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ABSTRACT

Cause-effect graphs have shown promising results in identifying

relations among causes and effects of classical software systems,

followed by designing effective test cases from them. Towards this

end, we investigate the use of cause-effect graphs for quantum pro-

grams. Classical cause-effect graphs apply classical logic (e.g., AND,

OR) to express these relations, which might not be practical for

describing similar relations in quantum programs due to quantum

superposition and entanglement. Thus, we propose an extension

of cause-effect graphs, where quantum logic inspired functions

(e.g., Hadamard) and their generalizations are defined and applied.

Moreover, we present a metamodel describing various forms of

cause-effect graphs. Finally, we demonstrate a possible method for

generating test cases from a quantum cause-effect graph applied to

a Bell state quantum program. Lastly, the design and utility of the

resulting testing method is discussed, along with future prospects

for general quantum cause-effect graphs.

CCS CONCEPTS

• Theory of computation → Quantum computation theory; •

Software and its engineering→ Design languages; Software

design engineering.
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1 INTRODUCTION

In the field of quantum computing, calculations are performed on

quantum computers by exploiting properties of quantum mechan-

ics such as superposition and entanglement. Quantum software

engineering, as an emerging research area, is concerned with creat-

ing practical and cost-effective solutions for developing quantum
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software systems that should be executed fully or partially on quan-

tum computers. Similar to classical software system development, a

quantum software engineering life-cycle is also expected to analyze

requirements, design, develop, test, deploy and maintain quantum

software systems, as discussed by Zhao [22].

Particularly, a number of methods and tools (e.g., [19], [5], [8],

[2]) has been proposed for quantum software verification and vali-

dation. In some of these approaches, test cases are derived from a

kind of specification where the relations between the inputs and

outputs of a quantum program are identified. However, in quantum

software testing, there does not yet exist a method for the system-

atic development of such specifications. This motivates the study

of cause-effect graphs [12], which have shown to be effective with

the deriving of effective test cases of classical software systems, in

addition to identifying incomplete specifications. In this paper, we

focus on applying both classical cause-effect graphs and extending

them for supporting quantum software testing.

Classical cause-effect graphs use classical logic functions, includ-

ing AND, OR, NOT, to capture relations between the causes and

effects within a program specification. It is then natural to study the

development of an extension how quantum programs may instead

benefit from the quantum logic gates such as Hadamard and Pauli

gates (X, Y, Z). These gates will be referred to as quantum logic func-

tions or just functions in the context of quantum cause-effect graphs.

In this paper, we propose the very first quantum cause-effect graph

notations for identifying and capturing cause and effect relations

within quantum programs to support specification construction,

and in supporting quantum software testing. We demonstrate that

both classical and our newly proposed quantum cause-effect graph

notations can be applied to develop cause-effect graphs at various

levels of abstractions. Moreover, to systematically capture concepts

related to various cause-effect graphs, we also present a concep-

tual model implemented in the form of a metamodel as a Unified

Modeling Language (UML) class diagram.

We organize the paper as follows: Section 2 presents the works

from the literature that are related to our work. Section 3 presents

the background relevant for our work in addition to a running ex-

ample that will be used to demonstrate our ideas. Section 4 presents

our metamodel, Section 5 describes classical cause-effect graphs,

and Section 6 presents quantum cause-effect graphs. Finally, we

present discussion in Section 7 and conclude the paper in Section 8.

2 RELATEDWORK

Given their base in quantum mechanics, understanding quantum

software may pose challenging for software engineers. Moreover,

current quantum programming support is at a lower level of abstrac-

tion, e.g., at the quantum circuits level, making it difficult for soft-

ware engineers to efficiently understand, test, debug, and maintain
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quantum software. As a result, the software engineering commu-

nity, in general, has been increasingly realizing challenges related

to building and testing reliable quantum software [10, 11, 21, 22].

Quantum software modeling aims at raising the level of abstrac-

tion to an appropriate level [1, 3, 4, 14]. There are proposals to

use the Unified Modeling Language (UML). For example, a work

in [14] proposes to use UML for modeling circuits. An idea of

Quantum UML, along with principles for supporting quantum soft-

ware modeling, was presented in [1]. Moreover, in [3, 4], questions

about whether UML is sufficient and domain-specific languages are

needed were discussed. In addition, in [4], the authors argued the

need for model-driven quantum software engineering. Our work

well aligns with these literature, but focuses on a particular model-

ing notation, i.e., cause-effect graphs, for the purpose of facilitating

quantum software testing.

Quantum software testing is gaining a lot of attention, as evi-

denced by the increasingly number of methods being published, e.g.,

those based on devising coverage criteria [2], property-based test-

ing [7], search-based testing [18], fuzz testing [15], combinatorial

testing [17], and differential testing [16]. Several of them come with

dedicated tools such as Quito [19], QuSBT [18], QSharpCheck [7],

and Muskit [9]. In this paper, we take a different yet complementary

perspective for test case design based on cause-effect graphs.

3 BACKGROUND AND RUNNING EXAMPLE

We introduce basic quantum computing concepts (Section 3.1) and

a running example (Section 3.2). Details about cause-effect graphs

are provided Section 4.

