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Abstract

Existing data race detectors for task-based programs incur
significant run time and space overheads. The overheads arise
because of frequent lookups in fine-grained tree data struc-
tures to check whether two accesses can happen in parallel.

This work shows how to efficiently apply vector clocks
for dynamic data race detection of async-finish programs
with locks. Our proposed technique, FastRacer, builds on the
FastTrack algorithm with per-task and per-variable optimiza-
tions to reduce the size of vector clocks. FastRacer exploits
the structured parallelism of async-finish programs to use a
coarse-grained encoding of the dynamic task inheritance rela-
tions to limit the metadata in the presence of many concurrent
readers. Our evaluation shows that FastRacer substantially
improves time and space overheads over FastTrack, and is
competitive with the state-of-the-art data race detectors for
async-finish programs with locks.

CCS Concepts: * Software and its engineering — Software
testing and debugging; Runtime environments; Multipro-
cessing / multiprogramming / multitasking.
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1 Introduction

The task-based programming abstraction helps write efficient
and portable parallel code without having to think of low-level
threads. Tasks execute in parallel as hardware-agnostic logical
units of work, and programmers only specify the dependen-
cies among the tasks. An accompanying runtime schedules
tasks to threads and provides performance features like work-
stealing to load-balance the execution. Cilk (8, 23], X10 [11],
Habanero-Java [10], and Java Fork-Join [30] are popular
task-based frameworks.

Task-based programs are susceptible to concurrency errors
such as atomicity violations [62] and data races [3, 19, 47,
48, 58]. A data race occurs when two accesses, with at least
one write, from different tasks are incorrectly synchronized.
The presence of data races in shared-memory programs often
indicates the presence of other concurrency errors [20], and
can affect an execution by crashing, hanging, or corrupting
data [28]. Data races are hard to detect and fix since they may
occur nondeterministically under specific thread interleavings,
program inputs, and execution environments. Data races have
led to several real-world disasters [31, 42, 45]; such high-
profile failures are a testament that data races are present even
in well-tested code.

The problem. There exists prior work to detect data races
in task-based programs [3, 12, 19, 36, 47, 48, 58, 63, 64].
Most analysis utilize the series-parallel structure of execu-
tion of task-based programs to check whether accesses can
potentially execute in parallel (called series-parallel mainte-
nance) [3, 19, 48, 58, 63]. Prior techniques are either serial
(e.g., [12, 19, 47]) or are difficult to parallelize (e.g., [3]),
detect races only in a given schedule (e.g., [21]), continue to
incur high run-time overheads (e.g., [36, 48, 63]), require tight
coupling with the runtime scheduler for good performance
(e.g., [58]), or do not support lock-based synchronization
(e.g., [3, 48, 58]).

Our approach. In this work, we focus on efficient de-
tection of per-input apparent data races in task-based pro-
grams with async-finish semantics.' For a given application
and an input, per-input races include races observed in the
current schedule as well as other schedules with possibly

! Apparent data races occur because of the usage of parallel task constructs
and ignore the per-schedule dynamic interleavings [40]. Feasible data races
consider the nondeterministic timing variations during execution.
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permuted memory operations, ignoring schedule-sensitive
branches [63]. While prior work has ignored how to opti-
mize vector clocks for efficient race detection of task-based
programs, we argue that analyses based on vector clocks
are generic, inherently parallel, and have better data locality
than tree-based data structures for series-parallel (SP) mainte-
nance. However, a naive application of vector-clock-based
analysis to tasks results in prohibitive memory and run-time
overhead [48, 63].

This paper presents FastRacer, a vector-clock-based data
race detector for async-finish programs. FastRacer avoids the
redundancy in per-task vector clocks by using auxiliary im-
mutable data structures to maintain space- and time-efficient
lossless vector clock representations correctly. FastRacer ex-
ploits the structured parallelism in async-finish programs to
optimize the space requirement of per-variable metadata in
the presence of many concurrent readers. Prior work has
shown that a careful selection of only two “concurrent read”
accesses is sufficient for detecting read-write data races for
async-finish programs [48, 63]. FastRacer uses coarse-grained
encoding of dynamic task inheritance relationships to identify
the two accesses (for both reads and writes) necessary for
race detection, and uses vector clocks to check whether two
accesses can race.

