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ABSTRACT
We design new visual illusions by finding “adversarial examples”
for principled models of human perception — specifically, for proba-
bilistic models, which treat vision as Bayesian inference. To perform
this search efficiently, we design a differentiable probabilistic pro-
gramming language, whose API exposes MCMC inference as a
first-class differentiable function. We demonstrate our method by
automatically creating illusions for three features of human vision:
color constancy, size constancy, and face perception.
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1 INTRODUCTION
Human visual perception does not always match objective reality.
Consider “The Dress,” a visual illusion discovered by chance in 2015.
This photograph of a blue and black striped dress elicits a strange
perceptual effect: while most viewers indeed describe the dress
as blue and black, roughly a third instead confidently describe it
as white and golden [Lafer-Sousa et al. 2015]. Because these two
perceptual modes are so dramatically different, viewers are often
baffled to learn that others see the same image differently.

Illusions like “The Dress” have long been studied for insight
into perception. This paper is motivated by the question, Can we
systematically generate new such illusions in a principled manner?
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Figure 1: Illusion synthesis: We find scenes where different
people perceive different colors (top), where most people in-
fer incorrect geometry (left), and where changing the light-
ing causes a face to change expression (right). To find them,
we perform gradient descent optimization over Bayesian
models of human visual perception, which are implemented
in our differentiable probabilistic programming language.

Following Durand et al. [2002], we would like to think of such
perceptually-aware image synthesis as “inverse inverse rendering.”
Given a model of human visual perception that infers a scene from
an image (“inverse rendering”), we wish to search for input images
that elicit interesting responses as output from the model (“inverse
inverse rendering”).

What model should we choose? A long line of cognitive science
research suggests that human visual perception is modeled well by
probabilistic models, which treat perception as Bayesian inference.
Under such a model, a viewer has some prior belief about the statis-
tical distribution of scenes (objects, their colors, and lighting condi-
tions) in the world. Faced with an observation (an image), the viewer
performs inference to update their prior belief into a posterior belief
using Bayes’ rule: p(Scene | Image) ∝ p(Image | Scene)p(Scene).

Probabilistic models have already been used for inverse render-
ing in a variety of settings. Here, however, we are interested in in-
verse inverse rendering: we seek an Image⋆ such that themodel’s in-
ferred posterior belief, given by the distribution p(Scene | Image⋆),
is confidently incorrect. In this way, Image⋆ is like an “adversarial
example” — not for a deep neural network, but instead for a small,
principled model of one aspect of human perception.

https://doi.org/10.1145/3528233.3530715
https://en.wikipedia.org/wiki/The_dress
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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In this paper, we offer a general-purpose tool for solving such in-
verse problems: a differentiable probabilistic programming language.
Regular probabilistic programming languages (PPLs) allow users
to express probabilistic models as structured generative processes,
which are then inverted into efficient programs for performing
Bayesian inference with respect to a given observation. By enabling
differentiation through the inference process, a differentiable PPL
allows users to optimize (by gradient descent) an observation to
evoke some desired property in the inferred posterior distribution.
Using this tool, we can model a variety of perceptual phenomena
with simple generative models — just a few lines of code — and
then search for stimuli that elicit interesting behaviors from those
models.

This work is a synthesis of many ideas from a variety of fields.
Section 2 reviews necessary background, situating our work in the
broader context of current machine learning and cognitive science
research. After that, we present our two contributions: a differen-
tiable PPL (Section 3), and a formalization of “illusion synthesis”
as an application of differentiable PPLs (Section 4). We apply our
method to create illusions in three domains: color constancy (4.1),
size constancy (4.2), and face perception (4.3). Finally, we reflect
on our work’s broader implications for the graphics and cognitive
science communities, and discuss scope for future work (Section 5).

2 BACKGROUND
2.1 Motivation: Why do we need Bayesian

models?
Because our goal is to find visual illusions that work for humans, we
need a model of vision whose edge-cases match those of humans.
This choice is not straightforward: convolutional neural networks
(CNNs), for example, do not meet this criterion because even though
we can easily fool them with adversarial examples [Szegedy et al.
2014], nearly a decade of research teaches us that those examples do
not transfer to fool humans [Sinz et al. 2019]. Indeed, this is precisely
why adversarial examples are intriguing: they demonstrate how
deep learning differs fundamentally from human perception.