3.1 Quantum Computing

The fundamental unit of information in quantum computing is the

qubit and is represented as a two-component state vector |𝜓 〉 in a
Hilbert space.[13] For our purposes, the following representation

in the computational basis is sufficient:

|𝜓 〉 = 𝛼 |0〉 + 𝛽 |1〉 (1)

where 𝛼, 𝛽 ∈ C are the probability amplitudes and {|0〉 , |1〉} =

{
(
1

0

)
,

(
0

1

)
} are the computational basis vectors.

For larger state spaces consisting of 𝑑 qubits 𝑞1, 𝑞2, · · · , 𝑞𝑑 , the
general state vector consists of basis states |𝑞1, 𝑞2, · · · , 𝑞𝑑 〉 where
𝑞𝑘 = 0, 1 for 𝑘 = 1, 2, · · · , 𝑑 . We can write a general linear com-
bination for a state space of 𝑑 qubits with the 2𝑑 basis vectors of

the state space as |𝜓 〉 = ∑2𝑑

𝑗=1 𝑃 𝑗 | 𝑗〉. Here the basis vectors | 𝑗〉 are
mapped from the compact decimal representation and into binary

strings [13]. For instance, if 𝑑 = 3 then |2〉 = |010〉. Several sin-
gle two-component qubits form larger composite systems such as

|010〉 = |0〉 ⊗ |1〉 ⊗ |0〉 by applying the tensor product ⊗ [13].

Furthermore, when the state vector is measured to yield a pro-

gram output state | 𝑗〉, it will bemeasuredwith probability 𝑝 𝑗 = |𝑃 𝑗 |2
from the normalized probability distribution of the state vector, thus

we require
∑2𝑑

𝑗 |𝑃 𝑗 |2 = 1.

Table 1: Inputs and outputs of the Bell states program

Input ( |𝑞1𝑞2 〉) Output

|00〉 1√
2
( |00〉 + |11〉)

|01〉 1√
2
( |01〉 + |10〉)

|10〉 1√
2
( |00〉 − |11〉)

|11〉 1√
2
( |01〉 − |10〉)

3.2 Running Example: The Bell States Circuit
and Code

As a running example, we shall use the common two-qubit circuit

(see Figure 1) that takes the input state |𝑞1𝑞2〉, and yields the re-
spective Bell state as outputs. The circuit applies a Hadamard gate

to the first qubit (𝑞1), before applying a CNOT using the first qubit
as a control bit, creating an entanglement [13] between 𝑞1 and 𝑞2.

|𝑞1〉 𝐻 •
|𝑞2〉

Figure 1: Bell states circuit

The latter is a well known property of the Bell states, i.e., represent-

ing entangled qubits, implying that measuring one of the qubits

also provides correlated information about the unmeasured one.

4 METAMODEL FOR CAUSE-EFFECT GRAPH

The metamodel, i.e., conceptual model, of our approach is presented

in Figure 2 as UML class diagrams. With this metamodel, we aim

to provide an overall view of the context, capture the important

concepts of the classical and quantum cause-effect graph notations,

and illustrate their usages for test case design.

Figure 2: Metamodel. Concepts highlighted with green are

newly introduced; while those with the white background

are from the original cause-effect graph definitions.

As shown in Figure 2, a Cause-Effect Graph models the Program

Specification of a Quantum Program, based on which test suites
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could be derived either manually or automatically. A Cause-Effect

Graph is composed of a set of nodes and links. In a classical cause-

effect graph, each cause is captured as a node; similarly, each effect

is also captured as a node. Additionally, it is possible to construct a

cause-effect graph with Intermediate Effect nodes. Each link repre-

sents a cause-effect relation, named Function. Classically, a function

represents a classical logic function (e.g., logical AND). While in the

quantum domain, a function can also represent a quantum logic

function (e.g., Hadamard).

We consider a Cause as an Input Condition defined on a set of

Input Variables. These variables all together form the Input State

Space. An input condition therefore describes a subset of the input

state space. For instance, in our running example (Section 3), an in-

put condition is |00〉 (see Table 1), i.e., the two qubits are initialized
as 0. Similarly, an Effect is an Output Condition defined on one or

more Output Variables. The example shown in Table 1 corresponds

to |00〉 as 1√
2
( |00〉 + |11〉), telling that there is the 0.5 probability to

observe 00 and 0.5 probability to observe 11 when qubits are mea-
sured given that the qubits are initialized as |00〉. These variables
consequently form the Output State Space. When they are mea-

sured, we obtain Measurement Outcomes. For our running example,

measuring 1√
2
( |00〉 + |11〉) leads to either 00 or 11.

With classical cause-effect graphs, among causes or effects, one

can specify constraints of five types (Figure 2). e-constraint can only

be specified between two causes, indicating that the two causes can

have one be true, but not both be true simultaneously. I-constraint

can be applied to two or more causes, denoting that at least one of

the causes must always be true, i.e., not being false at the same time.

O-constraint can also be applied to two or more causes, denoting

that one and only one of the causes must be true. R-constraint

can only be applied on two causes, telling that for one cause to

be true, the other must be true. In addition to these four types of

constraints for causes,M-constraint, i.e., Mask constraint, is however

only applicable to two effects, stating that if one effect is true, the

other is forced to be false.

