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(a) Input point clouds and color image (b) PREDATOR

RMSE(R): 14.73 RMSE(t): 0.58 RMSE(R): 13.36 RMSE(t): 0.43 RMSE(R): 13.10 RMSE(t): 0.37

(c) PREDATOR w/ Image (d) Ours

Figure 1: Our method is able to well align low-overlap point cloud pairs with the assistance of a misaligned intermediate
color image. Such a new configuration for the point cloud registration is also useful to enhance the performance of other
registration model, like PREDATOR [Huang et al. 2021].

ABSTRACT
Low-overlap regions between paired point clouds make the cap-
tured features very low-confidence, leading cutting edge models to
point cloud registration with poor quality. Beyond the traditional
wisdom, we raise an intriguing question: Is it possible to exploit an
intermediate yet misaligned image between two low-overlap point
clouds to enhance the performance of cutting-edge registration
models? To answer it, we propose a misaligned image supported
registration network for low-overlap point cloud pairs, dubbed
ImLoveNet. ImLoveNet first learns triple deep features across dif-
ferent modalities and then exports these features to a two-stage
classifier, for progressively obtaining the high-confidence overlap
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region between the two point clouds. Therefore, soft correspon-
dences are well established on the predicted overlap region, result-
ing in accurate rigid transformations for registration. ImLoveNet
is simple to implement yet effective, since 1) the misaligned image
provides clearer overlap information for the two low-overlap point
clouds to better locate overlap parts; 2) it contains certain geom-
etry knowledge to extract better deep features; and 3) it does not
require the extrinsic parameters of the imaging device with respect
to the reference frame of the 3D point cloud. Extensive qualita-
tive and quantitative evaluations on different kinds of benchmarks
demonstrate the effectiveness and superiority of our ImLoveNet
over state-of-the-art approaches.

CCS CONCEPTS
•Computingmethodologies→ Shapemodeling;Point-based
models.

KEYWORDS
Point cloud registration, low overlap, cross-modality feature, deep
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1 INTRODUCTION
With the rapid development of new 3D acquisition technologies,
3D sensors are becoming increasingly available and affordable, in-
cluding various types of 3D laser scanners (or LiDAR), and RGB-D
cameras (such as Microsoft Kinect, Intel RealSense, and Apple Truth
Depth Camera). This benefits to acquire more reliable 3D informa-
tion, enabling better understanding of surrounding large-scale envi-
ronment for machines. Consequently, these sensors greatly increase
the expectations on the performance of point cloud registration.
Point cloud registration aims at finding a rigid transformation to
align a pair of point clouds. It has wide applications from low-level
3D reconstruction to higher-level scene analysis or applied robotics.

Recent work has made substantial and impressive progress in
automatic point cloud registration with deep learning, like [Choy
et al. 2020; Huang et al. 2021; Pais et al. 2020; Wang and Solomon
2019a,b; Xu et al. 2021a]. However, when the overlap-region ratio
between two point clouds falls below 30% or less, the registration
performance of these methods deteriorates rapidly [Huang et al.
2021; Xu et al. 2021a]. This is because it is difficult to perceive
reliable corresponding information from the entire point cloud
pairs with limited overlap area, which is very common in many
practical scenarios. For example, data acquisition for large-scale
objects is often time-consuming (Completely scanning an object
of size 10𝑚 × 5𝑚 consumes over 12 hours, by a structured-light
scanner), so practitioners aim for a low number of scans with only
the necessary overlap. Also, it may be difficult to ensure a high
overlap ratio for a moving scanner, when suffering from occlusions,
missing frames, or large deviation of the scanning angle of view.

One interesting thing is that if an intermediate color image de-
picting the rough overlapping region is given, it will be easier for a
human operator to register two low-overlap scans. Intuitively, with
the help of the intermediate image, i) overlapping information is
significantly clearer and ii) 2D image can provide certain underly-
ing 3D-aware geometry information, even though the information
is cross-modality. For example, we have witnessed many impressive
3D-related tasks on a single image [Qi et al. 2018; Saha et al. 2021;
Wang et al. 2020]. Such kind of 3D-aware information is consistent
with the real 3D feature from the point cloud to a certain extent. In
addition, an intermediate image between two point clouds is easy
to obtain, and we do not need to know extrinsic parameters of the
imaging device with respect to the reference frame of the 3D point
cloud, namely a misaligned intermediate image. All these encour-
age us to employ such an auxiliary image to enhance pairwise 3D
point cloud registration.

