
Poster: On the use of hardware accelerators in QC-MDPC
code-based cryptography

Andrea Galimberti∗
Politecnico di Milano

Milano, Italy
andrea.galimberti@polimi.it

Davide Galli
Politecnico di Milano

Milano, Italy
davide11.galli@mail.polimi.it

Gabriele Montanaro
Politecnico di Milano

Milano, Italy
gabriele.montanaro@mail.polimi.it

William Fornaciari
Politecnico di Milano

Milano, Italy
william.fornaciari@polimi.it

Davide Zoni
Politecnico di Milano

Milano, Italy
davide.zoni@polimi.it

CCS CONCEPTS
• Hardware → Hardware accelerators; • Security and privacy
→ Hardware security implementation; Public key encryption.

KEYWORDS
Post-quantum cryptography, Code-based cryptography, Hardware
accelerators, FPGA
ACM Reference Format:
Andrea Galimberti, Davide Galli, Gabriele Montanaro, William Fornaciari,
and Davide Zoni. 2022. Poster: On the use of hardware accelerators in QC-
MDPC code-based cryptography. In 19th ACM International Conference on
Computing Frontiers (CF’22), May 17–19, 2022, Torino, Italy. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3528416.3530243

ACKNOWLEDGMENTS
This work was supported by the EU Horizon 2020 “TEXTAROSSA”
project (Grant No. 956831).

1 INTRODUCTION
Public-key cryptography (PKC) allows exchanging keys over an
insecure channel without sharing a secret key. However, quantum
computers threaten to break traditional PKC, thus, to mitigate such
risk, post-quantum cryptography (PQC) aims to develop cryptosys-
tems that are secure against attacks from quantum and classical
computers. BIKE [1] is a key encapsulation mechanism (KEM) based
on quasi-cyclic moderate-density parity-check (QC-MDPC) codes
that is a candidate within the NIST standardization process to iden-
tify a set of PQC algorithms [4]. Figure 1 depicts the key exchange
between two client and server nodes, which requires the sequential
execution of the key generation, encapsulation, and decapsulation
KEM primitives. Key generation and decapsulation are performed
on the client side, while encapsulation is carried out by the server.
Despite the vast literature targeting efficient hardware support for
∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF’22, May 17–19, 2022, Torino, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9338-6/22/05.
https://doi.org/10.1145/3528416.3530243

BIKE, each proposal delivered computing platforms meant either
to maximize performance or minimize resource utilization.

Key generation
Encapsulation

with public key

Decapsulation
with private key

Client Server
Public key

CiphertextPublic + private keys

Ciphertext
Shared secret

Shared secret

Figure 1: Key exchange implemented as a KEM.

2 CONTRIBUTIONS
This paper presents a complete hardware implementation of BIKE
that targets the Xilinx Artix-7 family of FPGAs and supports client-
and server-side KEM operations. The proposed architecture lever-
ages a set of state-of-the-art configurable accelerators [2, 3, 6, 7]
that implement the key operations of the KEM primitives. Our
architecture is evaluated against the FPGA-based hardware [5]
implementations of BIKE.

3 BIKE KEY ENCAPSULATION MECHANISM
Figure 2 details the key generation, encapsulation, and decapsula-
tion primitives of BIKE. The key generation module receives as an
input a random seed and outputs the public ℎ and private 𝐻 keys,
as well as a random value 𝜎 . The key generation algorithm of BIKE
requires performing sequentially pseudorandom generation, binary
polynomial inversion, and binary polynomial multiplication.

The decapsulation module receives as inputs the private key 𝐻 ,
𝜎 , and the ciphertext 𝑐 and it outputs the shared secret 𝐾 . The
decapsulation primitive of BIKE requires executing in sequence
binary polynomial multiplication, QC-MDPC bit-flipping decoding,
computation of SHA-3 hash digest, and pseudorandom generation.

The encapsulation module takes as inputs a random message
𝑚 and the public key ℎ and outputs the shared secret 𝐾 and the
ciphertext 𝑐 . The encapsulation primitive of BIKE requires subse-
quently performing pseudorandom generation, binary polynomial
multiplication, and computation of the SHA-3 hash function.

https://orcid.org/0000-0002-9951-062X
https://doi.org/10.1145/3528416.3530243
https://doi.org/10.1145/3528416.3530243


CF’22, May 17–19, 2022, Torino, Italy A. Galimberti, et al.

Algorithm 1 Key generation.

1: function [𝐻, 𝜎, ℎ] KeyGen (𝑠𝑒𝑒𝑑)
2: 𝐻 = PRNG(SHAKE256(𝑠𝑒𝑒𝑑));
3: ℎ0𝑖𝑛𝑣 = INVERT(ℎ0);
4: ℎ = ℎ1 ⊙ ℎ0𝑖𝑛𝑣 ;
5: 𝜎 = TRNG ();

Algorithm 2 Encapsulation.

1: function [𝐾, 𝑐] Encaps (ℎ,𝑚)
2: 𝑒 = PRNG(SHAKE256(𝑚));
3: 𝑠 = 𝑒0 ⊕ (𝑒1 ⊙ ℎ);
4: 𝑚′ =𝑚⊕ TRUNC256 (SHA3-384(𝑒));
5: 𝑐 = {𝑠,𝑚′};
6: 𝐾 = TRUNC256 (SHA3-384({𝑚,𝑐}));

Algorithm 3 Decapsulation.

