted bounding boxes, ray intersection distance
and normal) from the SDF surface model with user-defined rules
(see supplementary material). In theory, our method can also work
with rules or scene context learned in a data-driven way [Zhang
et al. 2021a], which we leave for future work.

Camera Pose Estimation. Since the optimization is based on a
known neural implicit model, we need to locate camera poses to
ensure background rendering is aligned with the input image. To
do so, we transform the panorama to multiple perspective views
(i.e., similar to "equirectangular to cubemap" conversion by warping
pixels according to ray directions) and employ the method from
Sarlin et al. [Sarlin et al. 2019, 2020] for visual localization.

Object Pose Parameterization. We optimize poses T̂𝑘 ∈ SE(3)
for 𝐾 objects, where the rotation R̂𝑘 is parameterized as Zhou et
al. [Zhou et al. 2019], and the position (a.k.a. object center) p̂𝑘 is
directly expressed in Euclidean space.

3.2.2 Photometric Constraint Optimization.

Tone Adjuster. To better adapt the lighting condition to the input
panorama at the online stage, we introduce a per-object tone adjuster
which explicitly models lighting variations and helps to reduce
the burden of light code optimization. In practice, we additionally
optimize a learnable shifting factor t𝑘obj and scaling factor s𝑘obj for

each object 𝑗 as: c̃𝑘obj = (ĉ𝑘obj − tobj)𝑘/s𝑘obj, which can be regarded

as color transformation [Reinhard et al. 2001] but in a per-object
manner. We find this explicit representation benefits the lighting
adaptation, as demonstrated in our experiments.

Photometric Loss with Joint Rendering. We use photometric con-
straint by leveraging joint rendering where the photometric loss is
back-propagated to optimize per-object poses and light parameters.
For each input image, we sample 𝑁 rays on the object masks and
0.2𝑁 rays on the background so as to ensure the convergence of
both objects and background. The photometric loss is defined as
the squared distance between rendered colors 𝐶 (𝒓) and pixel colors
𝐶 (𝒓) from the input panorama for all the sampled rays 𝒓 ∈ 𝑁𝑟 :

𝐿𝑝ℎ𝑜 =
1

|𝑁𝑟 |
∑︁
𝒓 ∈𝑁𝑟

| |𝐶 (𝒓) −𝐶 (𝒓) | |22 . (2)

Safe-Region Volume Rendering. However, neural volume render-
ing requires hundreds of network queries for each ray, which re-
stricts tasks like pose estimation [Yen-Chen et al. 2021] by only
sampling a small bunch of rays due to the limitation of GPU mem-
ory. This is particularly true in our task as one ray might go through
2 or 3 objects at a time when object to object occlusions happen,
which results in 2 or 3 times more queries than a single object case.
Fortunately, as our renderer learns an SDF-based representation
of the geometry, we can easily determine ray intersections using
sphere tracing at the early stage of the rendering. Inspired by Liu
et al. [Liu et al. 2020], we propose a safe-region volume rendering
by first computing ray-to-surface distances with efficient sphere
tracing and then sampling much fewer points near the surface for
differentiable volume rendering. Our experiments demonstrate that
this strategy significantly reduces network query times and allows
us to jointly optimize more objects in cluttered scenes. Please refer
to the supplementary material for more details.

3.2.3 Observation Constraint Optimization.

Observation Loss. The initial poses from object prediction may
be inaccurate on the dimension of camera-to-object distance due
to scale ambiguity, but the observing angles (a.k.a. object center
re-projection) on the panoramic view are usually reliable. Thus, we
also add an observation constraint by encouraging closer observing
angles of objects between initial pose estimation and the optimized
pose, as:

𝐿𝑜𝑏𝑠 =

𝐾∑︁
𝑘=1

| |1 − sim(p𝑘init − pcam, p̂𝑘 − pcam) | |2, (3)

where sim(·) denotes cosine similarity, and pcam is the camera center
estimated in Sec. 3.2.1.

3.2.4 Physical Constraint Optimization.

Prior scene understanding works [Nie et al. 2020; Zhang et al.
2021a,b] mainly build physical constraints upon object bounding
boxes and room layout under Manhattan assumption. Thanks to
the precise geometries encoded in the neural SDF model, we can
define physical constraints to optimize physical conformity at a
finer-grained level.
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Fig. 4. Magnetic Loss. For the attachment relation, the loss pulls in when
two instances are far from each other and pushes away when the violation
happens.