To this end, we propose a misaligned image-supported registra-
tion network for low-overlap point cloud pairs, dubbed ImLoveNet,
as illustrated in the example shown in Figure 2. In order to fully
utilize both color image and point cloud information, our network
learns triple deep features, composed of the 3D feature for the

(a) Point cloud 𝐏𝐏 (b) Point cloud Q (c) Figure I (d) Registration

(f) Point cloud 𝐒𝐒𝐐𝐐𝐏𝐏 (g) Point cloud 𝐒𝐒𝐈𝐈
𝐐𝐐 (h) Point cloud 𝐒𝐒𝐏𝐏

𝐐𝐐(e) Point cloud 𝐒𝐒𝐈𝐈𝐏𝐏

Figure 2: Illustration of low-overlap point cloud registration
(overlap ratio < 20%) with an intermediate image. (a) and
(b) are two point clouds to register. (c) is an intermediate
color image. (d) is the registration result of our ImLoveNet.
SPI (blue points) and SQI (red points) denote the points which

can be projected to the image space. SPQ (blue points) and SQP
(red points) are overlap region between the two point clouds.
We append texture color on each point only for better visu-
alization.

point cloud, and 2D feature and simulated 3D feature for image.
These learned features are then fused and applied to progressively
detect the intersecting area between the input two point clouds. Fi-
nally, soft correspondences can be well established on the predicted
overlap region, which leads to the quality rigid transformation pa-
rameters for final registration. Experiments and detailed analysis
show that our approach achieves state-of-the-art performance (see
from Figure. 1) compared with previous algorithms.

Our main contributions are three-fold:
•Wedesign a new point cloud registration network by collaborat-

ing cross-modality information, which shows clear improvements
over the state-of-the-art methods.

• We extract triple features from the 2D domain, 3D domain,
and mimicked 3D domain, and fuse them with attention modules,
which can output more reliable features as an input of the following
classification network.

• We propose a two-stage classifier, which can progressively
locate the overlapping regions among three inputs.

2 RELATEDWORK
We start this section by reviewing the feature-based point cloud
registration methods to newer end-to-end point cloud registration
algorithms. Finally, we briefly cover recent advances in using cross-
modality information to guide feature extraction and matching.

2.1 3D Features for Point Cloud Registration
Traditional methods tend to use hand-crafted 3D features that char-
acterize the local geometry for point cloud registration, such as
FPFH [Rusu et al. 2009], SHOT [Tombari et al. 2011], or PPF [Drost
and Ilic 2012]. Although lacking robustness in cluttered or occluded
scenes, they have been widely employed in downstream appli-
cations owing to their generality across different datasets [Guo

https://doi.org/10.1145/3528233.3530744


ImLoveNet SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

Simulated
3D feature 𝑓𝑓3𝐷𝐷𝐈𝐈

En
co

de
r

D

Input Point Cloud 𝐏𝐏

Input Point Cloud 𝐐𝐐

Input 2D image I

3D feature 𝑓𝑓3𝐷𝐷𝐏𝐏

3D feature 𝑓𝑓3𝐷𝐷
𝐐𝐐

2D
3D

En
co

de
r

3D

Cross-
fusion

Cross-
fusion

Classification 𝐏𝐏 ∩ 𝐈𝐈

Cross-
fusion

Classification 𝐐𝐐 ∩ 𝐈𝐈
loss

Input Point Cloud 𝐏𝐏𝐈𝐈

3D 3D feature 𝑓𝑓3𝐷𝐷
𝐏𝐏𝐈𝐈

loss

Classification 𝐏𝐏 ∩ 𝐐𝐐

Classification 𝐐𝐐 ∩ 𝐏𝐏

SVD for 
transformation

loss
C

R

T
×

R

T
× C

loss

loss

loss2D feature 𝑓𝑓2𝐷𝐷𝐈𝐈
En

co
de

r
En

co
de

r

× MultiplicationC Concatenation

loss

×

×

Figure 3: Network architecture of ImLoveNet. Note that we append texture colors on each point only for better visualization.
We do not use the point cloud color information during both training and testing stages. Besides, PI is only used during the
training stage.

et al. 2014]. More recently, with the advances in deep neural net-
works, there is also a growing trend that utilizes learned 3D de-
scriptors in point cloud registration. For instance, the pioneering
work 3DMatch [Zeng et al. 2017] employed a siamese deep learning
architecture to extract local 3D descriptors. PPFNet [Deng et al.
2018b] and PPF-FoldNet [Deng et al. 2018a] proposed to combine
PointNet [Qi et al. 2017a] and PPF to extract descriptors that are
aware of the global context. To improve the robustness against
noise and voxelization, [Gojcic et al. 2019] proposed to learn 3D
descriptors based on a voxelized smoothed density value (SDV)
representation. D3Feat [Bai et al. 2020] proposed a joint learning
of keypoint detector and descriptor, which provides descriptors
and keypoint scores for all points with extra cost during inference.
[Wang et al. 2021] devised a new descriptor that simultaneously
has rotation invariance and rotation equivalence. Although promis-
ing results have been achieved by these methods, limitations still
occur on low-overlap regions due to their locality and extracted
single-modality information on point clouds.