While this consensus is occasionally disputed, the evidence still
does not suggest any method for generating robust, compelling illu-
sions like “The Dress.” For example, Elsayed et al. [2018] optimized
images to be misclassified by an ensemble of ten CNNs, and found
that the resulting adversarial examples could also cause humans to
select the same incorrect labels. However, the humans were only
fooled in the “time-limited” setting where images were flashed for
just 60-70ms — the effect disappeared for longer presentations. Sim-
ilarly, Zhou and Firestone [2019] found that humans could pick out
the incorrect label that a fooled CNN would assign. However, this
was only in a forced-choice setting where participants were given
a constrained set of incorrect labels to choose from. Neither of
these effects is like “The Dress,” which persists even under natural
viewing and reporting conditions.

Seeking to capture exactly these robust perceptual effects, we
turn away from CNNs, and instead consider an alternate model of
vision: the Bayesianmodel, which seeks to explain human vision as
the computations of a rational perceptive agent. Below, we provide
a brief introduction to Bayesian models, why we expect them to

match human perception, and how they are implemented in prac-
tice (we direct readers seeking further background to a textbook
by Goodman et al. [2016]). Finally, we discuss algorithms for differ-
entiating over those models, which in turn enable us to optimize
“adversarial examples” that indeed transfer to humans.

2.2 Modeling vision as Bayesian inference
Probabilistic models of perception. A long line of work from the

cognitive science community (see, e.g., a book by Knill and Richards
[1996] or surveys by Mamassian et al. [2002] and Kersten et al.
[2004]) has argued that because many possible scenes can map to
the same image on the human retina, parsing an image into a scene
by “inverse graphics” is an ill-posed problem. Therefore, visionmust
be probabilistic in nature: it must rationally infer probable scenes
from an image based on prior beliefs about the statistics of scenes in
the viewer’s environment. For example, this viewmotivates a simple
Bayesian model of color constancy [Brainard and Freeman 1997]:
We start with a distribution p(Light,Color) representing our prior
belief over scenes (for example, that daylight is likelier than bright
green light), and a distribution p(Image | Light,Color) that encodes
how scenes are rendered into images along with any uncertainty in
that process (for example, sensor noise in the eye or camera). Bayes’
rule then allows us to infer the posterior distribution of scenes,
conditioned on a given observed image: p(Light,Color | Image) ∝
p(Light,Color)p(Image | Light,Color).

This account of vision posits a natural “specification” of what
vision computes, independent of what the algorithmic implemen-
tation or biological realization of this specification may be [Marr
1982]. A variety of recent systems have sought to apply this insight
to build artificial models of visual scene perception [Gothoskar et al.
2021; Kulkarni et al. 2015; Mansinghka et al. 2013]. Ahead of time,
the authors of these systems define a probability distribution over
scenes in their target domain, expressing their prior belief about
the statistics of natural scenes. When given an input image, the
systems condition their prior distribution on having observed that
image. They then apply Bayes’ rule to infer the posterior distribu-
tion of scenes that best explain the image. Such models can account
for a variety of perceptual phenomena in humans, including some
illusions [Geisler and Kersten 2002; Weiss et al. 2002].

Probabilistic programming languages (PPLs). PPLs are domain-
specific languages that enable users to express complicated prob-
ability distributions by implementing generative processes that
sample random variables as they execute [Carpenter et al. 2017;
van de Meent et al. 2018]. For example, we could describe the distri-
bution p(Image | Light,Color) in a PPL by writing a small graphics
engine that randomly samples camera parameters, and then uses
those parameters to render an image of the scene using the given
light and color. The PPL compiles this generative procedure into
a function q that evaluates the joint probability density of a given
concrete instantiation of the random variables. PPLs also allow
users to express conditional distributions by fixing the values of
the observed random variables.

Performing inference using MCMC sampling. Once we have a way
to evaluate the conditional probability density, we would like to
get a concrete sense of the distribution — for example, approximate
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its mean and variance — by drawing samples from it. A standard
technique for sampling from a probability distribution is theMarkov
Chain Monte Carlo (MCMC) algorithm: We perform a random
walk over the domain of q, choosing transition probabilities such
that the random walk’s stationary distribution is proportional to
q. For distributions with continuous domains, a common choice of
transition probabilities is given by the Hamiltonian Monte Carlo
(HMC) algorithm [Duane et al. 1987; Neal et al. 2011]. HMC treats
q as a physical potential energy well and simulates a randomly-
initialized particle’s trajectory in that well for a fixed time window.
Intuitively, such a particle would indeed spend longer in regions of
low potential (or high probability), exactly as desired.