1: function [𝐾] Decaps (𝐻 , 𝜎 , 𝑐)
2: 𝑠 ′ = ℎ0 ⊙ 𝑠;
3: 𝑒 ′ = DECODE (𝑠 ′, 𝐻 );
4: 𝑚′′ =𝑚′⊕ TRUNC256 (SHA3-384(𝑒 ′));
5: 𝑎 = (𝑒 ′ = PRNG(SHAKE256(𝑚′′))) ?𝑚′′ : 𝜎 ;
6: 𝐾 = TRUNC256 (SHA3-384({𝑎, 𝑐}));

Figure 2: Algorithms for the key generation, encapsulation, and decapsulation primitives of BIKE.

Table 1: Area results, expressed in terms of look-up tables (LUT), flip-flops (FF), and block RAM (BRAM).

Module Code
Our BIKE [5]

Artix-7 35 Artix-7 200 Lightweight (LW) High-speed (HS)
LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM

Client B1 20663 15128 42 121238 48889 358 11454 4602 14 43084 610 39
B3 18420 16464 49 118513 50270 358 - - - - - -

Server B1 19531 11997 41 89011 45091 277.5 6730 3298 3 14829 3471 10
B3 19605 13490 42 68265 36944 236.5 - - - - - -

Available 20800 41600 50 134600 269200 365 20800 41600 50 134600 269200 365

Table 2: Execution times, expressed in milliseconds.

Module Code Our BIKE [5]
Artix-7 35 Artix-7 200 Lightweight (LW) High-speed (HS)

Client B1 9.03 0.51 35.25 4.66
B3 39.55 1.51 - -

Server B1 0.04 0.02 1.25 0.13
B3 0.09 0.04 - -

4 EXPERIMENTAL EVALUATION
Experimental setup - The proposed architectures, as well as the
reference BIKE hardware [5] implementations, target the security
levels 1 (B1) and 3 (B3) of BIKE. The proposed architectures were de-
scribed in SystemVerilog and implemented in Xilinx Vivado 2020.2,
targeting Artix-7 FPGAs and a clock frequency of 91 MHz. All the
identified instances satisfed the area constraints given by the avail-
able resources on the target FPGAs and the timing requirements.
Area results - The proposed architectures make wide use of BRAM,
allowing them to scale from Artix-7 35 to Artix-7 200 FPGAs, as
shown in Table 1. The results show that BRAM memories are the
most used resources, except in the Artix-7 35 B1 client and the
B1 and B3 servers, while the high-speed reference [5] uses the
resources available on larger FPGAs unefficiently, employing only
32%, 2%, and 11% of the LUT, FF, and BRAM of the Artix-7 200 chip.
Performance results - As reported in Table 2, our Artix-7 35 𝐵1
client is around three times faster than the lightweight reference [5],
while the Artix-7 200 client is around nine times faster than the
high-speed one [5]. Both the Artix-7 35 and 200 servers outperform
the high-speed 𝐵1 instance of [5].

5 CONCLUSIONS
This paper presented an effective hardware support for BIKE on
FPGA targets. Compared to the reference hardware, our Artix-
7 35 and Artix-7 200 clients were 3 and 9 times faster than the

lightweight and high-speed instances of [5], considering the 𝐵1
use case. Moreover, the proposed server instance outperformed the
high-speed reference by at least three times.

REFERENCES
[1] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,

Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Car-
los Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-
Pierre Tillich, Valentin Vasseur, and Gilles Zémor. 2021. BIKE: Bit Flipping Key
Encapsulation - Round 3 Submission. https://bikesuite.org/files/v4.2/BIKE_Spec.
2021.09.29.1.pdf.

[2] Alessandro Barenghi, William Fornaciari, Andrea Galimberti, Gerardo Pelosi,
and Davide Zoni. 2019. Evaluating the Trade-offs in the Hardware Design of
the LEDAcrypt Encryption Functions. In 2019 26th IEEE International Conference
on Electronics, Circuits and Systems (ICECS). 739–742. https://doi.org/10.1109/
ICECS46596.2019.8964882

[3] Andrea Galimberti, Gabriele Montanaro, and Davide Zoni. 2022. Efficient and
scalable FPGA design of GF(2m) inversion for post-quantum cryptosystems. IEEE
Trans. Comput. (2022), 1–1. https://doi.org/10.1109/TC.2022.3149422

[4] National Institute of Standards and Technology (NIST) - U.S. Department of
Commerce. 2020. NISTIR 8309, Status Report on the Second Round of the NIST
Post-Quantum Cryptography Standardization Process. https://nvlpubs.nist.gov/
nistpubs/ir/2020/NIST.IR.8309.pdf.

[5] Jan Richter-Brockmann, Johannes Mono, and Tim Guneysu. 2021. Folding BIKE:
Scalable Hardware Implementation for Reconfigurable Devices. IEEE Trans. Com-
put. (2021). https://doi.org/10.1109/TC.2021.3078294

[6] Davide Zoni, Andrea Galimberti, and William Fornaciari. 2020. Efficient and
Scalable FPGA-Oriented Design of QC-LDPC Bit-Flipping Decoders for Post-
Quantum Cryptography. IEEE Access 8 (2020), 163419–163433. https://doi.org/10.
1109/ACCESS.2020.3020262

[7] Davide Zoni, Andrea Galimberti, and William Fornaciari. 2020. Flexible and
Scalable FPGA-Oriented Design of Multipliers for Large Binary Polynomials. IEEE
Access 8 (2020), 75809–75821. https://doi.org/10.1109/ACCESS.2020.2989423

https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/ICECS46596.2019.8964882
https://doi.org/10.1109/TC.2022.3149422
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://doi.org/10.1109/TC.2021.3078294
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.3020262
https://doi.org/10.1109/ACCESS.2020.2989423

	Acknowledgments
	1 Introduction
	2 Contributions
	3 BIKE key encapsulation mechanism
	4 Experimental evaluation
	5 Conclusions
	References