2.2 End-to-End Point Cloud Registration
Apart from introducing learned keypoints and descriptors, meth-
ods [Aoki et al. 2019; Qi et al. 2017a; Wang and Solomon 2019a;
Wang et al. 2019] have also been proposed to embed the differ-
entiable pose optimization to the registration pipeline to form an
end-to-end framework. [Avetisyan et al. 2019] formulated a differ-
entiable Procrustes alignment paired with a symmetry-aware dense
object correspondence prediction to align CAD models to RGB-
D scans. PointNetLK [Aoki et al. 2019] designed a Lucas/Kanade
like optimization algorithm that tailored to a PointNet-based [Qi
et al. 2017a] descriptor to estimate the relative transformation in
an iterative manner. DCP [Wang and Solomon 2019a] utilized a

DGCNN network for correspondence matching, and used a differ-
entiable SVD module for transformation estimation. PRNet [Wang
and Solomon 2019b] extended DCP by including a keypoint de-
tection step and allowed for aligning partially overlapping point
clouds without the need for strict one-to-one correspondence. RPM-
Net [Yew and Lee 2020] used the differentiable Sinkhorn layer and
annealing to get soft assignments of point correspondences from
hybrid features. Later, [Huang et al. 2020] proposed FMR, which
achieved pleasing results by constraining the similarity between
point cloud pairs. [Bai et al. 2021] designed a novel deep neural
network that explicitly incorporates spatial consistency for pruning
outlier correspondences. To alleviate the low-overlap registration
problem, PREDATOR [Huang et al. 2021] and OMNet [Xu et al.
2021a] were both designed to focus more on learning the low-
overlap regions. An outlier filtering network is embedded into a
learned feature descriptor [Choy et al. 2020; Gojcic et al. 2020] to
imply the weights of the correspondence in the Kabsch algorithm.
At last, [Yan et al. 2021] proposed to solve the tele-registration
problem, by combining the registration and completion tasks in a
way that reinforces each other.

2.3 Cross-modality Feature Extraction and
Fusion

Recently, several algorithm have been proposed to leveragemultiple
sources from different channels (i.e. geometry and color informa-
tion) to enhance the content of feature extraction for subsequent
tasks. 3D-to-2D Distillation [Liu et al. 2021] uses an additional 3D
network in the training phase to leverage 3D features to comple-
ments the RGB inputs for 2D feature extraction. Pri3D [Hou et al.
2021] tried to imbue image-based perception with learned view-
invariant, geometry-aware representations based on multi-view
RGB-D data for 2D downstream tasks. To overcome the difficulty
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of cross-modality feature association, DeepI2P [Li and Lee 2021]
designed a neural network to covert the registration problem into a
classification and inverse camera projection optimization problem.
[Xu et al. 2021b] investigated the potential to transfer a pretrained
2D ConvNet to point cloud model for 3D point-cloud classification
or segmentation. However, existing works tend to utilize cross-
modality for enhanced segmentation or 2D-to-3D matching. In
contrast, our work is the first to explore the possibility to leverage
geometry and color information for point cloud registration with
low-overlap region, by fusing cross-modality features.

3 METHOD
3.1 Problem description and overview
We denote P =

{
p𝑖 ∈ R3 | 𝑖 = 1...𝑁

}
and Q =

{
q𝑖 ∈ R3 | 𝑖 = 1...𝑀

}
as the two point clouds to be registered. I ∈ R𝑊 ×𝐻×3 is the inter-
mediate color image between P and Q, and PI is the corresponding
point cloud of I, which is only used during the training stage. The
overall goal is to locate the overlap region of paired point clouds
and recover the rigid transformation parameters, R and t. Figure
3 illustrates the overall architecture of ImLoveNet, which can be
decomposed into following four main steps:

• Triple features extraction: extracting 3D point cloud features
𝑓 P3𝐷 ∈ R𝑁×𝐶 , 𝑓 Q3𝐷 ∈ R𝑀×𝐶 for P and Q, and the image feature
𝑓 I2𝐷 ∈ R𝑊1×𝐻1×𝐶 for I; in particular, a mimicked 3D feature 𝑓 I3𝐷 ∈
R𝑊1×𝐻1×𝐶 for I is additionally generated with the assistance of its
paired point cloud PI (Sec. 3.2);

• Cross-modality feature fusion: effectively combining the ex-
tracted triple features, e.g., 𝑓 P3𝐷 (or 𝑓 Q3𝐷 ), image feature 𝑓 I2𝐷 , and
simulated feature 𝑓 I3𝐷 together (Sec. 3.3);

• Two-stage classification: fed with the hybrid feature, detecting
the points located in the camera frustum of I from P and Q, and
then fusing the hybrid features of above detected points again to
further identify the overlap region between P and Q (Sec. 3.4);

• SVD for transformation: based on the predicted high-confidence
overlap region between the two point clouds, computing final rigid
transformation parameters via a differentiable SVD module.