Moreover, the classical cause-effect graph notation also defines

a set of functions for the purpose of distinguishing various cause-

effect relations, represented as links in a graph. As shown in Figure 2,

the notation defines four types of classical logical functions: Identity,

NOT, OR, and AND. Identity tells that if the cause is true, then the

effect must be true; otherwise the effect is false. NOT indicates that

if the cause is true, then the effect is false; otherwise the effect is

true. OR tells that if one of the causes is true, then the effect is true;

otherwise the effect is false. AND denotes that if all the causes are

true, then the effect is true; otherwise the effect is false. In addition,

in this paper, we introduce quantum-specific functions from the

quantum logic. This includes standard quantum logic functions,

i.e., Hadamard (H) and Pauli Gate (e.g., Z). In addition, we define a

generalized function, named Superposition (𝜓 ), which indicates that
a cause transforms into a set of effects in superposition with arbi-

trary probability amplitudes. Still, quantum programs frequently

rely on equal amplitude states. H, therefore, will be defined as a

specialization of𝜓 , with equal probability amplitudes.

Table 2: Mapping of the metamodel to cause-effect graphs

Concept(s) Description

Input Variable and
Output Variable

An input/output variable is a qubit, a set of qubits, or other high-
level quantum variables of quantum data types, e.g., QInt [6].

Cause and Input
Condition (Classi-
cal, Probabilistic,
and Phase-based)

A cause is an input condition defined on one or more input vari-
ables (e.g., classical logical operations on qubit values without
superposition).

Cause and Input
Condition (Quan-
tum)

A cause is an abstract true/false statement with an associated
probability and phase. The cause is mapped onto an input bitstring.

Intermediate
Effect (Classical,
Probabilistic,
Phase-based)

An intermediate effect is the intermediate state of values of vari-
ables before the transformation to the values of output variables.
An intermediate effect may have only values available for a subset
of variables or all.

Effect and Output
Condition (Classi-
cal)

An effect is an output condition defined on output variables (e.g.,
classical logical operations on qubit values after measurement.)

Effect and Output
Condition (Proba-
bilistic)

An effect is an output condition defined on output variables and
their associated probabilities of being observed (e.g., classical log-
ical operations on qubit values before or after measurements to-
gether with probabilities)

Effect and Output
Condition (Phase)

An effect is an output condition defined on output variables, their
associated probabilities of being observed, and expected phase
angles (e.g., classical logical operations on qubit values before
measurements together with probabilities and phases)

Effect and Output
Condition (Quan-
tum)

An effect is an abstract true/false statement with an associated
probability and phase. The effect is mapped onto an output bit-
string.

Classical, probabilistic, phase and quantum are short for classical, probabilistic,
phase-based and quantum cause-effect graphs, respectively. All represents all the four.

5 CLASSICAL CAUSE-EFFECT GRAPHS FOR
QUANTUM PROGRAMS

The three versions of classical cause-effect graphs for quantum

programs at three different levels of abstractions, i.e., classical, prob-

abilistic, and phase-based, will be discussed in Section 5.1-Section 5.3.

We call these classical cause-effect graphs since we capture causes,

effects, and their relation with classical logic (e.g., with ∧). While

quantum cause-effect graphs also include the use of quantum logic

functions. We will discuss such functions in a separate section (Sec-

tion 6). Table 2 maps the metamodel (Figure 2) to all four types

of cause-effect graphs. In the rest of this section, we provide an

example for each type of cause-effect graphs, which describes the

Bell state circuit (Section 3).

5.1 Classical Cause-Effect Graph

We analyse a quantum program as a black-box, where the input/out-

put states |𝑞1𝑞2〉 are considered after measurement. To this end, a
classical cause-effect graph identifies relations between causes and

effects in terms of classical logical relations among input/output

variables of the quantum program. For the classical cause effect

graphs we shall assume a cause node to represent a single qubit 𝑞1
or 𝑞2 in either the |0〉 or |1〉 state.
Such a classical cause-effect graph for the Bell states program is

shown in Figure 3. It has two causes (𝐶1 and𝐶2) and two effects (𝐸1
and 𝐸2). The node for cause𝐶1 represents the true or false statement
q1=1, whereas 𝐶2 represents q2=1. The causes are also shown in
rows 4 and 5 of Table 3. The effects of this graph, i.e., 𝐸1 and 𝐸2,
can be represented in two ways as shown in rows 6-9 in Table 3. In

the first case, 𝐸1 is captured as a condition, where either q1 is 0 and
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q2 is 0 or q1 is 1 and q2 is 1 (row 6). Alternatively, the 𝐸1’s condition
can also be captured as q1 equals to q2 (row 8). Similarly, the two

representations of 𝐸2 are shown in rows 7 and 9 in Table 3. ‘

Figure 3: Classical and probabilistic cause-effect graphs for

the Bell states quantum program. 𝐶1 (𝑞1 = 1) and 𝐶2 (𝑞1 = 2)

are the two causes, where 𝐸1 (e.g., 𝑞1 ≡ 𝑞2) and 𝐸2 (e.g., 𝑞1 �
𝑞2) (see Table 3) are the two effects. ∼ represents the logic
NOT function, whereas ∧ represents the logic AND function
(Figure 2 in Section 4).