2.3 Differentiating inference
Now that we can approximate expectations taken over conditional
probability distributions, we would like to differentiate these expec-
tations with respect to parameters of the distribution. Fortunately,
because each step of the HMC random walk is given by a physics
simulation with continuous dynamics, we can simply apply auto-
matic differentiation to compute derivatives of samples with respect
to parameters of the probability distribution.1

In the language of statistical machine learning, this technique is
analogous to the “reparametrization trick” [Kingma and Welling
2014] or “pathwise gradients” technique [Mohamed et al. 2020]
where the “reparametrization” or “path” maps HMC’s random in-
puts (i.e. the particle’s random initializations) to a sample from
the target distribution. Indeed, to the best of our knowledge, this
technique was first proposed by the ML community, in the context
of variational inference [Salimans et al. 2015]. More recently, it
has been used to train energy-based models [Dai et al. 2019; Du
et al. 2021; Vahdat et al. 2020; Zoltowski et al. 2020], for Bayesian
learning [Zhang et al. 2021], and to optimize the hyperparameters
of HMC itself [Campbell et al. 2021].

In the above settings, the target probability distribution is typi-
cally parametrized by a black-boxmodel (e.g. a deep neural network)
whose weights are to be optimized. Our work, in contrast, applies
these ideas to differentiate through richly-structured generative
models expressed in PPLs (with embedded renderers/simulations),
focusing specifically on perceptual models.

2.4 Space-efficient differentiation via reversible
dynamics

The algorithm as described above does not scale to our setting be-
cause it uses too much memory. Backpropagation requires storing
all the intermediate values computed by the target function, and
HMC sampling produces a tremendous amount of intermediate
data because it has two nested loops (ranging over samples and
steps of the physics simulation). For our applications, which involve
rendering within the generative model, HMC’s total memory usage
quickly multiplies beyond what is practical. Our solution is to apply
“reversible learning,” a technique originally developed for hyperpa-
rameter optimization in deep learning [Maclaurin et al. 2015], also
1HMC has one non-differentiable component: the “accept/reject” step or “Metropolis-
Hastings correction,” which accounts for numerical imprecision in the physics sim-
ulation. Our work, along with the others referenced in this section, elides this step
to make the sampler fully differentiable, even though it comes at the cost of slightly
biasing the samples.

later used in variational inference [Zhang et al. 2021]. Rather than
storing intermediate values, we recompute them dynamically dur-
ing backpropagation by running the physical simulation in reverse,
backwards through time.

3 DIFFERENTIABLE PROBABILISTIC
PROGRAMMING

Section 2 reviewed the cognitive-science and algorithmic foun-
dations of our work. Now, we will briefly put aside questions of
perception, and provide a tour of our key tool: the differentiable
probabilistic programming language, which augments regular PPLs
with the ability to differentiate through inference. To keep our
discussion concrete, we will adopt the following small example
problem:

In summer, the daily high temperature T in San Francisco is
distributed normally, with mean 70◦ and standard deviation
5◦. Your old thermometer reports a measurement M of the
true temperature, with some added Gaussian noise of σ = 2◦.

(1) On a hot day, your thermometer reports 100◦. Knowing
your prior belief that T ∼ N (70, 5) and M ∼ N (T , 2),
what do you think the true temperature is?

(2) What measurement would the thermometer have to
report for you to believe the temperature is truly 100◦?

Question (1) is a standard Bayesian inference problem that seeks
to invert the observed measurement into an inferred temperature; it
is easily solved by existing PPLs. Question (2) is the “inverse inverse
problem” that corresponds to (1) and requires our differentiable
PPL. (In the same way, we will later treat illusion synthesis as an
“inverse inverse problem” corresponding to inverse graphics.)

In this simple Gaussian setting, we can analytically solve both
problems in closed form. For Question (1), we have E[T | M =
100◦] = (2780/29)◦ ≈ 95.86◦, and for question (2), the solution
to the equation E[T | M = m] = 100◦ is m = 524/5◦ = 104.8◦.
Below, we will use our differentiable PPL to approximate these
values numerically.