3.2 Triple features extraction
Wefirst embed the input point cloud pair and the image into their re-
spective feature spaces, to obtain point-wise or pixel-wise features.
Observing that many existing work achieves substantial results on
some 3D-related tasks, e.g. normal estimation and depth prediction
[Qi et al. 2018; Saha et al. 2021], we think certain 3D-aware geome-
try information also exists in the image space. Inspired by [Liu et al.
2021] and [Xu et al. 2021b], our network generates a simulated 3D
feature to provide additional information. Such features are utilized
with other features to collaboratively classify whether a point can
be projected to the image space and whether a point is within the
intersection part of the two input point clouds.

Specifically, we mimic the 3D feature 𝑓 I3𝐷 , by a small sub-module,
which consists of a convolutional layer, a batch normalization layer,
and an additional convolutional layer. Based on the corresponding
point cloud PI, the real 3D feature 𝑓 PI3𝐷 is obtained via the 3D encoder
and an extra batch normalization layer. The two batch normaliza-
tion layers in 2D encoder and 3D encoder are used to roughly unify

the feature distribution of two modalities. A feature loss is formu-
lated to constrain the generation of 𝑓 I3𝐷 . We explain how to compute
it in Sec. 3.6. Since 𝑓 PI3𝐷 is only involved in calculating the feature
loss, PI is required in the training phase, testing unnecessary. This
is consistent with our design intuition: only using a single readily-
available image to enhance the registration performance. Note that
our default implementation uses PointNet++[Qi et al. 2017b] for
3D encoder, and PSPNet [Zhao et al. 2017] for 2D encoder. These
two encoders can be replaced with other state-of-the-art models.

3.3 Cross-modality feature fusion
Since the first stage of the classification is to determine the points
that can be projected to the image plane, the information from
different modalities should be taken into consideration. To this end,
we introduce a cross-modality feature fusion module to effectively
mix the above triple deep features. We take the mixture of P and
I as an example. The input to this module consists of three parts:
𝑓 P3𝐷 , 𝑓

I
3𝐷 , and 𝑓

I
2𝐷 . The output is hierarchically computed by:

𝑓 P𝑐𝑚1 = 𝑓
P
3𝐷 +MLP

(
cat

[
𝑓 P3𝐷 , att(𝑓

P
3𝐷 , 𝑓

I
2𝐷 , 𝑓

I
2𝐷 )

] )
𝑓 P𝑐𝑚 = 𝑓 P𝑐𝑚1 +MLP

(
cat

[
𝑓 P𝑐𝑚1, att(𝑓

P
𝑐𝑚1, 𝑓

I
3𝐷 , 𝑓

I
3𝐷 )

] )
,

(1)

whereMLP(·) denotes a three-layer fully connected network, cat(·, ·)
is concatenation, and att(·, ·, ·) means the attention model, which
weights the image feature using learned weights. We reshape the 2D
image feature as 𝑓 I2𝐷 ∈ R(𝑊1 ·𝐻1)×𝐶 before feeding it to the fusion
module. Similarly, we can obtain the fused feature 𝑓 Q𝑐𝑚 . Detailed
model structure is illustrated in Figure 4.

3.4 Two-stage classification
We conducted a statistical analysis on the Bundlefusion dataset [Dai
et al. 2017] over 800 point cloud-image-point cloud triplets, with
a 40% overlap ratio between two point clouds. We observed that
about 80% of points of the overlapping area between two input point
clouds are also located in the intermediate image space. Moreover,
the image data in Bundlefusion dataset was captured close to the
target, with a small resolution of 640 × 480. If we use some other
photo-taking devices, e.g. our cellphone, we will capture a larger
intermediate image that contains more overlapping points. Hence,
instead of directly learning the overlap parts from point clouds, we
adopt a two-stage coarse-to-fine classification strategy to detect the
overlap region between the point cloud pairs. First, the fused feature
𝑓 P𝑐𝑚 (or 𝑓 Q𝑐𝑚) is fed into a classifier, which is composed of a two-layer
MLP and a Softmax layer, to compute the probability that each point
can be projected into the image, or not. So we can obtain the subset
SPI (or SQI ), which are very likely to be projected to the image I (see
from Figure 2 (e) and (g)). Then, the features of the points from SPI
and SQI are fused again to further segment the potential overlapping
regions SPQ and SQP . The two subsets have similar shapes, but slightly
different in point resolution and distribution (see from Figure 2 (f)
and (h)). The second feature fusion module is similar to that used in
the first classification stage, but we only need to fuse once, namely
use the half (left or right) part of Figure 4.
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Figure 4: An illustration of cross feature fusion module.

