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Figure 1: Given a single color image and a depth map estimated by off-the-shelf monocular depth estimators, our method
predicts a multiplane image (MPI) with plane depth adjustment for novel view synthesis. Our training dataset is constructed
using single-view images in the wild (COCO), as shown on the right. See our project page for synthesized videos.

ABSTRACT
This paper deals with the challenging task of synthesizing novel
views for in-the-wild photographs. Existing methods have shown
promising results leveraging monocular depth estimation and color
inpainting with layered depth representations. However, these
methods still have limited capability to handle scenes with complex
3D geometry. We propose a new method based on the multiplane
image (MPI) representation. To accommodate diverse scene layouts
in the wild and tackle the difficulty in producing high-dimensional
MPI contents, we design a network structure that consists of two
novel modules, one for plane depth adjustment and another for
depth-aware color prediction. The former adjusts the initial plane
positions using the RGBD context feature and an attention mech-
anism. Given adjusted depth values, the latter predicts the color
and density for each plane separately with proper inter-plane in-
teractions achieved via a feature masking strategy. To train our
method, we construct large-scale stereo training data using only
unconstrained single-view image collections by a simple yet effec-
tive warp-back strategy. The experiments on both synthetic and
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real datasets demonstrate that our trained model works remarkably
well and achieves state-of-the-art results.
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1 INTRODUCTION
Learning-based single-view view synthesis has attracted much at-
tention in recent years [Niklaus et al. 2019; Tucker and Snavely
2020; Wiles et al. 2020], for it enables appealing 3D visual effect
and facilitates various applications in virtual reality and animation.
Existing works [Hu et al. 2021; Li et al. 2021; Rockwell et al. 2021;
Rombach et al. 2021] have demonstrated promising results for spe-
cific scene categories such as indoor scene, buildings, and street
view in self-driving [Tucker and Snavely 2020; Zhou et al. 2018].
However, the problem is still quite challenging for scaling these
methods to arbitrary photos in the wild due to the limited power
of the scene representation proposed by previous works and the
lack of large-scale multi-view image datasets.
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A few recent works [Jampani et al. 2021; Kopf et al. 2019, 2020;
Niklaus et al. 2019; Shih et al. 2020] attempted to tackle single-view
view synthesis for in the wild images using layered depth repre-
sentations. Monocular depth estimation [Ranftl et al. 2021, 2020]
is typically used as the proxy ground-truth depth of the scene to
guide novel view generation. [Shih et al. 2020] heuristically decom-
pose the scene into a set of layers based on depth discontinuities
and train a network to inpaint each occluded layer. However, it
struggles to model thin structures due to its hard depth layering.
[Jampani et al. 2021] propose a soft-layer representation to solve
the problems in [Shih et al. 2020]. However, their method considers
only two layers (foreground and background) and thus is difficult
to handle scenes with complex occlusion among multiple objects.

In this work, we adopt multiplane image (MPI) [Zhou et al. 2018]
as our scene representation which has superb representation power
as demonstrated by previous works [Li and Khademi Kalantari 2020;
Mildenhall et al. 2019; Srinivasan et al. 2019; Tucker and Snavely
2020; Zhou et al. 2018]. Most previous methods set the planes in
MPI at fixed positions – typically uniformly-placed in inverse depth
or disparity space – and predict texture by a Convolutional Neural
Network (CNN). However, MPI is a highly over-parameterized rep-
resentation [Zhou et al. 2018], which is difficult to learn for neural
networks as dozens or even hundreds of channels are required as
output. Consequently, the performance may even degrade when the
number of planes increases [Li and Khademi Kalantari 2020]. This
problem becomes even more pronounced for in-the-wild images as
generally more planes are needed to represent diverse scene layouts.
Some works [Tucker and Snavely 2020; Zhou et al. 2018] propose to
reduce the output channels by predicting only one color image and
obtain the RGB channel for each plane by blending it with the input
image. Clearly, this strategy sacrifices the representation power of
MPI. Our key observations to solve this problem are twofold: i) the
predefined MPI depths are suboptimal for its scene-agnostic nature;
ii) the network architecture can be carefully designed to mitigate
the issue caused by the large output space.

To this end, we present a novel AdaMPI architecture for single-
view view synthesis in the wild. Similar to previous methods de-
signed for in-the-wild scenario, monocular depth estimation [Ranftl
et al. 2021, 2020] is used in our method. Based on the contextual
information of the RGBD input, we construct MPI at scene-specific
depth by designing a novel Plane Adjustment Network to adjust the
depth of the planes from an initial configuration using an attention
mechanism. Compared to a scene-agnostic MPI with predefined
depth, our method can better fit the geometry and appearance of
the scene, leading to superior view synthesis quality with fewer
visual distortions. A similar concept of variable depth was proposed
in VMPI [Li and Khademi Kalantari 2020], where the output for
each plane contains RGB𝛼 and an extra depth channel. However,
this solution suffers from even more severe over-parameterization
and difficulty in MPI learning. Our depth adjustment scheme is
significantly different from VMPI with the goal of overcoming the
issues induced by over-parameterization.