Magnetic Loss. We introduce a novel magnetic loss that fully lever-
ages neural renderer’s SDF model to optimize generated relations
(e.g., attachment and support) from Sec.3.2.1. As the name suggests,
the magnetic loss encourages two opposite surfaces of the attached
objects to be close to each other without violation. Practically, we
shoot a set of probing rays from one object surface plane to another
with the shooting direction from the generated relations (Sec. 3.2.1)
and compute ray-to-surface distances via sphere tracing. Then, as
illustrated in Fig. 4, we define two distances to diagnose surface-
surface relations: 1) attachment distance 𝑑𝑎 which measures the
surface distance between two objects by summing up the distances
of partial nearest intersections while ignoring far-away intersec-
tions, 2) violation distance 𝑑𝑣 which indicates potential violation of
two objects by summing up all the violation part of the surfaces. To
this end, we defined magnetic loss as:

𝐿𝑚𝑎𝑔 =
1
𝐾

𝐾∑︁
𝑘=1

max(𝑑𝑘𝑎 , 0) +max(𝑑𝑘𝑣 , 0) . (4)

Please refer to the supplementary materials for more details.

Physical Violation Loss. To mitigate physical occlusions that the
magnetic loss does not cover (e.g., chair under the desk), inspired by
Zhang et al. [Zhang et al. 2021b], we add a physical violation loss
based on the neural SDF model. Different from Zhang et al. [Zhang
et al. 2021b] which uniformly samples points inside the bounding
boxes, we only sample points on the visible surface with outside-in
sphere tracing, so as to make the optimization more efficient when
two objects only collide partially at a shallow level. The physical
violation loss is defined by punishing 𝑃 surface points for each
object 𝑘 when an object’s points lie inside its𝑂 neighbor objects by
querying the corresponding SDF surface model 𝐹SDF as:

𝐿𝑣𝑖𝑜 =

𝐾∑︁
𝑘=1

𝑂∑︁
𝑜=0

𝑃∑︁
𝑝=1

min(SDF(x𝑘𝑝 )𝑜 + 𝜖, 0), (5)

where 𝑜 = 0 denotes the scene background, and we set 𝜖 = 0.025,
𝑂 = 3 and 𝑃 = 1000 in our experiment.

Gravity Direction Loss. In real-world scenarios, many furniture
like beds and tables only rotate around the gravity direction (i.e.,
rotation uncertainty only on the yaw angle). So we also add the

gravity-direction energy term to the physical constraints for those
objects as:

𝐿𝑔 =

𝐾∑︁
𝑗=1

sim(R̂𝑘g, g), (6)

where g = [0, 0, 1]⊤ is the gravity direction .
The overall physical loss is defined as: 𝐿𝑝ℎ𝑦 = 𝐿𝑚𝑎𝑔 + 𝐿𝑣𝑖𝑜 + 𝐿𝑔 .

3.2.5 Holistic Optimization.

In holistic optimization, we seek for per-object poses T̂𝑘 , object
and background appearance codes 𝒍𝑘𝑎 and light codes 𝒍𝑘

𝑙
that satisfy

the input panoramic image. To fulfill this goal, we jointly optimize
photometric loss, observation loss and physical constraint losses at
the online stage, as:

𝐿 = 𝜆𝑝ℎ𝑜𝐿𝑝ℎ𝑜 + 𝜆𝑜𝑏𝑠𝐿𝑜𝑏𝑠 + 𝜆𝑝ℎ𝑦𝐿𝑝ℎ𝑦 . (7)

We use 𝜆𝑝ℎ𝑜 = 1, 𝜆𝑙𝑏𝑠 = 100, and 𝜆𝑝ℎ𝑦 = 1 in our experiment.
The total optimization takes about 10-15 minutes (depending on
the frequency of object occlusions) for a panoramic image with 500
iterations on anNvidia RTX3090-24G graphics card. More discussion
of the time-consuming and the possible improvement at the online
stage can be found in Sec. 5.

4 EXPERIMENTS
In this section, we first compare our scene arrangement predic-
tion with DeepPanoContext [Zhang et al. 2021a] and evaluate the
scene lighting adaptation ability both quantitatively and qualita-
tively. Then, we perform ablation studies to analyze the design of
our framework. Finally, we demonstrate the applicability of our
method on scene touring, scene illumination interpolation, and
scene editing.