3.5 SVD for transformation
In this section, we calculate the transformation parameters R and
t. In the early test, we provided the features of points from the
overlapping area to an MLP to regress a 7D vector (a 3D translation
and a 4D quaternion) as the rigid transformation. However, we
found that the transformation parameters are difficult to regress,
even if we design various losses [Xiang et al. 2017; Xu et al. 2021a]
to supervise them. Inspired by [Wang and Solomon 2019a], we
believe that establishing suitable point-to-point correspondences
is more important for solving transformation parameters, while a
general approximator, e.g., MLP has poor interpretability and poor
stability. Specifically, we establish a soft corresponding relation
matrix among the point in SPQ and SQP , according to their similarities
in the embedded feature space. The weighted SVD is then used to
solve for the rigid transformation, which has been shown to be
differentiable in [Wang and Solomon 2019a].

3.6 Joint loss function
The proposed network is trained end-to-end, using multiple losses
w.r.t. the real 3D feature 𝑓 PI3𝐷 from PI, the ground truth classification
labels for points in image (denoted as 𝑙 (SPI ) and 𝑙 (S

Q
I )) and points in

another point cloud (denoted as 𝑙 (SPQ) and 𝑙 (S
Q
P )), and the ground-

truth rigid transformation (R̂ and t̂) as supervisions.

Feature loss. To supervise the generation of 𝑓 I3𝐷 in the 2D net-
work, we use an 𝐿2 loss:

𝐿𝐹 = | |T(𝑓 PI3𝐷 ) − 𝑓
I
3𝐷 | |

2
2, (2)

where T(·) means the operator of projecting the real 3D feature
into 2D domain. As the dimension of 𝑓 I3𝐷 is𝑊1 ×𝐻1 ×𝐶 and 𝑓 PI3𝐷 is
𝑁 ×𝐶 , we cannot directly compute their differences. For each point
in PI, we project it to the 2D image space via the camera intrinsic
parameters, and treat the nearest pixel as its corresponding pixel.

Classification loss. The goal of two-stage classification is to pro-
gressively detect the overlapping region between the input two
point clouds P, Q, via an intermediate image I. Therefore, we for-
mulate four constraint terms:

𝐿𝐶 =CE(𝑙 (SPI ), 𝑙 (S
P
I )) + CE(𝑙 (SQI ), 𝑙 (S

Q
I ))+

CE(𝑙 (SPQ), 𝑙 (S
P
Q)) + CE(𝑙 (SQP ), 𝑙 (S

Q
P )),

(3)

Table 1: Quantitative comparison of different methods on
three datasets.

Method RMSE(R) MAE(R) RMSE(t) MAE(t) MIE(R) MIE(t)

BundleFusion

DCP-v2 28.61 7.56 0.76 0.53 26.99 1.53
PREDATOR 14.87 4.34 0.59 0.43 14.92 1.03
OMNet 15.09 4.89 0.65 0.57 12.74 1.17
FMR 23.62 7.91 1.01 0.70 20.96 1.98
Ours 13.21 3.31 0.51 0.39 10.80 0.94

KITTI Odemetry

DCP-v2 39.22 14.97 2.47 1.90 34.50 4.02
PREDATOR 13.69 4.30 1.11 0.97 10.13 2.06
OMNet 15.54 5.25 1.89 1.38 13.60 3.99
FMR 21.11 8.38 2.27 1.87 19.29 4.25
Ours 16.34 6.71 1.66 1.59 10.33 3.33

LiDAR_Ours

DCP-v2 17.01 6.31 0.45 0.34 16.09 1.01
PREDATOR 6.45 3.01 0.17 0.13 6.79 0.60
OMNet 6.91 2.90 0.20 0.17 6.55 0.58
FMR 12.87 4.77 0.59 0.51 10.21 1.18
Ours 6.40 2.98 0.19 0.12 5.80 0.39

where CE(, ·, ) denotes cross entropy loss and 𝑙 (·) means the pre-
dicted point label.