With adjusted plane depths, a Color Prediction Network is applied
to generate the color and density values for the planes. Our Color
Prediction Network uses an encoder-decoder architecture similar
to [Li et al. 2021]. Specifically, the encoder encodes the RGBD image
to features shared by each plane. The decoder predicts the color for

a single plane given its depth and the shared features. Such a color
generation scheme avoids generating a large number of output
channels at once thus is easier to train and generalize to test data.
However, if handled naively, the color prediction for each plane is
independent and agnostic to other planes, which is suboptimal for
our case with dynamically-adjusted depth positions. Therefore, we
further propose a novel feature masking mechanism to introduce
proper inter-plane interactions in color prediction, which is crucial
to our adaptive MPI.

To train our method, we also present a warp-back strategy to
generate stereo training pairs from unconstrained image datasets
such as COCO [Caesar et al. 2018]. No stereo or multi-view images
captured in real life or rendered with graphics engine were used
for training. Our method is tested on multiple datasets including
both synthetic and real ones. The experiments show that it can
achieve superior view synthesis quality and generalization ability,
outperforming the previous methods by a wide margin.

In summary, our contributions include:
• We propose a AdaMPI architecture to address the single-
view view synthesis problem in the wild. It contains a novel
Plane Adjustment Network to predict adaptive and scene-
specific MPI depth and a Color Prediction Network with a
novel feature-masking scheme to predict the color of each
plane in a separate but interactive manner.

• We construct large-scale stereo training data using only
unconstrained single-view image collections by a simple
yet effective warp-back strategy.

• We demonstrate state-of-the-art results on various datasets
with a single trained model.

2 RELATEDWORK
2.1 Neural Scene Representations
Emerging works integrate scene representation into a neural net-
work and optimize it using 2D multi-view supervision [Aliev et al.
2020; Dai et al. 2020; Kellnhofer et al. 2021; Liu et al. 2020; Lombardi
et al. 2019; Mildenhall et al. 2020; Riegler and Koltun 2021; Tulsiani
et al. 2018]. At test time, they can use it to render novel views with
geometric consistency. Implicit representations, such as the neural
radiance field [Mildenhall et al. 2020], offer the potential to model
complex geometry and reflectance by representing a scene as a
continuous function of color and density, but they are difficult to
generalize to arbitrary unseen scenes. Although some recent works
propose to improve its generalization ability [Wang et al. 2021;
Yu et al. 2021], the performance is still far from satisfying, espe-
cially for the single-view setup. Explicit representations are also
used for view synthesis, such as point cloud [Rockwell et al. 2021;
Wiles et al. 2020], mesh [Hu et al. 2021], and voxel [Lai et al. 2021;
Nguyen-Phuoc et al. 2019]. In this paper, we adopt multiplane im-
ages (MPI) [Zhou et al. 2018] as our 3D scene representation, which
not only has strong representation capability as demonstrated by
previous methods but also enjoys fast rendering speed.

2.2 Multiplane Images
A standard MPI consists of 𝑁 fronto-parallel RGB𝛼 planes prede-
fined in the camera’s view frustum [Zhou et al. 2018]. It is first
used for view synthesis from two or more views [Flynn et al. 2019;
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Srinivasan et al. 2019; Zhou et al. 2018] and later applied to han-
dle single-view input [Tucker and Snavely 2020] for certain scene
categories. MPI is known to be a highly over-parameterized repre-
sentation [Zhou et al. 2018]. A vanilla MPI is a 𝐻 ×𝑊 × 4𝑁 tensor,
where 𝐻 and𝑊 are the image height and width and 𝑁 is the plane
number. Previous works proposed to reduce the number of output
channels by reusing the RGB channel [Tucker and Snavely 2020;
Zhou et al. 2018], which inevitably sacrifices the representation
capability. A recent work of [Li et al. 2021] proposes to apply an en-
coder to extract shared features a single forward pass and a decoder
that runs 𝑁 -times to predict the RGB𝛼 channels for each plane.
Although better results are achieved, it predicts each plane indepen-
dently, which is sub-optimal for the MPI representation especially
when the plane positions can vary across scenes. In this regard,
most previous works use a fixed set of MPI planes at predefined
depth for simplification [Li et al. 2021; Srinivasan et al. 2019; Tucker
and Snavely 2020; Zhou et al. 2018], which is clearly not ideal to
handle diverse scene layouts in the wild. An exception is VMPI [Li
and Khademi Kalantari 2020], where the output for each plane
contains RGB𝛼 and an extra depth channel. However, the naively-
added depth channel leads to heightened over-parameterization
and poorer performance when plane number increases. A recent
work [Luvizon et al. 2021] concurrent to ours proposes to construct
MPI planes at heuristically-selected depth, which is significantly
different from our learnable depth adjustment scheme.