Using the cause-effect graph in Figure 3, one can derive test cases

by applying a typical test case generation process with decision

tables [12]. Table 4 shows such a decision table. As shown in the

table, two test cases (𝑇𝐶1 and𝑇𝐶2) are needed to activate 𝐸1 and 𝐸2
based on the two identified causes, i.e.,𝐶1 and𝐶2. For example,𝑇𝐶1
initializes the quantum program with both 𝐶1 and 𝐶2 initialized as
0, and as a result, we will observe 𝐸1 (i.e., both q1 and q2 having
the same value, i.e., either 0 or 1).

Based on the input and output specifications (1) described in

the background section (see Section 3) for the bell states program,

with test cases generated from the classical cause-effect graph, we

can only identify faults that lead the program to produce wrong

outputs. This is due to the reason that we execute a test case exactly

one time and observe corresponding output after the measurement.

For example, as described in 1, given an input 00, we shall only

observe 00 or 11. However, if we observe 10 or 01, then a program

is failing with wrong output. This type of test oracle was defined

in an existing work on testing quantum programs [18].

5.2 Probabilistic Cause-Effect Graph

In case of probabilistic cause-effect graphs, as compared to classical

cause-effect graphs, each effect is extended with an associated prob-

ability of being observed. For our running example, the probabilistic

cause-effect graph will look the same as the classical cause-effect

graph as shown in Figure 3. The only difference is in the specifica-

tion of the effects 𝐸1 and 𝐸2, where each effect has an associated
probability of being observed given one or more causes were exe-

cuted. Rows 10 and 11 show the specifications of 𝐸1 and 𝐸2, where
a probability of 𝑝 = 0.5 is specified with each effect. For example,
E1 states that we shall observe both q1 and q2 equal to 0 with 0.5

probability, whereas both q1 and q2 as 1 with 0.5 probability.

The test cases generated corresponding to this probabilistic

graph based on the decision table are the same as for the classical

cause-effect graph as shown in Table 4. The difference will be in the

execution of the test cases. Since we have probabilities associated

Table 3: Cause and effects for the Bell states example for the

three types of classical cause-effect graphs

Concept/Label Details

Input variables Qubits q1 and q2
Output variables Qubits q1 and q2

𝐶1 (Classical, Proba-
bilistic, Phase)

𝑞1 = 1

𝐶2 (Classical, Proba-
bilistic, Phase)

𝑞2 = 1

𝐸1 (Classical) ¬𝑞1 ∧ ¬𝑞2 ⊕ 𝑞1 ∧ 𝑞2
𝐸2 (Classical) ¬𝑞1 ∧ 𝑞2 ⊕ 𝑞1 ∧ ¬𝑞2
𝐸1 (Classical) 𝑞1 ≡ 𝑞2
𝐸2 (Classical) 𝑞1 � 𝑞2
𝐸1 (Probabilistic) (¬𝑞1 ∧ ¬𝑞2 ∧ 𝑝 = 0.5) ∧ (𝑞1 ∧ 𝑞2 ∧ 𝑝 = 0.5)
𝐸2 (Probabilistic) (¬𝑞1 ∧ 𝑞2 ∧ 𝑝 = 0.5) ∧ (𝑞1 ∧ ¬𝑞2 ∧ 𝑝 = 0.5)
𝐸1 (Phase) (¬𝑞1∧¬𝑞2∧𝑝 = 0.5∧𝜃 = 0◦) ∧ (𝑞1∧𝑞2∧𝑝 = 0.5∧𝜃 = 0◦)
𝐸2 (Phase) (¬𝑞1∧¬𝑞2∧𝑝 = 0.5∧𝜃 = 0◦)∧(𝑞1∧𝑞2∧𝑝 = 0.5∧𝜃 = 180◦)
𝐸3 (Phase) (𝑞1∧¬𝑞2∧𝑝 = 0.5∧𝜃 = 180◦) ∧ (𝑞1∧𝑞2∧𝑝 = 0.5∧𝜃 = 0◦)
𝐸4 (Phase) (𝑞1∧¬𝑞2∧𝑝 = 0.5∧𝜃 = 0◦) ∧ (𝑞1∧𝑞2∧𝑝 = 0.5∧𝜃 = 0◦)
Classical, probabilistic, phase and quantum are short for classical, probabilistic,

phase-based and quantum cause-effect graphs, respectively. All represents all the four.
𝜃 represents an exclusive or. 𝑝 represents probability.

Table 4: Decision table for classical and probabilistic cause-

effect graphs for the Bell States program. The Action column

represents the labels for the causes and effects, whereas 𝑇𝐶1
and 𝑇𝐶2 are two test cases.

Action 𝑇𝐶1 𝑇𝐶2

𝐶1 0 1
𝐶2 0 1

𝐸1 1 0
𝐸2 0 1

with each effect, we will need to execute the corresponding test

case a specified number of times. Based on the execution results, we

need to check whether an effect was observed similar to the ones

specified in the cause-effect graph using relevant statistical tests.

If not, then the test case is failed with certain probability. Such a

process for checking failures in the context of quantum program

testing has already been applied in existing literature [2, 7, 18, 20].