Transformation Loss. In our early testing, we try to represent
both the ground-truth and predicted rotation matrices in the format
of quaternion, and calculate their difference, by 𝐿2 loss, as follows:

𝐿𝑇 1 = | |q − q̂| |22 + 𝜆 | |t − t̂| |22, (4)

where q̂ and t̂ are ground-truth quaternion and translation, q and
t are the predicted results. However, we found the results is less
pleasing. For a neural network, it may be hard to control the rotation
accuracy only by relying on four parameters. Inspired by [Xiang
et al. 2017], we indirectly compute the pose loss to supervise the
rotation parameters, as follows:

𝐿𝑇 2 =
𝐾∑︁
𝑖=1

| |R̂s𝑖 − Rs𝑖 | |22 + 𝜆 | |t̂ − t| |22, (5)

where s𝑖 is the ground truth overlap point between the two input
point clouds, and 𝐾 is the number of overlapping points. Finally,
the total loss is formulated as:

𝐿 = 𝐿𝐹 + 𝛼𝐿𝐶 + 𝛽𝐿𝑇 2 . (6)

Note that we compute two pairs of transformation parameters
during training, while using the one with less error in testing stage.
The entire network can be run in an iterative manner, so the loss is
accumulated over iterations. We experimentally find that setting 𝛼 ,
𝛽 , and 𝜆 as 1 works well.
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4 EXPERIMENTS
We evaluate our ImLoveNet on three datasets with different kinds
of 3D data: 1) BundleFusion dataset [Dai et al. 2017], which is
an indoor scene RGB-D benchmark; 2) KITTI Odometry dataset
[Geiger et al. 2013], which is an outdoor scene LiDAR benchmark; 3)
a small indoor scene dataset acquired by a commercial LiDAR-based
scanner, which is built by ourselves.

4.1 Dataset and implementation details
BundleFusion. The dataset was captured using a depth sensor

coupled with an iPad color camera, and consists of 7 large indoor
scenes (60m average trajectory length, 5833 average number of
frames). Each sequence contains continuous color images and depth
maps with a resolution of 640 × 480, as well as the camera’s intrinsic
and extrinsic parameters. The corresponding point clouds can be re-
constructed by the depth maps and the camera intrinsic parameters.
The ground-truth rotation and registration can be computed via
camera extrinsic parameters. We choose 0-3 sequences for training,
4 for validation, and 5-6 for testing. In training and inference, de-
tailed point cloud-image-point cloud triplets are formed as follows:
1) Randomly select a frame 𝑖 and the corresponding point cloud is
P. 2) The point cloud in the frame 𝑖 + 100 is then regarded as Q; We
set the frame interval as 100, according to the overlap ratio. The
overlap ratio is computed by the Eq. 1 in [Huang et al. 2021] and
the mean overlap ratio is around 30% with the distance threshold
equal to 0.05. 3) Choose the image in the frame 𝑖 + 50 as the input
intermediate image I. Also, the point cloud PI in frame 𝑖 + 50 is used
in the training phase; 4) The supervision labels are easily computed
by the given camera’s intrinsic and extrinsic parameters. Finally,
we generate 800 pairs for each sequence, with totally 3200 triplets
for training, 800 triplets for validation, and 1000 triplets for testing.

KITTI Odometry. Point clouds in this dataset are directly acquired
from a 3D Lidar. There are 11 sequences (00-10) with ground-truth
trajectories. We observe that: i) most of the points are located on
the ground, while sparse above the ground; ii) the intermediate
image should be behind of two point cloud frames, for achieving a
high overlap between the point cloud and the image; and iii) point
cloud-image-point cloud triplets with rich features, such as static
cars or buildings, can provide more reliable information. Hence, we
do some pre-processing steps (see from the supplemental file) and
select 1000 triplets for training and 100 for testing.

LiDAR_Ours. This dataset was constructed by ourselves, which
contains 3 indoor scenes. We build it by using a commercial LiDAR-
based 3D scanner, i.e., Leica ScanStation P20 with the precision of
3 mm@50 m. This scanner captures the 3D data of a large-scale
scene station by station. Point clouds from different stations are
then registered together via at least three pairs of static markers.
We cropped 40 pairs of point clouds, and took intermediate photos
with our cellphone. The overlap ratio is also around 30%. We use
this dataset only for testing.

Implementation details. We run our network 3 iterations during
both training and test. The 3D encoder is shared by different input
point clouds within each iteration. All sub-modules are shared dur-
ing iterations. The input point clouds are downsampled and the size
is fixed to 6000 (𝑀 = 𝑁 ). The feature channel𝐶 is 256. The leveraged

Table 2: Comparison of registration errors on the BundleFu-
sion dataset of different ablative settings.

Model RMSE(R) MAE(R) RMSE(t) MAE(t) MIE(R) MIE(t)
B 18.99 5.50 1.19 1.02 11.02 2.04
B+I 23.22 6.13 1.34 1.21 15.78 2.37
B+I+MF 20.62 4.89 1.01 0.88 12.98 1.88
B+I+MF+CF 16.79 4.47 0.81 0.74 12.01 1.68
B+I+MF+CF+TC 14.08 4.10 0.77 0.62 11.26 1.04
B+I+MF+CF+TC+PL 13.21 3.31 0.63 0.39 10.80 0.94

2D feature map size is 1/8 of the input image, namely𝑊1 = 1/8𝑊
and 𝐻1 = 1/8𝐻 . Our network is implemented on Pytorch and is
trained for 200 epochs with the Adam optimizer [Kingma and Ba
2015]. The initial learning rate is 10−5 and is multiplied by 0.9 every
two epochs. The network is trained with BundleFusion and KITTI
individually.