2.3 Single-View View Synthesis
Synthesizing novel views from a single image is a highly ill-posed
problem. One popular scheme to handle this problem is to train a
network that predicts a 3D scene representation from a single input
image and optimize it using multi-view supervision [Hu et al. 2021;
Lai et al. 2021; Li et al. 2021; Rockwell et al. 2021; Rombach et al. 2021;
Srinivasan et al. 2017; Tucker and Snavely 2020; Wiles et al. 2020].
An additional network is often learned to estimate depth maps or
apply loss terms to depth. However, these methods are difficult to
generalize to in-the-wild scenes due to the lack of large-scale multi-
view datasets. In this paper, we propose a novel strategy to generate
training data from single-view image collections. Another line of
works leverages single-view depth estimation to decompose the
scene into multiple layers and learns an inpainting network [Nazeri
et al. 2019; Yu et al. 2019] to extend each occluded layer [Jampani
et al. 2021; Shih et al. 2020]. These methods do not need multi-
view training data and can handle in-the-wild scenes. However, the
layered depth representation used by these methods are sensitive
to depth discontinues which determine depth layering and they
have difficulty addressing complex 3D scene structures.

3 METHOD
Given an input image 𝐼𝑠 and the corresponding depth map 𝐷𝑠

obtained from a monocular depth estimation system, our method
generates an explicit multiplane images (MPI) representation from
which novel views can be efficiently rendered.

3.1 Preliminaries: Multiplane Images
An MPI consists of 𝑁 fronto-parallel RGB𝛼 planes in the frustum of
the source camera with viewpoint 𝑣𝑠 , arranged at depths 𝑑1, ..., 𝑑𝑁

for planes from the nearest to farthest. Most previous works [Li
et al. 2021; Zhou et al. 2018] use a predefined set of {𝑑𝑖 }, whereas
our method predicts {𝑑𝑖 } by the Plane Adjustment Network, to be de-
scribed later. Let the color and alpha channel of 𝑖-th plane be 𝑐𝑖 and
𝛼𝑖 respectively, then each plane can be represented as (𝑐𝑖 , 𝛼𝑖 , 𝑑𝑖 ).

Given a target viewpoint 𝑣𝑡 , an image can be rendered from the
source-view MPI in a differentiable manner using planar inverse
warping. Specifically, each pixel [𝑢𝑡 , 𝑣𝑡 ] on the target-view image
plane can be mapped to pixel [𝑢𝑠 , 𝑣𝑠 ] on 𝑖-th source-viewMPI plane
via homography function [Hartley and Zisserman 2004]:

[𝑢𝑠 , 𝑣𝑠 , 1]𝑇 ∼ 𝐾𝑠 (𝑅 − 𝑡𝑛𝑇

𝑑𝑖
)𝐾−1

𝑡 [𝑢𝑡 , 𝑣𝑡 , 1]𝑇 , (1)

where 𝑅 and 𝑡 are the rotation and translation, 𝐾𝑠 and 𝐾𝑡 are the
camera intrinsics, and 𝑛 = [0, 0, 1]𝑇 is the normal vector of the
planes in the source view. Then, the color and alpha 𝑐 ′

𝑖
and 𝛼 ′

𝑖
can

be obtained via bilinear sampling and composited using the over
operation [Porter and Duff 1984] to render the image 𝐼𝑡 at 𝑣𝑡 :

𝐼𝑡 =
∑︁𝑁

𝑖=1

(
𝑐 ′𝑖𝛼

′
𝑖

∏𝑖−1
𝑗=1

(1 − 𝛼 ′𝑗 )
)
. (2)

In our implementation, we predict density 𝜎𝑖 for each plane
instead of alpha 𝛼𝑖 . We convert 𝜎𝑖 to 𝛼𝑖 according to the principles
from classic volume rendering as in [Li et al. 2021]:

𝛼𝑖 = exp (−𝛿𝑖𝜎𝑖 ) , (3)

where 𝛿𝑖 is the distance map between plane 𝑖 and 𝑖 + 1 as in [Li et al.
2021]. We empirically find this parameterization leads to sharper
results in our method.

3.2 Network Architecture
The goal of our network F is to predict 𝑁 planes each with color
channels 𝑐𝑖 , density channel 𝜎𝑖 , and depth 𝑑𝑖 from an input image
𝐼𝑠 and its depth map 𝐷𝑠 :

{(𝑐𝑖 , 𝜎𝑖 , 𝑑𝑖 )}𝑁𝑖=1 = F (𝐼𝑠 , 𝐷𝑠 ). (4)

The depth maps are obtained from an off-the-shelf monocular depth
estimation network [Ranftl et al. 2021]. As illustrated in Figure 1,
F has two sub-networks: a Plane Adjustment Network F𝑑 and a
Color Prediction Network F𝑟 . We apply F𝑑 to infer the plane depth
{𝑑𝑖 }𝑁𝑖=1 and F𝑟 to predict the color and density at each 𝑑𝑖 :

{𝑑𝑖 }𝑁𝑖=1 = F𝑑 (𝐼𝑠 , 𝐷𝑠 ), {(𝑐𝑖 , 𝜎𝑖 )}𝑁𝑖=1 = F𝑟 (𝐼𝑠 , 𝐷𝑠 , {𝑑𝑖 }𝑁𝑖=1) . (5)

3.2.1 Plane Adjustment Network. Given 𝐼𝑠 and 𝐷𝑠 at the source
view, our Plane Adjustment Network (PAN) F𝑑 is responsible for
arranging each MPI plane at an appropriate depth to represent
the scene. A straightforward way is to apply an RGBD encoder
to directly predict the MPI depth. However, it can only handle a
fixed number of MPI planes once trained. Therefore, we propose to
adjust the MPI depth from an initial predefined sampling {𝑑 ′

𝑖
}𝑁
𝑖=1.