5.3 Phase-based Cause-Effect Graph

Phase-based cause-effect graphs extend probabilistic cause-effect

graphs with phase information. As a result, effects are associated

with both probabilities and phase information. In this case, for our

running example, the phase-based cause-effect graph is presented

in Figure 4. In this case, we have four effects (𝐸1-𝐸4 , Table 3), which
are distinguishable because of the phase information. For example,

one can see that 𝐸1 and 𝐸2 have the similar specification except
that for 𝐸2 𝜃 = 180 when both q1 and q2 are 1.

Table 5 shows the list of test cases generated using a decision

table. In this case, we will need four test cases (𝑇𝐶1 to 𝑇𝐶4). The
test execution process will be similar as for the probabilistic cause-

effect graph except that in addition to probabilities, we also need

to check the observed phases with the ones specified in the cause-

effect graph. However, comparing phases is not a straightforward

task since measuring a qubit results in losing such information.

When executing a test case in a simulator, one can check phases by
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Figure 4: Phased-based cause-effect graph for the bell states

quantum program. 𝐶1 (𝑞1 = 1) and 𝐶2 (𝑞2 = 1) are the two

causes, whereas 𝐸1-𝐸4 (see Table 3) are the four effects. ∼
represents the logic NOT function, whereas ∧ represents the
logic AND function.

reading state vectors; however, on a real quantum computer it is

not possible to directly read phase information without changing

to a known measurement basis. There exist some mechanisms such

as phase estimation [6], which may be employed, but it requires

additional investigation.

Table 5: Decision table for the phase-based cause-effect graph.

The Action column represents the labels for causes or effects,

whereas 𝑇𝐶1 to 𝑇𝐶4 are the four test cases.

Action 𝑇𝐶1 𝑇𝐶2 𝑇𝐶3 𝑇𝐶4

𝐶1 0 1 1 0
𝐶2 0 0 1 1

𝐸1 1 0 0 0
𝐸2 0 1 0 0
𝐸3 0 0 1 0
𝐸4 0 0 0 1

6 QUANTUM CAUSE-EFFECT GRAPH

A quantum program is inherently probabilistic and contains the

quantum properties of superposition and entanglement. It is thus

natural to consider cause-effect graphs that incorporate these quan-

tum properties. To do this, the classical cause-effect graph notation

needs to be extended with appropriate fundamental quantum sym-

bols that operate between causes and effects using quantum logic.

6.1 Notations

Inspired by quantum logic gates, we propose graphical notations

that are in partial correspondence to particular unitary transforma-

tions in the circuit model. The Superposition function, represented

by𝜓 , transforms a cause 𝐶 into 𝑁 effects that are in superposition

with arbitrary probability amplitudes 𝑃 𝑗 = 𝑒𝑖𝜃𝑝 𝑗 . Here 𝑝 𝑗 ∈ [0, 1]
is the probability for measuring the respective effect and the angle-

parameter 𝜃 defines the phase factor 𝑒𝑖𝜃 . Note that in the case of
a single and direct link between a cause node and an effect node,

the probability amplitude may change, but the probability does not.

For instance, the reversal of the sign of the amplitude would not

affect the probability represented by the amplitude.

Furthermore, due to the presumed abundance of the scenarios

where the probability amplitudes are all equal 𝑃1 = 𝑃2 = · · · =

𝑃𝑁 , we define this by the special case 𝜓 → 𝐻 and refer to 𝐻 as

the Hadamard function. These two newly introduced functions

allow the effects of a graph to contain the phase and probability

information of states compactly.

Figure 5: a) Superposition function 𝜓 - Cause 𝐶 is mapped
onto a superposition of the effects 𝐸1, 𝐸2, · · · , 𝐸𝑁 with prob-
ability amplitudes 𝑃1, 𝑃2, · · · , 𝑃𝑁 ; b) Hadamard function 𝐻 -

Cause 𝐶 is mapped onto an equal superposition of the ef-
fects 𝐸1, 𝐸2, · · · , 𝐸𝑁 with probability amplitudes 𝑃1 = 𝑃2 =
· · · = 𝑃𝑁 = 1√

𝑁
; c) Phase function 𝑍 - Intermediary effect

𝑋 is mapped onto the effect 𝐸 by reversing the sign of the
probability amplitude.

To reverse the sign of the phase on a link in a quantum cause-

effect graph, we introduce the phase function 𝑍 , which should be
applied between an intermediary effect and a final effect by rotating

the phase angle 𝜃 by a factor 𝜋 in the complex plane, 𝑒𝑖𝜃 → 𝑒𝑖 (𝜃+𝜋 ) .
In addition, we introduce the entanglement set𝐴 = {𝑞1, 𝑞2, · · · , 𝑞𝑘 },

where the collection of qubits 𝑞 𝑗 ∈ 𝐴 represents a subset of qubits

from the total state space that are entangled in a particular superpo-

sition. Thus, we denote a superposition of effects which includes an

entanglement of a specific set of qubits by𝜓𝐴 . Also, we define the

notation, 𝐻𝐴 , for the special case of equal amplitudes. The purpose

of set𝐴 is to compactly include the information about which qubits

in the superposition are entangled.

6.2 Bell States Example

In this section, we present a quantum cause-effect graph of the Bell

states circuit introduced in Section 3.