4.2 Competitors
Since we focus more on registering low-overlap point clouds, two
most advanced and related methods, OMNet [Xu et al. 2021a] and
PREDATOR [Huang et al. 2021], are chosen as competitors. We also
compared with the supervised version of FMR [Huang et al. 2020].
Beside, considering that DCP-v2 [Wang and Solomon 2019a] is
better than many ICP-like traditional techniques, we here only com-
pare with DCP-v2, without comparing to those traditional methods.
We retrain all compared networks for fair comparison.

Evaluation metrics. Thanks for the released codes of OMNet [Xu
et al. 2021a] and DCP [Wang and Solomon 2019a], we carefully
checked their respective evaluation metrics. Although they use
several of the same metrics, they evaluate on different targets. DCP
evaluates on the registered point clouds, while OMNet on the Euler
angles. To avoid unnecessary misunderstanding, we specify that
our metrics are the same as OMNet. These used metrics are root
mean squared error (RMSE) and mean absolute error (MAE), and
mean isotropic error (MIE) (Please refer to [Xu et al. 2021a] for more
details). The smaller these metric values, the better the results.

4.3 Evaluation on three datasets
We quantitatively evaluate the effectiveness of our method on three
different datasets, in which the point clouds are generated by differ-
ent sensors. Table 1 is the predicted rotation and translation errors
of different methods. As observed, since DCP-v2 and FMR do not
pay more attention on the low-overlap region, their results are less
pleasing. Our method achieves better results on BundleFusion and
LiDAR_Ours, while performing less better than PREDATIOR and
OMNet on KITTI Odometry. The main reason is that PREDATOR
does not directly learn the transformation parameters, but employs
the RANSAC scheme to compute them based on the learned over-
lapping probabilities. This scheme is more stable when dealing with
sparse and noisy KITTI data.

4.4 Analysis
Ablation study. We ablate the following five main contributions:

i) the intermediate image input (I), ii) the mimicked 3D feature
(MF), iii) the cross-modality feature fusion (CF); iv) the two-stage
classification (TC), and v) the pose loss (PL). Detailedly, if we do not
use CF, we replace it with concatenation after necessary projection
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Figure 5: Quantitative comparison of differentmethodswith
7 varying overlap ratios.

(a) Point cloud P

(d) Point cloud Q

(b) Image 𝐈𝐈1

(e) Image 𝐈𝐈2

(c) Registration result with 𝐈𝐈1

(f) Registration result with 𝐈𝐈2

Figure 6: Registration with two different input images cap-
tured from different views and positions. The testing data is
from LiDAR_ours. Although the two images (b) and (e) are
different, they both contain the majority part of the over-
lapping region between the two input point clouds ((a) and
(d)).

operation; if we do not use TC, we directly classify overlapping
points; if we do not use PL, we use the loss 𝐿𝑇 1 in Eq. 4. Table
2 clearly reports the contribution of each module on the Bundle-
Fusion dataset. Interestingly, we found that directly using image
information without any design significantly worsens the final
result. This shows the necessity of our subsequent network design.

Classification accuracy. We perform overlapping classification
evaluation on the selected BundleFusion dataset and KITTI Odom-
etry dataset. The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 for point-in-image detection is 94%
(BundleFusion) and 90% (KITTI Odometry), while 81% and 74% for
the overlap region detection on two point clouds, which means that
there are sufficient points to solve the transformation parameters
(see visual detection results from the supplemental file).

Different overlap ratios. We evaluate the performance of our
model on different overlap ratios. We additional extracted 1,000 test
triplets from the BundleFusion dataset. By randomly rejecting the
points within the point cloud-point cloud overlap region, we obtain
7 groups of test sets, with varying overlap ratios from 20% to 80%.
Figure 5 shows that the distributions of RMSE(R) and RMSE(t) for
different approaches. As observed, when the overlap ratio is lower,
our network produces more stable results.

Table 3: Comparison of registration errors by using different
intermediate images.

Method I1 I2 I3 I4 I5 I6
RMSE(R) 11.77 5.58 5.46 5.73 11.74 11.88
RMSE(t) 1.03 0.92 0.94 0.92 0.97 1.01

Table 4: Performance comparison of original PREDATOR
model and its two variants on the BundleFusion dataset.