As illustrated in Fig. 2(a), we first use a shared lightweight CNN E𝑑
to extract a global feature 𝑓 ′

𝑖
for plane 𝑖 at the initial depth 𝑑 ′

𝑖
:

𝑓 ′𝑖 = E𝑑 (𝐼𝑠 , 𝐷𝑠 , 𝑑
′
𝑖 ). (6)

Then we apply the self-attention operation [Vaswani et al. 2017] to
{𝑓 ′
𝑖
}𝑁
𝑖=1 to obtain {𝑓𝑖 }𝑁𝑖=1:

{𝑓𝑖 }𝑁𝑖=1 = Self-Attention
(
{𝑓 ′𝑖 }

𝑁
𝑖=1

)
(7)
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Figure 2: Overview of our framework, which consists of two components: (a) the Plane Adjustment Network F𝑑 adjusts an
initial predefined MPI depth {𝑑 ′

𝑖
}𝑁
𝑖=1 to a scene-specific one {𝑑𝑖 }𝑁𝑖=1 according to the geometry and appearance features; (b) the

Color Prediction Network F𝑟 predicts the color 𝑐𝑖 and density 𝜎𝑖 for each plane at 𝑑𝑖 . Here, ⊕ and ⊙ denote concatenation and
element-wise multiplication; each scalar depth is repeated 𝐻 ×𝑊 times before concatenation.

The intuition here is to adjust the MPI depth at the feature level
by exchanging the geometry and appearance information among
{𝑓 ′
𝑖
}𝑁
𝑖=1. The adjusted feature 𝑓𝑖 is then decoded to the adjusted

depth 𝑑𝑖 using a shared MLP D𝑑 :

𝑑𝑖 = D𝑑 (𝑓𝑖 ) . (8)

In our implementation, we set the initial depth of MPI planes uni-
formly spaced in disparity as in [Tucker and Snavely 2020].

3.2.2 Radiance Prediction Network. Given adjusted plane depths,
our Color Prediction Network (CPN) F𝑟 produces the color and den-
sity channels for each plane. To achieve this, F𝑟 should properly
interpret the scene structure to represent the visible pixels on the
planes and inpaint the occluded content. We use an RGBD encoder
to encode the scene structure and propose a novel feature mask
mechanism to facilitate the decoder to predict color and density
attributes for both the visible and the occluded pixels.

As illustrated in Fig. 2(b), we first apply an encoder E𝑟 to encode
the source view to a set of feature maps 𝐹 shared across planes:

𝐹 = E𝑟 (𝐼𝑠 , 𝐷𝑠 ) . (9)

To guide the decoder D𝑟 in color and density prediction for each
plane, we introduce three types of masks described below.

The Feature Mask 𝑀𝑖 assigns each visible pixel in the source
view softly to each plane. We employ a UNet-like networkH fol-
lowed by a softmax layer to generate a feature mask for each plane:

{𝑀𝑖 }𝑁𝑖=1 = Softmax({H (𝐼𝑠 , 𝐷𝑠 , 𝑑𝑖 )}𝑁𝑖=1). (10)

The Context Mask 𝑀𝑐
𝑖
represents the context regions for each

plane that can be used to inpaint the occluded pixels. Since the
occluded pixels are irrelevant to the occluding content in the front,
we define the context mask 𝑀𝑐

𝑖
as the union of the pixels on and

behind the 𝑖-th plane:

𝑀𝑐
𝑖 =

∑︁𝑁

𝑗=𝑖
𝑀𝑗 . (11)

The Rendering Mask 𝑀𝑟
𝑖
is used to clean the unwanted infor-

mation in regions behind the 𝑖-th plane while retaining the visible

and inpainted pixels:

𝑀𝑟
𝑖 =

∑︁𝑖

𝑗=1
𝑀𝑗 . (12)

As shown in Fig. 2(b), we first multiply the shared feature maps
𝐹 with the context mask𝑀𝑐

𝑖
to retrieve the context information for

the 𝑖-th plane for better occlusion inpainting. Then we concatenate
it with the feature mask 𝑀𝑖 to softly assign the visible pixels to
the plane. Next, we send it to the decoder D𝑟 and multiply the
predicted channels with the rendering mask 𝑀𝑟

𝑖
to clean up the

background information and obtain the final color and density. The
above process can be written as:

(𝑐𝑖 , 𝜎𝑖 ) = 𝑀𝑟
𝑖 ⊙ D𝑟 (𝑀𝑐

𝑖 ⊙ 𝐹 | | 𝑀𝑖 ), (13)

where | | denotes the concatenation operation.
In our method, the encoder E𝑟 only run once while the feature

mask networkH and the decoderD𝑟 run 𝑁 times for the 𝑁 planes.
This architecture design can effectively mitigate the over parame-
terization problem of MPI by reducing the output channel numbers
of the network. Unlike [Li et al. 2021] which predicts each plane
independently, we introduce inter-plane interactions by injecting
the masks, which is important in our case where the plane positions
are varying. We implement E𝑟 with a ResNet-18 structure [He et al.
2016], H a UNet-like architecture [Ronneberger et al. 2015], and
D𝑟 a Monodepth2-like structure [Godard et al. 2019] with gated
convolution [Yu et al. 2019].