3.1 Writing a generative model
The first step is to encode our problem setup into a probabilistic
generative model. Following languages like Anglican [Wood et al.
2014], we provide two important primitives in our PPL: sample,
which yields a fresh, independent sample from a given distribution,
and observe, which conditions the generative process on a sample
from a distribution being equal to a given observed value.

def model(M):
sample T ~ N(70, 5)
observe M from N(T, 2)
return T

Here, we define a model that can be conditioned onM . The model
samples a true temperature T from the given distribution, then ob-
serves that the noisy measurement is equal toM . Finally, it returns
T to signal that it is the value to be inferred.
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This generative process implicitly defines a joint probability
distribution over the random variables in the model. In partic-
ular, applying Bayes’ rule, we have p(t ,m) = p(t)p(m | t) =

Φ
(
t−70
5

)
Φ
(m−t

2
)
where Φ is the Gaussian probability density func-

tion. More generally, each sample and observe statement appends
a multiplicative factor to the joint density. The PPL automatically
compiles the generative process into a function that evaluates the
(unnormalized) conditional density, given values for the latent ran-
dom variables and the observations on which to condition.

3.2 Performing MCMC inference using HMC
Our language provides a function hmc_sample, which takes as input
the HMC hyperparameters (N , the number of samples to take; L, the
number of iterations of the physical simulation; and ϵ , the epsilon
value used by the simulation’s integrator) and the observation on
which to condition. The appropriate HMC hyperparameters vary by
model, and selecting them typically requires some trial and error.

The function hmc_sample performs HMC inference and returns
an array of N samples from the conditional distribution (of the
random variable T , in our model). Typically, it is helpful to skip
the first few samples, which are biased by the sampler’s “burn-in
period,” during which the initial conditions’ influence has not yet
been washed out by the random walk. We skip the first 100 samples
for this reason.

samples = hmc_sample(
N=1000 , L=300, eps=0.01, skip =100,
M=100 # observation on which to condition

)
print(samples.mean ())

This outputs the approximation E[T | M = 100] ≈ 95.959◦ (the
analytical solution is 95.86◦).

For brevity, from here on we will elide the HMC hyperparame-
ters and the .mean() by defining the convenience function infer,
which simply calls hmc_sample with appropriate hyperparameters
and takes the mean of the resulting samples. Thus, the above lines
of code can be shortened to print(infer(M=100)).

3.3 Solving the “inverse inverse problem” by
gradient descent

Finally, we are ready to solve the “inverse inverse problem”: finding
anm such that the inferred value of T is exactly 100◦. To compute
this value by gradient descent optimization, we must write down
an optimization target. Here, we seek to minimize the difference
between the inferred E[T | M =m] and the desired value of 100◦.

def loss(m):
return (infer(M=m) - 100) ** 2

Because infer is end-to-end differentiable (see Sections 2.3 and 2.4),
we can simply apply automatic differentiation and backpropagate
through the computation of loss. After 100 steps of gradient descent
with a step size of 0.1, the optimization converges, and we obtain
our solutionm = 104.80379◦ (the analytical solution is 104.8◦).

4 APPLICATIONS
We are now ready to apply differentiable PPLs to find adversarial
examples for probabilistic models of perception by gradient descent.
The computations described below were implemented in Python us-
ing the JAX automatic differentiation library and run on an NVIDIA
TITAN X GPU. Each result is reproducible in minutes using the
source code included in the supplementary materials and online at
https://people.csail.mit.edu/kach/dpp-dpp/.

4.1 Color constancy
We begin with our motivating example of synthesizing new color
constancy illusions like “The Dress.” To do so by “inverse inverse
rendering,” we need a probabilistic model and an optimization target
to minimize.

Our probabilistic model samples scenes that contain colored
objects and a single light source. For the light source, we randomly
sample a color temperature from N (6500K , 1000K) and uniformly
select its brightness from a large range. For the objects, we choose
to render colored wedge-top pencil erasers, for three reasons: First,
erasers are highly Lambertian, which minimizes lighting cues given
away by specular highlights. Second, the distinctive shape of wedge-
top erasers makes it easy to recognize the objects as erasers. Finally,
erasers come in a wide variety of colors, which allows us to use
a simple uniform prior over object color. We fix all other scene
parameters, such as the positions of the camera and objects.