The procedure for drawing quantum cause effect graph is shown

in Procedure 1. We write down the possible causes and effects of our

program as nodes that represent the observable output and input

states fromTable 1, {|00〉 , |11〉 , |01〉 , |10〉}. According to the defined
input/output conditions from Table 2, we map the causes/effects as

follows:𝐶1 and 𝐸1→ 00,𝐶2 and 𝐸4→ 10,𝐶3 and 𝐸3→ 01 and finally

𝐶4 and 𝐸2 → 11. Thus, the nodes in the graph will be true or false

corresponding to these mappings. We then go through one effect

node at a time, using the classical logic and the newly introduced

superposition and phase functions𝜓 and 𝑍 to create the quantum

cause-effect graph. Effect 𝐸1 is true if the input cause is either 𝐶1
or 𝐶2. In this case, 𝐸1 and 𝐸2 are also in superposition, which also
contains entanglement between the two qubits. The entanglement is

indicated by the 𝐻𝐴-function with the entanglement set 𝐴 = {1, 2}
in the exponent. In this case where 𝐸1 is caused by 𝐶1, we can
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now unambiguously determine the associated superposed state

𝐸2 by following the connection along the amplitude 𝑃1 to the 𝑃2
connection to 𝐸2. The other possibility is that 𝐸1 occurs due to 𝐶2,
but in that case 𝐸1 is in superposition with 𝐸2 with the probability
amplitude 𝑃4 = −1/

√
2. The 𝐻 -function provides, by definition, the

probability amplitudes +1/√2. Thus we add the 𝑍 -function on the
connection to the 𝐸2 node, reversing the sign.
Figure 6 shows the quantum cause-effect graph for the Bell states,

invoking the mentioned quantum logic functions and probabilistic

connections. The upper and lower four nodes are denoted by 1)

and 2) respectively. In 1), the probability amplitudes are drawn

explicitly, which are hidden in 2). However, the amplitudes in 2)

can be inferred from the 𝐻 and 𝑍 functions in the graph. This

visibility option demonstrates that only certain scenarios might

require an explicit listing of amplitudes. For instance, in Figure 6,

effect 𝐸1 (00) occurs with |𝑃1 |2 = |𝑃2 |2 = 50% probability and with a

phase of +1 when the causes are either 𝐶1 (00) or 𝐶2 (10). However,
the effect 𝐸2 (11) occurs with |𝑃3 |2 = |𝑃4 |2 = 50% probability for

both occurrences of 𝐶1 and 𝐶2. While on the other hand, only 𝐶1
results in a phase of +1. Cause𝐶2 results in a phase of −1 when 𝐸2 is
measured. Thus, the graph’s addition of the probability amplitudes

on the connections, provides a method for creating several links to

the same effect with arbitrary probabilities and phases.

Figure 6: Quantum cause-effect graph for the Bell state pro-

gram with four effects 𝐸1 − 𝐸4 with the corresponding prob-
ability amplitudes 𝑃1 = 𝑃2 = 𝑃3 = 1/√2 and 𝑃4 = −1/√2. The
exclusive-OR constraint is denoted by dotted lines in con-

junction with the symbol 𝑒. In 1) the probability amplitudes
are explicit, while in 2) they are implicit.

6.3 Test Case Derivation

In order to derive test cases from the quantum cause-effect graph,

we can first create a binary table (see Procedure 2) and then de-

rive test cases from it, according to constraints which might relate

to resources or other testing needs. Since quantum programs are

fundamentally probabilistic, the table entry of the effects can be

coupled with the probability amplitudes for the respective effect.

Thus, an effect in a decision table is represented by a tuple (𝐸𝑘 , 𝑃𝑙 )
for all possible 𝑘, 𝑙 combinations allowed by the nodes in the graph.
For our running example we would have four possibilities for the

upper four nodes in 1) from figure 6. The tuple states that the effect

𝐸𝑘 is true with probability amplitude 𝑃𝑙 , while the probability for
measuring 𝐸𝑘 is as usual given by the formula for 𝑝 𝑗 from section 3.

With this definition, we can reproduce the classical table 4. So what

Table 6: Decision table for quantum cause-effect graphs for

the Bell states program. Column Action represents cause and

effect labels. There are three types of instances. Effects 𝐸1−𝐸4
are represented in tuples with their respective probability

amplitudes 𝑃1 − 𝑃4. Finally there are quantum specific in-

stances𝜓1,𝜓2 and𝜓
𝐴
1 ,𝜓

𝐴
2 where𝐴 = {1, 2} is the entanglement

set containing the indices for the entangled qubits.

Action TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8

C1 1 0 1 0 1 0 1 0
C2 0 1 0 1 0 1 0 1

𝐸1, 𝑃1 1 0 0 0 1 0 1 0
𝐸1, 𝑃2 0 1 0 0 0 1 0 1
𝐸2, 𝑃3 0 0 1 0 1 0 1 0
𝐸2, 𝑃4 0 0 0 1 0 1 0 1
𝜓1 0 0 0 0 1 0 1 0
𝜓2 0 0 0 0 0 1 0 1

𝜓𝐴
1

0 0 0 0 0 0 1 0

𝜓𝐴
2

0 0 0 0 0 0 0 1

additional information does the quantum graph provide? Since su-

perposition, entanglement and phases are not directly measurable

as true or false statements, like the output states of the Bell basis,

we can instead define new test cases for these quantum features.