3.3 Training Data
To train our network, multiview images are needed as in previous
view synthesis works [Li et al. 2021; Tucker and Snavely 2020; Wiles
et al. 2020]. To handle in-the-wild photos, the training set should
contain a wide range of scene types. However, creating such a large-
scale multiview dataset is prohibitively laborious and no existing
one meets the above criterion to our knowledge. On the other hand,
large-scale single image datasets [Caesar et al. 2018] are much easier
to collect. This motivates us to leverage the single-view images to
generate training pairs. Inspired by [Aleotti et al. 2021; Watson
et al. 2020], we warp the source image to a random target view
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Figure 3: Overview of our warp-back strategy to train novel view synthesis method using only single-view images. (a) We
first train a network G specialized to inpaint the holes caused by view change. The holes are generated by back-warping. (b)
We generate stereo image pairs from a single image to train the novel view synthesis network F . The warped and inpainted
images are used as input and the original images are the target, which is also a back-warping setup.

Warped Image General Inpainting Our Inpainting Ground Truth

Figure 4: Comparison of a general-purpose inpainting net-
work trained on randommasks and our network specialized
for holes caused by view change.

according to the estimated depth to synthesize multiview images.
A warp-back strategy is applied, which is the key to generate the
data to train our inpainting and view synthesis networks.

3.3.1 Depth-based Warping. First, we use a mesh renderer R to
render a random target view given the source image 𝐼𝑠 and its
depth map 𝐷𝑠 from monocular depth estimation. Specifically, we
generate a plausible intrinsic 𝐾 and camera motion (𝑅, 𝑡) as in
[Aleotti et al. 2021], where 𝐾 is shared by source and target view
and (𝑅, 𝑡) describes the transformation from the source view to the
target view. A mesh is created by lifting the pixel to 3D vertices
based on to their depth and connecting them as a triangle mesh
according to their affinity on image grid. We remove long edges
by thresholding the gradients on the depth map. The mesh is then
rendered to the target view to obtain image 𝐼𝑡 and depth 𝐷𝑡 .

3.3.2 Back-warping and Inpainting Network Training. The holes in
the rendered 𝐼𝑡 and 𝐷𝑡 represent the unseen content in the source
view. Since the distribution of these holes induced by camera view
change is quite different from the randommasks used by the general
inpainting network [Nazeri et al. 2019], we opt to train a network
that is specialized to inpaint these holes. In this way, we can not
only improve the inpainting quality through targeted training, but
also reduce the domain gap between the generated training data
and the real test cases.

To achieve this, we use a warp-back strategy to generate training
pairs for the inpainting network. As illustrated in Fig. 3(a), we warp
𝐼𝑡 and 𝐷𝑡 back to the source view to obtain 𝐼 ′𝑠 and 𝐷 ′

𝑠 . Then we
train a network G to inpaint the holes in 𝐼 ′𝑠 and 𝐷 ′

𝑠 with 𝐼𝑠 and 𝐷𝑠

serving as the ground truth. To enhance the alignment between

the inpainted depth map 𝐷𝑠 and color image 𝐼𝑠 , we adopt the Edge-
Connect [Nazeri et al. 2019] architecture as in [Shih et al. 2020].
Specifically, we first apply a network to inpaint edges in the holes
and then adopt two separate networks to inpaint color and depth
based on the inpainted edges. The inpainting networks are trained
using the default settings in [Nazeri et al. 2019]. Figure 4 shows
that our network successfully borrows context information from
the background to inpaint the holes, whereas a general-purpose
inpainter [Nazeri et al. 2019] fails to handle these cases.

3.3.3 View Synthesis Training Pair Generation. During the training
process for our view synthesis network, we generate stereo image
pairs on the fly. As illustrated in Fig. 3(b), we first sample an image
𝐼𝑠 with depth map 𝐷𝑠 and generate a plausible intrinsic 𝐾 and
camera motion (𝑅, 𝑡). We then render the target color image 𝐼𝑡 and
depth map𝐷𝑡 and apply the our trained inpainter G to fill the holes,
which gives rise to 𝐼𝑡 and 𝐷𝑡 . Optionally, one can also pre-generate
a large-scale training set offline. To ensure the network receives
supervision from real image distribution, we adopt (𝐼𝑡 , 𝐷̄𝑡 ) as the
input to F and (𝐼𝑠 , 𝐷𝑠 ) as the ground truth target view, as shown
in Fig. 3(b), which follows a similar back-warping spirit.