4.1 Dataset
iG-Synthetic. We use iGibson [Shen et al. 2020] simulator to syn-

thesize labeled images with depth, segmentation and 3D bounding
boxes for training and testing. For training object-centric models
for identification, pose estimation or neural rendering, we gener-
ate 360° views around each object (similar to Realistic Synthetic
360° in NeRF [Mildenhall et al. 2020]). For the background scenes,
we leverage the toolbox from Zhang et al. [Zhang et al. 2021a] to
generate panoramic views of the iGibson scenes. Since many rooms
in iGibson are either too empty (e.g., bathroom and storage-room)
or filled with fixed stuff (e.g., basin and oven in kitchen), we thus
select four representative scenes (i.e., bedroom, lobby, child’s room
and home office) which already covers most of the movable object
types in the dataset.

Fresh-Room. To demonstrate the efficacy in real-world scenes,
we create a new dataset named Fresh-Room, which contains RGB-
D posed training images for 5 objects and the room background
captured by iPad Pro. We also capture multiple panoramic testing
images under 4 different setups with varying arrangements and
lighting conditions using a 360°camera (Insta360 ONE-R). We uti-
lize the SfM system with mesh reconstruction [Kazhdan et al. 2006;
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iG-Synthetic Fresh-Room

Input Image Our Rendered View Input Image Our Rendered View

Pano3D Arr. Our Arr.GT Arr. Our Arr.Pano3D Arr.

Fig. 5. Scene arrangement visualization with texturedmeshes, where objects
are scaled by the estimated bounding boxes. Note that for the Fresh-Room,
we use the object meshes extracted from our neural implicit renderer.

Table 1. Quantitative evaluation on scene arrangement prediction.

Scene DeepPanoContext Ours

IoU (%) ↑ ARE (°) ↓ APE (cm) ↓ IoU (%) ↑ ARE (°) ↓ APE (cm) ↓
Lobby 26.34 52.80 23.47 44.48 33.99 10.08
Bedroom 40.61 30.33 11.43 55.42 25.88 9.14
Child’s Room 27.76 34.64 17.78 48.63 29.57 9.08
Home Office 38.04 27.47 11.45 47.91 19.95 6.46

Average 33.19 36.31 16.03 49.11 27.35 8.69

Schönberger and Frahm 2016] and ARKit metadata2 to recover cam-
era poses with real-world scale and obtain 2D segmentation by
projecting annotated labels from 3D meshes for training data.

4.2 Scene Arrangement Prediction
We first evaluate scene arrangement prediction on iG-Synthetic
dataset and our Fresh-Room dataset. For iG-Synthetic dataset, we
reorganize the scene arrangement following room examples [Shen
et al. 2020], producing unseen arrangements for four scenes, and syn-
thesizing testing data with 5 unseen indoor illuminations based on
the iGibson PBR engine. Since there is no amodal scene understand-
ing approach for comparison, we take DeepPanoContext [Zhang
et al. 2021a] (Pano3D) as a reference, which is a SOTA method for
general holistic 3D scene understanding with a panoramic input.
The Intersection over Union (IoU), Average Rotation Error (ARE)
and Average Position Error (APE) are used as evaluation metrics. As
demonstrated in Fig. 5 and Tab. 1, our method consistently achieves
better scene arrangement prediction quality both quantitatively and
qualitatively under a closed scene, where the furniture like shelf
and piano are faithfully placed with accurate size, while the gen-
eral scene understanding method (DeepPanoContext) struggles to
produce satisfying results (e.g., the desk and the piano are tilted
in iG-Synthetic, and the size of shelf and nightstand are distorted
in Fresh-Room). This experiment shows that our amodal 3D un-
derstanding approach makes a further step towards a perfect 3D
understanding, which benefits from the offline preparation stage.

4.3 Scene Lighting Adaptation
Since we decouple lighting variation implicitly in a latent space (𝒍𝑙 )
and explicitly via tone adjuster, hence we can adjust the renderer to
fit the lighting condition at test time. As shown in Fig. 6, the input

2https://developer.apple.com/documentation/arkit/arcamera
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Fig. 6. Lighting Adaptation. We can adapt lighting condition to the input
panorama with light code optimization (𝒍𝑙 ) and tone adjuster (T.A.).

Table 2. Ablation study of light code optimization (𝑙𝑙 ) and tone adjuster
(T.A.) of light adaptation.