By reading the quantum cause-effect graph from the uppermost

effect 𝐸1 towards the bottom effect node, we can identify two su-

perposition test cases 𝑆1 and 𝑆2 due to the 𝐻 -functions. We can
then represent a test case for each superposition by adding a new

row in the table, inserting a true binary value for the superposition

test case𝜓1 and then𝜓2. For each respective superposition test case
we then add true statements to the corresponding two effects that

make up the superposition. For the first superposition 𝑆1 we then
add the 𝑇𝐶5-column and activate the tuples (𝐸1, 𝑃1) and (𝐸2, 𝑃3)
according to the graph 6. For the entanglement we insert another

row and represent this by𝜓𝐴
1 and𝜓𝐴

2 , where 𝐴 is the entanglement

set containing which qubits are entangled. Now, as with𝜓1 and𝜓2,
we insert true statements and activate the underlying superposi-

tions𝜓1,𝜓2 and their corresponding tuples since these are also true
for the entangled case. The results of this procedure is represented

in table 6, where we have the entries of the classical effects 𝐸1 − 𝐸4
in conjunction with the additional test cases for each instance of

superposition along with the entanglements. All of which were

read from the graph in a systematic way according to Procedure 2.

Procedure 1 Steps for drawing a quantum cause-effect graph.

1: Draw and label nodes for the causes 𝐶𝑘 and effects 𝐸𝑙 for all 𝑘, 𝑙 =
1, 2, · · · according to the quantum program input-output specification.

2: Add all superposition function nodes 𝜓 and link them to the corre-

sponding superposed effects, adding probability amplitudes 𝑃 on the

links. Label the weights in ascending order such that the uppermost

link in the graph which connects to 𝐸1 is weighted by 𝑃1.
3: For a given superposition that contains entangled qubits, define a set

𝐴 = such that it contains the indices of the entangled qubits from the

list of qubits 𝑞1, 𝑞2, · · · , 𝑞𝑑 , for the specific superposition.
4: Make appropriatemodifications of the sign of the probability amplitudes

using the Z function.

5: Perform the classical cause-effect procedure applying the 𝑂𝑅,𝐴𝑁𝐷
functions between the causes and effects.
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Procedure 2 Procedure for obtaining the decision table reading a

quantum cause-effect graph.

1: Create the first column heading Action and add a column for each

possible test case𝑇𝐶 and label them in ascending order from𝑇𝐶1.

2: In the Action column, add entries row-wise for the causes𝐶 , then add
the effect-amplitude tuples (𝐸𝑘 , 𝑃𝑙 ), for all possible𝑘, 𝑙 . The tuple entries
should be added such that 𝑘 is fixed while adding new entries for each

𝑙 . When all 𝑙 entries are exhausted, increment 𝑘 and repeat the process

until all tuple combinations have been added to the table.

3: Add all superposition entries corresponding to the number of𝜓 func-

tions in the graph, starting from the uppermost function which we

denote by𝜓1.
4: If the superposition functions contain entanglement sets𝜓𝐴 , then add

all such entries starting with𝜓𝐴
1 .

5: Input +1 starting from the (𝐸1, 𝑃1) entry and add the +1 entry to the
corresponding causes𝐶 in the table.

6: For the superpositions add +1 starting from the𝜓1 entry and add the
+1 entry to the corresponding effect-amplitude tuples which construct
the superposition. Finally, add +1 to the corresponding causes𝐶 in the

table.

7: For the entanglements, add +1 starting from the𝜓𝐴
1 entry and repeat

step 6 for the corresponding superposition.

8: Add 0 to all other entries in the table.

A full test case example of 𝑇𝐶5 from table 6 is given by:

• Test case ID (Name): 𝑇𝐶5 (TC5-Superpos1)
• Description: Test that the program output state is in super-

position of 𝐸1 and 𝐸2 with amplitudes 𝑃1 and 𝑃3
• Steps: 1) 𝑥 measurements in the Bell basis - 2) 𝑦 measure-
ments in the basis consisting of the Bell states

• Expected Result: Outputs of 50% + 𝑒𝑟𝑟 for |00〉 or |11〉 for
1) and 100% + 𝑒𝑟𝑟 for the respective basis state of 2).

A certain number of measurements 𝑥,𝑦 would provide a suffi-
cient confidence in the verification of the superposition within the

defined error parameter 𝑒𝑟𝑟 .

7 DISCUSSIONS

We first discuss key differences between the application of classi-

cal and quantum cause-effect graphs for quantum programs (Sec-

tion 7.1), followed by thoughts on the potential usages of cause-

effect graphs (Section 7.2) and their the scalability (Section 7.3).

7.1 Classical vs. Quantum Cause-effect Graphs
for Quantum Programs

In classical cause-effect graphs for quantum programs, we construct

relations between causes and effects by treating quantum programs

as black-boxes. Moreover, the relations consist of pure classical

logic functions. Therefore, test case generation is the same as for

classical software, except that for certain cases, the test cases will

be executed multiple times to deal with the probabilistic nature of

quantum programs. Based on such executions, passing and failing

of test cases may be determined using appropriate statistical tests

such as one-sample Wilcoxon Signed Rank test and Pearson’s chi-

square test employed by existing works [2, 7, 18]. Moreover, we

need novel test strategies for test case design using classical cause-

effect graphs.