3.4 Network Training
The training pairs for our method contain the color images and
depth maps of the source and target views and the camera param-
eters: (𝐼𝑠 , 𝐼𝑡 , 𝐷𝑠 , 𝐷𝑡 , 𝐾, 𝑅, 𝑡). Our overall loss function to train the
network combines a view synthesis term L𝑣𝑠 and a regularization
term L𝑟𝑒𝑔 . The goal of L𝑣𝑠 is to encourage the rendered target
view color image and depth map to match the ground truth. We
employ L1 loss, SSIM loss, perceptual loss [Chen and Koltun 2017],
and focal frequency loss [Jiang et al. 2021] on the rendered 𝐼𝑡 and
L1 loss on the rendered 𝐷𝑡 with weight 1, 1, 0.1, 10, respectively. In
the regularization term L𝑟𝑒𝑔 , we introduce a rank loss to regularize
the MPI depth predicted by F𝑑 to be in a correct order, and an
assignment loss to enforce F𝑑 andH to produce reasonable results:

L𝑟𝑒𝑔 = 𝜆𝑟𝑎𝑛𝑘L𝑟𝑎𝑛𝑘 + 𝜆𝑎𝑠𝑠𝑖𝑔𝑛L𝑎𝑠𝑠𝑖𝑔𝑛,where (14)

L𝑟𝑎𝑛𝑘 =
1

𝑁 − 1

∑︁𝑁−1
𝑖=1

max(0, 𝑑𝑖+1 − 𝑑𝑖 ), (15)

L𝑎𝑠𝑠𝑖𝑔𝑛 =
1

𝐻𝑊

∑︁𝑁

𝑖=1

∑︁
(𝑥,𝑦)𝑀𝑖 ⊙ |𝐷𝑠 − 𝑑𝑖 |. (16)
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Intuitively, L𝑎𝑠𝑠𝑖𝑔𝑛 measures the error to represent the depth
map𝐷𝑠 using𝑁 discrete planes at {𝑑𝑖 }𝑁𝑖=1 withmasks {𝑀𝑖 }𝑁𝑖=1 (note
that

∑
𝑖 𝑀𝑖 = 1; see Eq. 10). The loss weights are set as L𝑟𝑎𝑛𝑘 = 100

and L𝑎𝑠𝑠𝑖𝑔𝑛 = 10. We use the Adam optimizer [Kingma and Ba
2014] with learning rate 0.0001 and batch size 12 for training.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. To generate our stereo training data, we use the
training set of COCO [Caesar et al. 2018] which contains 111K still
images. The state-of-the-art monocular depth estimator DPT [Ran-
ftl et al. 2021] is applied to obtain the corresponding depth maps.
For quantitative evaluation, we use four datasets that provide multi-
view images or videos of a static scene: Ken Burns [Niklaus et al.
2019], TartanAir [Wang et al. 2020], RealEstate-10K [Zhou et al.
2018], and Tank & Temples [Knapitsch et al. 2017]. See suppl. docu-
ment for details on data selection and data processing.

4.1.2 Baselines. We compare our method with 3D-Photo [Shih
et al. 2020], SLIDE [Jampani et al. 2021], and several MPI-based
methods: SVMPI [Tucker and Snavely 2020], MINE [Li et al. 2021],
and VMPI [Li and Khademi Kalantari 2020]. For 3D-Photo, we use
the trainedmodel provided by the authors for evaluation. For SVMPI
and MINE, since their original methods take only a color image as
input, we train an RGBD version from scratch using our dataset
and loss functions. We denote the modified and retrained models as
SVMPI++ and MINE++. For VMPI, we directly take their network
and retrain it using our dataset. We use the same depth maps and
camera parameters for all methods to ensure fair comparison. For
SLIDE, we qualitatively compare our method with it in Fig. 6 using
an example from their paper as their code is not available.

4.1.3 Metrics. We report the SSIM, PSNR, and LPIPS [Zhang et al.
2018] scores to measure the rendering quality. We crop 5% pixels on
the border before evaluation following [Li et al. 2021; Tucker and
Snavely 2020] since we do not handle large out-of-fov inpainting.

4.2 Comparison with Previous Methods
The performance of MPI-based methods is related to the number of
planes 𝑁 . Intuitively, better results should be obtained with more
planes; but this is not the case for all methods. We first identify the
best 𝑁 for each MPI-based method using the Ken Burns dataset
where ground-truth depths are available. Table 1 presents the results
of different methods with 8, 16, 32, and 64 planes, respectively. As
we can see, our method achieves consistently better quantitative
results compared to other MPI-based methods with varying 𝑁 . The
performance of VMPI decreases significantly when using 𝑁 = 16
planes, as their representation is highly over-parameterized (5𝑁
output channels) and a CNN is applied to directly generate such
a large tensor. SVMPI++ reduces the number of output channels
by predicting only one color image, but the channel number is still
in proportion to 𝑁 . Their performance decreases when increasing
the plane number to 𝑁 = 64. MINE++ and our method enjoy stable
performance gain with increasing numbers of planes.

We then benchmark 3D-Photo and all the MPI-based methods
on all four datasets. We test each MPI-based method with the best
plane number 𝑁 according to Table 1, i.e., 8 planes for VMPI, 32
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Figure 5: Qualitative comparison between our novel view
synthesis method and other approaches on different
datasets. (Best viewed with zoom-in.)