Config. iGibson-Synthetic Real-Room

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
No light ada. 13.939 0.674 0.359 13.832 0.592 0.480
Only T.A. 16.836 0.732 0.334 17.302 0.615 0.318
Only 𝑙𝑙 23.015 0.809 0.302 19.471 0.669 0.345
Complete 24.073 0.821 0.279 21.341 0.683 0.288

images (first row) have dramatically different lighting variations
such as local highlight and global warm light. When the lighting
adaptation is disabled (second row), the rendered results are close
to the pre-captured training views, where the rendered furniture
comes up with inconsistent shininess (e.g., the shelf in the third
column are inevitably brighter than the real image). By introducing
implicit light code optimization (third row), the rendered scenes
are closer to the input ground-truth but struggles to adapt to the
extremely warm light in the last column, where the global tone has
turned yellow but the floor color and the curtain color are distorted.
By enabling the tone adjuster (fourth row) only, we can also handle
a certain degree of lighting variation (e.g., carpet and desk lit by
yellow light in the second row, warm light in fourth column), but
fails to adapt the local lighting variation (e.g., scene background
partially lit by strong light in first column). When the tone adjuster
and the light code optimization are both enabled, we successfully
render images with local highlight and global consistent tone, and
also achieve the best metric performance as demonstrated in Tab. 2.
We believe that the tone adjuster effectively reduces the burden
of latent space optimization, and the combination of explicit and
implicit optimization enhances the lighting adaptation ability.

4.4 Ablation Studies
Data Augmentation. We first analyze the effectiveness of our data

augmentation with compositional neural rendering for object pre-
diction. Specifically, we use the ODN network [Nie et al. 2020; Zhang
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Table 3. Ablation studies for the data augmentation and various constraints.

Config. iGibson / Lobby iGibson / Bedroom

IoU (%) ↑ ARE (°) ↓ APE (cm) ↓ IoU (%) ↑ ARE (°) ↓ APE (cm) ↓
ODN 10.75 58.46 38.29 16.30 33.89 26.33
ODN w aug. 13.01 39.17 45.50 20.43 32.12 23.70

w/o aug. 37.01 50.93 13.53 56.99 38.20 8.27
w/o 𝐿𝑝ℎ𝑜 42.34 33.92 10.17 51.54 26.10 10.31
w/o 𝐿𝑝ℎ𝑦 16.93 43.81 35.61 23.65 37.69 23.31
w/o 𝐿𝑜𝑏𝑠 33.45 34.88 16.76 44.91 24.48 15.40
only 𝐿𝑝ℎ𝑜 21.05 42.24 34.00 20.57 34.22 28.99

Complete 44.48 33.99 10.08 55.42 25.88 9.14

Input Panorama

PSNR↑ 22.42 / SSIM↑ 0.73 / 
LPIPS↓ 0.31

iG
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yn
th
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ic

Fr
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m

GT Novel View Ours Novel View

PSNR↑ 13.27 /  SSIM↑ 0.60 / 
LPIPS↓ 0.52

Ours Novel View
w/o Light Adaptation

Fig. 7. Free-viewpoint scene touring on the iG-Synthetic dataset and
Fresh-Room dataset.

et al. 2021a] as a baseline and fine-tune on the labeled panoramic im-
ages rendered by our neural implicit renderer. The results in Tab. 3
show that our proposed data augmentation improves the object
prediction quality on the rotation error and IoU (first two rows),
and also boosts the performance of scene arrangement prediction
in holistic optimization (third row and last row).

Various Constraints. We then inspect the efficacy of various con-
straints in our holistic optimization, including photometric con-
straint in Sec. 3.2.2, observation constraint in Sec. 3.2.3 and physical
constraint in Sec. 3.2.4. Note that we exclude lighting adaptation as
this process is mainly for better rendering quality and performed
after the object pose optimization (see supplementary for more de-
tails). As shown in Tab. 3 (last five rows), all these loss terms improve
the overall scene arrangement quality. Furthermore, we evaluate
the performance when only a bare photometric loss is enabled. It is
clear that without physical and observation constraints, a simple
photometric loss is prone to be unstable in such cluttered scenes.