The quantum cause-effect graphs defined in this paper are con-

structed from nodes representing single basis states. While the

quantum features such as superposition and entanglement can be

read from the functions within the graph itself by the links con-

necting the respective effects in the superposition. Thus, the effects

can be considered before measurement (i.e., superpositions such

as𝜓1,𝜓2 in Table 6) or after measurement such as the considered
single state tuple (𝐸1, 𝑃1). The quantum graphs thus provide clas-

sical effects in addition to quantum type effects. Both can be read

from the graph, but they are represented in separate ways. This

feature results from the usage of both quantum and classical logic.

In order to derive test cases from a quantum cause-effect graph, we

then have the following options: (1) If the causes and effects are all

classical, test case generation can follow a process similar to what

we described for classical ones; (2) If the causes are in superposition

and effects are after measurement, when generating test cases, the

causes shall include test setup mechanisms to set a quantum pro-

gram in the specified causes in superposition, and the effects can

be checked in a similar way as for the classical; (3) If the causes are

classical, whereas the effects are before measurement, we need spe-

cific mechanisms to verify the superposition property of the effects.

This is a new area of research and needs additional investigation;

and (4) Causes and effects are in superposition instead of being in

classical states. In this case, we need to set the program in super-

position (e.g., with test drivers) and check effects in superposition.

These topics are being investigated in the community.

When looking at causes in classical and quantum cause-effect

graphs, we see two approaches. For the considered classical ap-

proach, a cause was defined as one qubit initialized as 1, whereas in

the quantum case, a cause was defined as a set of binary values as-

signed to all qubits. Each representation as true or false statements

has its benefits and drawbacks. For example, in the classical con-

text, the number of causes will be less. For instance, for a quantum

program with 20 qubits, we need 20 causes, whereas, for quantum,

we need, at most 220 causes (assuming no abstraction). However,

for the classical context, even the causes are less, but the number of

links will be increased as compared to quantum. Therefore, more

investigation is needed to see which approach is most suitable for

defining causes and effects.

7.2 Usages of Cause-effect Graphs

First, cause-effect graphs can help to build high-level specifications

of quantum programs, currently in terms of inputs and outputs of a

quantum program. In quantum software engineering, the literature

still lacks methods for constructing program specifications; there-

fore, using cause-effect graphs can be considered as the very first

initiative for helping the identification and specification of causes

and effects by raising up the level of abstraction from quantum cir-

cuits. In the same way as the classical models are used, cause-effect

graphs may help software engineers to reason, at a higher level

abstraction than quantum circuits, input and output relations. This

is important for understanding quantum programs. Nonetheless,

our current specifications of causes and effects are dependent upon

mappings onto the circuit level.

Second, we want to use quantum cause-effect graphs to systemat-

ically generate effective test cases. Currently, we only demonstrated
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that we could use decision tables to generate the single test case

𝑇𝐶5 in sufficient detail in Section 6.3. However, additional work is
needed to generate effective test cases using the quantum proce-

dures 1 and 2, which is part of our immediate future work.

7.3 Scalability

For quantum cause-effect graphs to be scalable, several directions

need to be followed. First, we need to raise the level of abstractions

by, e.g., grouping a set of qubits or merging a set of causes/effect-

s/links. Second, we need to enable the reuse of cause-effect graphs,

via nesting structures, of components such as the Bell states ex-

ample we demonstrated in the paper, in larger quantum software

applications such as quantum teleportation [13]. Similarly, we can

reuse test cases designed for the Bell states with quantum cause-

effect graphs for testing quantum teleportation programs.

The introduction of superposition function𝜓 provides several

considerations for scalability: (1) Test cases for quantum superposi-

tion and entanglement can be read from the functions in the graph,

whereas a classical graph would require nodes to represent such

superposition instances as effects; (2) They provide links to include

information about the probability and phase of a single state out-

come; (3) They keep quantum superposition and entanglement as a

part of the black-box quantum program. Thus the quantum graph

arguably suits quantum programs more naturally by the integration

of these quantum features.

8 CONCLUSIONS AND FUTUREWORK

Cause-effect graphs are designed to communicate relations among

causes and effects, and have been used for test case design for clas-

sical software systems. In this paper, we investigated cause-effect

graphs to capture relations between causes and effects of quantum

programs. In particular, we studied the use of both quantum and

classical logic functions to capture such relations. Based on the

Bell states program, we analyzed various cause-effect graphs at

different levels of abstractions. In the future, we plan to make our

quantum cause-effect graph notations more complete, especially

by adding concepts at a higher level of abstraction to improve the

overall quality of quantum cause-effect graphs. We also want to

enrich the quantum cause-effect graph notations with the complete

quantum logic to capture complex relation among cause and effects.

Additionally, we will carefully design a set of graphical notations,

along with tool support, such that they can be understood and

used more easily by end users. Also, adding support for automatic

testing will allow more scalability. The main utility of quantum

cause-effect graphs is suggested to allow additional test cases of

superposition and entanglement to be included in a test suite. Thus,

future work will aim to demonstrate this utility in a quantum test

suite comparison.
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