To condition our model on an input, we follow Kulkarni et al.
[2015] and add a small amount of pointwise Gaussian noise at
each pixel of the rendered image, then assert that the result is the
observed image. In our PPL, all of this is expressed as follows:

def model(observed_img ):
sample temp ~ N(6500, 1000)
sample brightness ~ U(0, 2)
light = planck_to_RGB(temp) * brightness
sample color1[r,g,b], color2[r,g,b] ~ U(0, 1)

img = render(light , color1 , color2)
observe img from N(observed_img , 0.1)
return color1 , color2

Finally, for our optimization target, we follow the usual “adver-
sarial examples” recipe: we optimize for an image that causes the
model to infer colors as different from the true colors as possible.2

def loss(light , true_color1 , true_color2 ):
perceived_color1 , perceived_color2 =

infer(render(light , true_color1 , true_color2 ))
return

-length(true_color1 - perceived_color1) +
-length(true_color2 - perceived_color2)

Why should this optimization target yield diverse percepts, as op-
posed to simply consistently-wrong ones? Recall that human view-
ers vary in their perceptual priors, as evidenced by “The Dress”
[Wallisch 2017]. However, our model only has a single, fixed-but-
reasonable prior. We thus expect viewers whose priors match our
model to be “fooled” by the adversarial examples, and viewers with

2Our implementation adds an additional term to the loss that encourages color1 and
color2 to be different, which yields more visually interesting results.

https://people.csail.mit.edu/kach/dpp-dpp/
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Control #1 Control #2 Control #3

Illusion #1 Illusion #2 Illusion #3

Illusion #4 Illusion #5 Illusion #6

Figure 2: Color constancy illusions created by ourmethod (Section 4.1). Each plot shows the imagewe presented to participants
in our study, along with swatches representing the colors that they reported for the two kinds of erasers. The size of each half-
square is proportional to the participant’s self-reported confidence in that color response. Selected high-confidence responses
(≥ 7/10 for both colors) are shown in circled insets, re-lit in neutral light as the participants themselves saw in the guide display
when picking colors. For controls, we selected the most distant pairs in CIELAB space; for illusions, we handpicked responses
to represent significant perceptual modes. The reported colors for the illusions vary dramatically in hue, while the reported
colors for the controls (top row) are tightly clustered among perceptually similar hues, only varying slightly in saturation.
Note: A small fraction of participants swapped the two colors in their responses. This does not affect the experiment’s results,
so we present the data without manually correcting their errors. (This figure is best viewed on a high-resolution color display.)

different priors to perceive the colors correctly. Indeed, when we
evaluated our illusions with human viewers, we observed diverse
responses rather than consistent ones, as discussed below.

Evaluation. Because phenomena like “The Dress” depend on
diversity in perceptual priors, they are not apparent to individuals
in isolation: they are only revealed when a group of people disagree
about their percepts. Thus, to evaluate our illusions, we conducted
an online human subject study.3

First, we performed the optimization described above for 30 ran-
dom seeds. For most seeds, gradient descent converged to one of
three “classes” of illusions. We hand-picked two representative sam-
ples from each class to evaluate, for a total of 6 illusions. Next, we
recruited 60 naïve participants and presented each one with our 6
illusions in randomized order. Randomly-selected controls (images
with poor loss in our model) were interspersed every 3 images. Par-
ticipants reported the colors of the two kinds of erasers using color
pickers. They also reported their confidence using sliders labeled
“just guessing” to “very confident.” A guide display re-rendered their

3This study was conducted with IRB approval, and all subjects were compensated for
their time.

selections under neutral lighting in real time. Participants were in-
structed to disable blue-light filters and the study was conducted
during daytime hours in the continental US. Only one participant
self-reported any color vision deficiency. We discarded responses
from participants who failed attention checks (e.g. “what did the
sliders measure?”), leaving 35 reliable responses, shown in Figure 2.
Among these responses, we found that the colors reported for the
controls clustered tightly among perceptually similar colors, while
the colors reported for the illusions indeed varied widely, as desired.

Other approaches. We end this section with a brief discussion
of related work on synthesizing Dress-like illusions. Witzel and
Toscani [2020] transplant the original colors of “The Dress” onto
new objects and show that this preserves the illusion. However,
their method cannot find new “color schemes” as ours does. Wal-
lisch and Karlovich [2019] photograph colorful slippers and white
socks under colored light that makes the slippers look gray. Most
viewers correctly perceive colored slippers with white socks; how-
ever, some instead perceive gray slippers with colored socks. This
illusion was cleverly handcrafted with respect to specific qualitative
priors (i.e. socks are typically white), and required careful manual
tuning to perfect. In comparison, our method automatically and
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efficiently optimizes illusions under principled natural priors. Fi-
nally, our prior work explores a similar effect in speech perception,
the “Laurel/Yanny” illusion, by using heuristic search and large-
scale crowdsourcing to find new audio clips that exhibit the same
phenomenon [Chandra et al. 2021]. Our present method directly
creates illusions, instead of finding them among natural examples.