Safe-Region Volume Rendering. We also compare our proposed
safe-region volume rendering with the classical volume rendering
pipeline (e.g., used by iNeRF [Yen-Chen et al. 2021]) in the pose
optimization task with an Nvidia RTX-3090-24GB graphics card.
During the experiment, we optimize object poses by jointly render-
ing background scenes and target objects with back-propagation,
and report the GPUmemory usage by varying the number of sample
rays and target objects. As shown in Tab. 4, our proposed strategy
significantly reduces the number of network queries and GPU mem-
ory consumption and can simultaneously optimize 10 objects, while
the classical volume rendering fails due to out of memory. We verify
the impact on the pose estimation quality in the supplementary

Table 4. Ablation study for the safe-region volume rendering (S.R.) with
different number of target objects and rays. Bg.+1/10 Obj. denotes joint
rendering with background and 1 or 10 objects. × denotes out of memory.

Config. S.R./Bg.+1 Obj. no S.R./Bg.+1 Obj. S.R./Bg.+10 Obj. no S.R./Bg.+10 Obj.

# Rays # Query / GPU Memory

256 5.2M / 2.5G 19.7M / 6.4G 18.1M / 3.3G 51.4M / 7.8G
512 23.0M / 3.4G 86.4M / 11.1G 70.8M / 4.3G 220.8M / 13.6G
1024 91.9M / 5.2G 346M / 20.2G 287.0M / 6.4G ×
2048 274.0M / 6.9G × 1170.2M / 10.5G ×

(c) Scene Background (d) Scene Editing Results

(a) Rendered Objects from 
iG-Synthetic

(b) Rendered Objects from 
Fresh-Room

Fig. 8. Scene Editing. We insert virtual objects (piano, sofa chair and
carpet) into the real-world.

Light Interpolation

iG
-S
yn
th
et
ic

Fr
es
h-
R
oo
m

Fig. 9. Illumination interpolation on the iG-Synthetic dataset and Fresh-
Room dataset.

material, which shows that this strategy maintains similar pose
convergence performance as classical volume rendering.

4.5 Free-viewpoint Scene Touring
Oncewe resolve the scene arrangement and scene lighting condition,
it is feasible to re-render the room in any arbitrary view, which
enables virtual touring of the room. To inspect the rendering quality
for this task, we conduct a scene re-rendering experiment by fitting
input images (first column in Fig. 7) and render another view with
the fitting results. Thanks to our neural scene representation, the
rendered novel views (last column in Fig. 7) vividly reproduce scene
appearance and lighting conditions (e.g., local highlight and global
warm light) of the corresponding ground-truth novel views (second
column in Fig. 7). As a comparison, when ablating the lighting
adaptation from the representation, we can still achieve realistic
novel view rendering results, but the specific lighting conditions
(e.g., local highlight andwarm tone) are no longer kept (third column
in Fig. 7), which also results in lower metric performances.
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4.6 Scene Editing & Illumination Interpolation
Since our neural implicit renderer has already learned to render the
scene background and objects, we can easily edit or composite novel
scenes upon this. As shown in Fig. 8, we perform scene editing by in-
serting virtual objects learned from iG-Synthetic into the real scene
Fresh-Room, and the rendered image of novel view demonstrates
correct space relationship with seamless object-object occlusion.
We also conduct the illumination interpolation experiment in Fig. 9,
where the scene lighting temperature can be naturally turned from
day to night (first row), or from cold to warm (second row).

5 CONCLUSION
We propose a novel 3D scene understanding and rendering paradigm
for closed environments. Given a single panoramic image as input,
our method can reliably estimate 3D scene arrangement and the
lighting condition via a holistic neural-rendering-based optimiza-
tion framework. The proposed method also enables free-viewpoint
scene touring and editing by changing illumination or objects’ place-
ment. Despite the novel capabilities provided by our method, it still
has its limitations. First, since we assume the neural implicit models
are pre-built, our method cannot handle the cases with unobserved
objects. Second, the computational efficiency of the online stage
is currently not ready for real-time performance, which is due to
the intensive network queries of MLPs. There are some existing
approaches accelerating neural volumetric rendering from 0.06FPS
to 200FPS, e.g., by using local-bounded representation [Reiser et al.
2021], cached coefficients [Garbin et al. 2021; Sara Fridovich-Keil
and Alex Yu et al. 2022], or multiresolution voxel-hashing [Müller
et al. 2022], and they can be applied for real-time rendering and fast
optimization, which is a promising future direction. Third, the pro-
posed method still cannot handle deformed/recolored objects and
extremely harsh lighting that severely violates photometric consis-
tency, or render transparent surfaces and fine-grained light effects
like shadows and indirect illumination. Finally, our lighting aug-
mentation is not well-defined for glossy materials like mirrors and
glasses, which can be improved by introducing material estimation
in the future.
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