Input Image GT Target View SLIDE Ours

Figure 6: Novel view synthesis results from our method and
SLIDE using the image sample from SLIDE. For a scene with
complex occlusions, the SLIDE method that uses two depth
layers generates texture-stretching artifact. Our method in-
paints the occluded regionwith contents consistent with the
background texture. (Best viewed with zoom-in.)

for SVMPI++, and 64 for MINE++ and our method. Table 2 shows
that our method significantly outperforms the others, especially on
the former three datasets. Figure 5 shows some qualitative results.
Compared to VMPI, our AdaMPI is easier to train and produces sig-
nificantly better image quality. Compared to SVMPI++ andMINE++,
our method generates sharper and more realistic results since our
scene-specific MPI can better represent thin structures and sloped
surfaces. Besides, our feature masking scheme explicitly assigns
visible pixels to each plane, which reduces the common repeated-
texture artifacts [Srinivasan et al. 2019]. Compared to 3D-Photo,
our results have fewer artifacts around depth discontinues.
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Table 1: Quantitative comparison between our method and
otherMPI-based approaches with varying number of planes
on the Ken Burns dataset.

𝑁 = 8 𝑁 = 16 𝑁 = 32 𝑁 = 64

Method LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

VMPI 0.333 26.57 0.820 0.387 24.12 0.677 0.362 24.68 0.767 0.369 24.22 0.757
SVMPI++ 0.126 29.09 0.878 0.092 31.86 0.932 0.094 32.32 0.946 0.099 31.90 0.939
MINE++ 0.132 29.12 0.877 0.120 31.20 0.925 0.128 31.52 0.938 0.117 31.40 0.940
Ours 0.099 30.31 0.902 0.073 32.76 0.942 0.061 34.19 0.962 0.059 34.21 0.966

Table 2: Quantitative comparison between our method and
previous approaches on four multi-view datasets.

Ken Burns TartanAir RealEstate-10K Tank & Temples

Method LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑

VMPI 0.333 26.57 0.820 0.364 24.45 0.748 0.344 21.53 0.712 0.355 20.62 0.663
SVMPI++ 0.094 32.32 0.946 0.137 28.43 0.892 0.162 23.68 0.799 0.178 22.76 0.744
MINE++ 0.117 31.40 0.940 0.168 27.94 0.879 0.169 23.45 0.802 0.197 22.55 0.749
3D-Photo 0.069 30.28 0.909 0.130 27.10 0.851 0.178 21.72 0.730 0.174 21.91 0.727
Ours 0.059 34.21 0.966 0.115 29.13 0.903 0.145 23.76 0.802 0.169 22.71 0.742

Table 3: Ablation study on network design, regularization
term, and training data.

LPIPS ↓ PSNR ↑ SSIM ↑

w/o PAN 0.080 32.38 0.935
w/o FM 0.120 31.43 0.929

w/o L𝑟𝑎𝑛𝑘 0.079 32.26 0.932
w/o L𝑎𝑠𝑠𝑖𝑔𝑛 0.205 27.61 0.846

MiDaS & hole 0.075 32.61 0.937
DPT & general 0.076 32.74 0.940

Ours 0.073 32.76 0.942

4.3 Ablation Study
We investigate the effect of network architecture, loss function, and
training data, using the Ken Burns dataset and 16 planes.

4.3.1 Network Architecture. As shown in Table 3, the performance
drops significantly if we discard the Plane Adjustment Network
(PAN) and use predefined plane depth (e.g., 0.4dB drop in PSNR),
demonstrating the advantage of our learned depth adjustment. If
the feature masking scheme (FM) in the Color Prediction Network
is removed (we directly concatenate the positional encoding of the
plane depth to the shared feature map as in MINE [Li et al. 2021]),
the quality also degrades significantly (64% LPIPS increase). The
inter-plane interactions injected by our feature maskingmechanism
are crucial to our adaptive MPI with scene-specific depth.

4.3.2 Loss Function. Here we verify the effectiveness of the regu-
larization terms in our loss function. Table 3 demonstrates that they
play an important role in training our method: removing either
L𝑟𝑎𝑛𝑘 or L𝑎𝑠𝑠𝑖𝑔𝑛 results in degraded accuracy, especially the latter.

4.3.3 Training Data. We further train our method using image
pairs generated from another two strategies: 1) MiDaS & hole – we
replace DPT with MiDaS [Ranftl et al. 2020] and train the inpaint-
ing network as described in Section 3.3, and 2) DPT & general –
we adopt the DPT depth and directly use an inpainting network
pretrained on Place2 [Zhou et al. 2017] dataset. The results in Ta-
ble 3 show that using DPT-estimated depth leads to significantly
better results than using MiDaS, indicating that the quality of our

Input Image 13th Plane Target View14th Plane

Ours w/o PAN

Ours

Target View12th Plane 13th Plane

Figure 7: Visualization of alpha-multiplied color on MPIs
predicted with and without plane adjustment. (Best viewed
with zoom-in.)

Ours GT Target View GT Target ViewOurs

Figure 8: Limitations. Left: erroneous depth estimation of
the ground and tree leads to visual distortions. Right: our
method cannotmodel view-dependent effects such as reflec-
tion. See the supplementary video for more examples.

generated training data can benefit from better monocular depth
estimation. Table 3 also shows that using our inpainting network
leads to better results compared to a general-purpose one trained
with random masks.