4.2 Size constancy
Another “constancy” in human visual perception is size constancy:
we infer objects to be the same size, evenwhen they are viewed from
different perspectives. Famous illusions of size constancy include
the Ponzo illusion and the “Shepard Tables” [Shepard 1994]. Here,
we try to produce illusions of forced perspective, where an unusual
camera angle is used to make an object appear larger or smaller
(or farther or nearer) than it truly is. This technique is often used
by architects to enhance a building’s grandeur; oppositely, it is
often used by tourists to take souvenir photographs of themselves
appearing to hold monuments in their hands.

First, we create a generative model for scenes containing a set of
reasonably-sized tables, observed by a randomly-initialized camera.
As in previous examples, the model is then conditioned on an
observed image. (In this model, we express “images” as ordered
sequences of vertices representing a 2D projection of the tables’
corners.) We seek to infer each table’s position and size.

def model(observed_tables []):
# Camera position (cylindrical coordinates)
sample r ~ U(8 ,16); θ ~ U(0,2π ); h ~ N(0,3)
camera = make_camera_at(r, θ , h). look_at(origin)

for i, obs in observed_tables:
sample size[x,y,z] ~ U(.5 ,4); pos[x,y] ~ N(0,2)
tables[i] = make_table(size , pos)
image = perspective_project(camera , tables[i])
observe obs from N(image , 0.01)

return tables

Next, we express our optimization target. We are looking for an
arrangement of tables and camera parameters such that the first
table appears nearer than it truly is: that is, such that the position
inferred by our model is closer to the origin than the true position
with which the image was generated.

def loss(camera , true_tables []):
observed_tables =

perspective_project(camera , true_tables)
inferred_tables = infer(observed_tables)

return
length(inferred_tables [0]. position) -
length(true_tables [0]. position)

Finally, we optimize this loss by gradient descent. Some examples
of optimized illusions are shown in Figures 3a and 3b. Both our
model, and human intuitions, are “fooled” by these images.

4.3 Face perception
For our last application, we were inspired by two effects related
to human face perception. First, Troje and Siebeck [1998] observe
that merely changing the direction of lighting on a human face can

change a viewer’s perception of the face’s orientation. Second, Oliva
et al. [2006] show that small changes to a carefully-constructed
“hybrid image” can change a viewer’s perception of the face’s ex-
pression, an effect previously observed by Livingstone [2000] in
relation to the Mona Lisa. Hoping to combine these two effects to
design a new illusion, we asked: Can we find faces that appear to
change their expressions in different lighting conditions?

Following Kulkarni et al. [2015], we built a simple probabilis-
tic model of face perception using the Basel Face Model [Gerig
et al. 2018], a 3D morphable model that outputs meshes of human
faces given low-dimensional latent vectors encoding identity and
expression. Our generative model samples latent vectors for the
morphable model independently and shines a randomly-oriented
directional light on the output mesh. This resulting scene is then
rendered using the SoftRas differentiable rendering algorithm [Liu
et al. 2019]. As in Section 4.1, we observe an input image by adding
pointwise Gaussian noise to each pixel.

def model(observed_img ):
sample identity [0:n], expression [0:n] ~ N(0, 1)
mesh = BaselFaceModel(identity , expression)
sample lighting_dir[x,y,z] ~ N(0, 1)
img = SoftRas(mesh , lighting_dir)
observe img from N(observed_img , 0.1)
return expression

Some examples of unconditional samples from this model are shown
in the top row of Figure 3c. So far, the facial expressions appear
mostly the same even if the lighting direction is changed. Indeed,
our model is easily able to infer the expressions in all of these
images.

Next, we wrote an optimization target to search for a face mesh
and lighting direction such that the face “looks” different to our
model if the lighting direction is flipped across the origin:

def loss(mesh , lighting_dir ):
expr1 = infer(SoftRas(mesh , +lighting_dir ))
expr2 = infer(SoftRas(mesh , -lighting_dir ))
return -(expr1 - expr2) ** 2

Finally, we performed the necessary optimization by gradient de-
scent. We ran the optimization separately from 100 random seeds.
Approximately 10% of the results were compelling to our eyes. Our
top three illusions are shown in Figure 3c. For these, we were able
to reproduce the effect in the physical world by 3D-printing the
optimized meshes and shining a flashlight on the printed objects.