Model RMSE(R) MAE(R) RMSE(t) MAE(t)
PREDATOR 14.87 4.34 0.59 0.43

PREDATOR w/ image 14.29 5.26 0.63 0.57
PREDATOR w/ image and simulated 3D feature 13.42 4.03 0.45 0.39

Table 5: Quantitative comparison between DeepI2P (twice
registration) and our network.

Method RMSE(R) MAE(R) RMSE(t) MAE(t) MIE(R) MIE(t)
DeepI2P 34.78 14.19 1.23 0.85 43.32 1.23
Ours 24 8.70 0.51 0.29 20.78 0.37

Different image positions. We testify our method with the input
image of different image positions and views, as shown in Figure
6. The testing data is from LiDAR_ours and the used model is
trained on the BundleFusion. Although I1 and I2 (Figure 6 (b) and
(e) are captured in different views, they both contain most of the
overlapping area between the two input point clouds (Figure 6 (a)
and (d)). As a result, they both contribute to the registration results.
Moreover, we select six kinds of image frame as the intermediate
image: one is near the source point cloud (I1), three are very close
to the intermediate frame (I2, I3, and I4), one is near the target
point cloud (I5), and the last one is a randomly-selected image (I6).
We collect twenty groups of data from BundleFusion. Quantitative
statistics reported in Table 3 show that if the intermediate image
contains a higher overlap rate with both two input point clouds, it
will assist to produce a better result.

Effect of image for other registration model. In fact, it is very
interesting to see whether the input image contributes to other
registration models. This is also meaningful to clarify the contri-
bution of our work. In this section, we try to integrate the image
information, as well as the simulated 3D feature into the PREDA-
TOR [Huang et al. 2021]. Specifically, we feed an extra image into
PREDATOR, and fuse the extracted image deep features in the en-
coding step of PREDATOR. Hence, we can obtain two variants:
i) only incorporate image information; 2) incorporate both image
information and the simulated 3D feature. We compare the perfor-
mance of the original PREDATOR model and its two variants on
the BundleFusion dataset, as shown in Table. 4. We observe that
directly encoding the image information into the network may not
produce better results, while using the simulated 3D feature can
help to yield more accurate registration results. Figure 1 also shows
the visualization results.

Comparison with DeepI2P [Li and Lee 2021]. DeepI2P is designed
for registering an image to a point cloud, namely computing the
extrinsic parameters of the imaging device with respect to the ref-
erence frame of the 3D point cloud. Intuitively, we can register P
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(a) Point cloud P (b) Point cloud Q (c) Image I (d) DCP-v2 (e) PREDATOR (f) OMNet (g) FMR (h) Ours

Figure 7: Visual comparisons of registration results of differentmethods. The inputs are fromBundleFusion, KITTI Odometry,
and LiDAR_Ours. The overlap ratios are set around 30%. Our method yields significantly better results than DCP-v2 and FMR,
and achieves comparable visual results with OMNet and PREDATOR. Blue arrows indicate some registration details for better
observation.

and Q to I, respectively. Then, the relative pose between P and Q is
achieved. We give an objective evaluation between DeepI2P and our
model in Table 5. The test data is from the selected KITTI Odom-
etry dataset. Our method produces better results, while DeepI2P
suffers from the accumulated errors of twice registration. Note that
DeepI2P is retrained on the KITTI dataset.

Generalization ability. Indeed, the generalization ability of a net-
work can alleviate the domain gap problem. Our network is able to
generalizes smoothly on the LiDAR_Ours dataset, which is com-
posed of unseen indoor scenes. To further validate it, we attempt
to test on the KITTI dataset with the network trained on BundleFu-
sion. Although the scene objects, like cars, buildings, and trees, are
never seen by the model, we observed that the registration result is
visually satisfactory (see from the supplemental file).

Timing. When the input point cloud size is 6000 and the image
resolution is 640 × 480, the inference time of our model is around 5
seconds with 3 iterations.

4.5 Visualizations
We show visual comparisons of registration results in Figure 7. The
inputs are from different datasets: BundleFusion, KITTI Odome-
try, and LiDAR_Ours. The overlap ratios are all around 30%. Our
method yields significantly better results than DCP-v2 and FMR,
and achieves slight improvement than OMNet and PREDATOR.

5 CONCLUSIONS
We have introduced, ImLoveNet, a new deep model designed for
pairwise registration of low-overlap point clouds, with the assis-
tance of misaligned intermediate images, which can be easily cap-
tured via a readily camera device. ImLoveNet tries to fully utilize
and collaborate cross-modality information, to faithfully learn the
most reliable overlapping regions for robust registration. Compared
with common registration models, one obvious limitation of this
method is that it should have additional paired point cloud and
image as well as the camera intrinsic parameter for training. In the

future, we will try to transfer well-trained 3D or 2D models, to fur-
ther boost the performance of low-overlap point cloud registration.
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