4.4 Analyzing the Plane Adjustment
As shown in Fig. 7, the scene-agnostic MPI (Ours w/o PAN) assigns
the Buddha’s face to two planes, leading to severe visual distor-
tion in the novel view. In contrast, our method learns to set one
plane (the 13𝑡ℎ one) to represent the Buddha’s face according to
the geometry and appearance information of the scene (see suppl.
document for more visualization). For reference, we report the aver-
age absolute corrections made by PAN in the normalized disparity
space (ranging from 0 to 1) on the KenBurns dataset: 0.086, 0.058,
0.038, and 0.019 for 8, 16, 32, and 64 planes, respectively.

4.5 Results on Higher Resolution Input
We directly run our model (trained with 256 × 384 images) on
512 × 768 inputs, and found the model generalizes quite well to the
higher resolution. The visual results are shown in the suppl. video.

4.6 Limitations
Our method still has several limitations. As shown in Fig. 8, erro-
neous depth estimation leads to visual distortions in the synthesis
results. Since our training data is generated by warping single-view
images, the network cannot synthesize view-dependent effects such
as reflection. Besides, our method tends to generate relatively blurry
content or artifacts in occluded regions (e.g., see Fig. 6). Adding
adversarial loss that focused on occluded regions might be a possi-
ble remedy. We currently use a relatively low resolution to train
our method. Collecting a large-scale high-resolution dataset and
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training our method on it is an interesting future direction. Like
other MPI-based methods, our method still has limited ability in rep-
resenting slanted surfaces, even though it can reduce the artifacts
in this case by allocating more planes to model them.

5 CONCLUSION
We have presented a novel AdaMPI architecture to deal with the
challenging task of synthesizing novel views from single-view im-
ages in the wild. The two key ingredients are a Plane Adjustment
Network for MPI plane depth adjustment from an initial configu-
ration and a Color Prediction Network for depth-aware color and
density prediction with a novel feature masking scheme. To train
our method, a simple yet effective warp-back strategy is proposed
to obtain large-scale multi-view training data using only uncon-
strained single-view images. Our method achieves state-of-the-art
view synthesis results on both synthetic and real datasets.
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Figure I: Visualization of alpha-multiplied color planes with and without plane adjustment.

A TEST DATA SELECTION AND PROCESSING
We use four datasets for method evaluation which provide multi-
view images or videos of static scenes: Ken Burns [Niklaus et al.
2019], TartanAir [Wang et al. 2020], RealEstate-10K [Zhou et al.
2018], and Tank & Temples [Knapitsch et al. 2017]. Ken Burns and
TartanAir are synthetic datasets rendered with graphics engine,
which provide ground truth depthmaps and camera parameters.We
randomly sampled 1.5K and 260 stereo pairs from these two datasets
for testing. RealEstate-10K contains video clips of real-world indoor
scenes. We sampled 800 clips from the test set for evaluation. For
each clip, we specify a randomly sampled frame as the source view
and the following 10th frame as the target view. Following [Shih
et al. 2020], we use DPSNet [Im et al. 2019] to estimate depth and use
the camera parameters estimated by COLMAP [Schönberger and
Frahm 2016]. Tank & Temples contains multi-view images of real
in-the-wild scenes. We use the depth maps estimated by DPT and
align its scale with the camera parameters recovered by COLMAP.
1K images are sampled from this dataset for evaluation. We select
image pairs with moderate camera motion to evaluate our method.

B RUNTIME
Our method with 64 planes takes 0.072s, including 0.004s for depth
adjustment and 0.068s for color prediction, to generate the MPI

for a 256 × 384 image on a Nvidia Tesla V100 GPU. For compar-
ison, the VMPI method takes 0.003s, SVMPI takes 0.013s, MINE
takes 0.011s, and our closest competitor in quality, 3D-Photo, takes
several seconds.

C VISUALIZATION OF OUR LEARNED
PLANES

In Fig. I, we show all the color planes predicted with or without the
Plane Adjustment Network, for the case we presented in Section 4.4
and Figure 7 in the main paper. We observe that the scene-agnostic
MPI (Ours w/o PAN) assigns the Buddha’s face to two planes (the
13𝑡ℎ and 14𝑡ℎ one, highlighted with the red box), while our method
learns to set one plane (the 13𝑡ℎ one, highlighted with the green
box) to represent it, leading to better view synthesis results with
less visual distortion.
Figure II and III further show the masks and color predicted

by our method on each plane (16 planes are used in these cases).
Guided by the feature masking scheme, our Color Prediction Net-
work (CPN) learns to represent the visible pixels on the planes and
inpaint the occluded content especially near occlusion boundary.
We highlight two typical samples with the green box: on the 15𝑡ℎ
plane in Fig. III, the sky region occluded by the Buddha’s face are
inpainted; on the 3𝑟𝑑 plane in Fig. II, CPN learns to extend the grass
texture to inner regions.
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Figure II: Visualization of the color planes and the feature masks.
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Figure III: Visualization of the color planes and the feature masks.
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