Of the remaining 90%, the most common failure mode was a
mismatch between typical human face perception and our model. In
unusual lighting conditions our model infers “correct” parameters
more reliably than humans, thus missing opportunities to create
illusions. Additionally, the Basel Face Model was designed using
data mostly from European faces, so our generative model does
not match the true distribution of faces in the world. Finally, some
illusions did not work when 3D printed because of shadows, which
SoftRas does not account for. We expect that by tuning the model
to better match humans, one could obtain a higher illusion “yield.”



Designing Perceptual Puzzles by Differentiating Probabilistic Programs SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Lifting the camera in 
the true scene, which 
was used to render the 
stimulus (boxed in red)

Lifting the camera in 
the inferred scene, 
which better matches 
human intuitions even 
though it differs from 
the true scene

(a) Creating size constancy illusions (Section 4.2). The synthesized stimulus, outlined in red, is an image of two far-apart tables, as revealed
by the camera motion in the upper (blue) film. However, due to our prior belief about the statistical distribution of real-world table sizes,
we intuitively perceive the image to show two stacked tables instead: this is shown in the lower (green) film, which applies the same camera
motion to the scene inferred by our model.

…and 3D print the resulting meshes to reproduce the effect in the physical world.

We optimize the mesh so our perceptual model infers a change in expression when relit…

A randomly-generated face mesh appears to have a similar facial expression when relit.

(b) Two more automatically-generated examples
of our size constancy illusion (Section 4.2).

…and 3D print the resulting meshes to reproduce the effect in the physical world.

We optimize the mesh so our perceptual model infers a change in expression when relit…

A randomly-generated face mesh appears to have a similar facial expression when relit.

(c) Creating face perception illusions (Section 4.3). Each pair of images shows the same
mesh lit from two different directions.

Figure 3: More illusions created by our method.

5 FUTUREWORK
Discrete random variables. Our method does not yet support

discrete random variables. For example, we cannot model figure-
ground reversals as in the Rubin vase illusion, because we cannot
infer the binary choice between “faces” and “vase.” One promis-
ing solution is to make a differentiable version of an HMC variant
like “reflective/refractive HMC” [Mohasel Afshar and Domke 2015],
which is already used in some PPLs to allow mixing discrete and
continuous random variables [Zhou et al. 2019]. Alternatively, we
could apply recent advances in differentiating integrals (or expec-
tations) containing discontinuities [Bangaru et al. 2021].

From visual illusions to visual applications. The graphics com-
munity has long applied insights from perception to create not
only visual illusions [Chi et al. 2008; Chu et al. 2010; Ma et al. 2013;
Okano et al. 2010; Oliva et al. 2006], but also perceptually-inspired

image processing algorithms [Bousseau et al. 2011; Hertzmann
2020; Huberman and Fattal 2015; Khan et al. 2006; Ritschel et al.
2008; Toler-Franklin et al. 2007; Walton et al. 2021]. These works
span a wide variety of specialized methods, each targeting a partic-
ular aspect of perception. In this paper, we offer a single, general
approach to illusion synthesis, which can be used to play with
a whole host of perceptual mechanisms. While we were initially
motivated by illusions, our approach should conceptually extend
to any graphics task that is naturally posed as optimization over
perceptual inference.

Beyond vision. The “inverse inverse” view of depiction straight-
forwardly extends to Bayesian models of cognition beyond percep-
tion, such as models of intuitive physics [Battaglia et al. 2013] and
social cognition [Baker et al. 2009]. In future work, we thus envi-
sion posing animation as “inverse inverse simulation,” storytelling
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as “inverse inverse planning,” and so on. More generally, we view
differentiable PPLs as a new tool in the computational cognitive sci-
ence toolbox, providing gradients that help probe human cognition
in the same way that we currently probe neural networks.

6 CONCLUSION
We introduced a differentiable probabilistic programming language,
which enables efficiently backpropagating through MCMC infer-
ence. Then, we used our new tool to generate a variety of visual
illusions by “inverse inverse graphics”: that is, bymodeling vision as
Bayesian inference and using gradient descent to find “adversarial
examples” that fool those models.
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