We evaluate the performance and correctness of FastRacer
on C++ applications that use Intel TBB [49] for task paral-
lelism and compare with prior work [21, 58, 63]. Our evalua-
tion shows that the run time and memory overhead of Fast-
Racer is substantially lower compared to state-of-the-art data
race detectors that target async-finish programs.

Contributions. This paper makes the following contribu-
tions:

e To the best of our knowledge, this work is the first to
show the viability of using vector clocks for efficient
dynamic analysis of task-based programs;

e arace detector called FastRacer that detects per-input
apparent races in async-finish programs with locks,

e publicly available implementations of FastRacer and
related techniques, and an evaluation that shows Fast-
Racer significantly outperforms prior work.

2 Background and Motivation

This section briefly reviews data race detection of multi-
threaded programs using vector clocks. We also discuss closely
related prior work on race detection of async-finish programs.

2.1 Race Detection with Vector Clocks

Many race detectors for multithreaded programs use vector
clocks to track happens-before (HB) relations in an execu-
tion [9, 21, 46, 55]. Each thread maintains a scalar clock that
is incremented at synchronization release operations (e.g.,
lock release, monitor wait, thread fork and join, and volatile
write). Each thread T also maintains a vector clock C of size n,
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where there are n threads in the application. The clock entry
C71(U) records the clock of thread U when thread T last syn-
chronized with U. A dynamic analysis updates per-variable
vector clock metadata whenever a thread accesses a shared
data or a lock variable. Vector clock operations require & (n)
time and storage to monitor an execution with n threads.

Algorithm 1 FastTrack analysis at synchronization operations

: procedure SPAWN
U.vc < T.vc U {T.epoch}
T.epoch < T.epoch + 1
U.epoch <— U.epoch + 1

> Thread T spawns U

> Increment T’s scalar clock

> Thread T joins with U
for all <t,c> in U.vc do
T.vc[t] < max(U.vc[t], T.vc[t])

1
2
3
4
5: procedure JOIN
6
7
8: procedure ACQUIRE

> T acquires lock L

9: for all <t,c>in L.vc do
10: T.vc[t] < max(L.vc[t], T.vc[t])
11: procedure RELEASE > T releases lock L
12: L.vc <~ T.vc

13: T.epoch < T.epoch + 1

14: function CHECKHB(c@u,T)
15: return c@u <X T.vc

> Check HB between epoch

FastTrack. The FastTrack algorithm tracks a single last
writer and, in many cases, a single last reader [21]. The total
order on writes in a data-race-free program allows FastTrack
to store only the last write information. FastTrack stores the
write metadata as an epoch c@T, which is a tuple consisting
of the writer thread identifier T and the value of T’s clock
(say c) at the time of the write. The read metadata alternates
between epoch and vector clock forms. An epoch representa-
tion suffices when there is a single reader or the current read
happens after all previous reads. When there are concurrent
readers, the read metadata is a vector clock (denoted by vc).
Algorithm 1 shows the pseudocode for the dynamic analysis
performed by FastTrack at synchronization operations. Be-
fore each access to a shared variable x by a thread T, FastTrack
checks whether the current access by T happens after the previ-
ous write and all previous reads to x (CheckHB, Algorithm 1).
A data race is reported if the current access by T is concurrent
with the last accesses. The shared data and lock variable meta-
data are updated upon a thread access. FastTrack is popularly
used as the basis for dynamically sound and precise” data race
detection of multithreaded programs [2, 9, 16, 43, 55, 60].

2.2 Race Detection for Async-Finish Programs

Frameworks like X10 [11] and Habanero Java [10] support
structured task parallelism with async-finish semantics. The
statement “async {t}” creates a new child task t that can
run in series or in parallel with its parent task. The state-
ment “finish {t}” causes the current task to wait for all the

2Sound means no false negatives, and precise means no false positives.
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S11 Task T1

varl=0

—>»( spawn T2
var2 =1

Task T2 spawn T3
lock(L1) s21 Task T3
varl =2 S31| var2=0
unlock(L1)
var2 =0
spawn T4
Task T4
S41
Iockl(LlJ4 spawn T5
varl =
unlock(L1)
Task TS5
S51 lock(L1)
varl =5

sync unlock(L1)

(a) An async-finish program with tasks T1-T5, shared variables var1
and var2, and a lock variable L1.

(b) The DPST for the program in Figure 1a.

Figure 1. An async-finish program and its DPST.

recursively-created tasks within the block t. The async-finish
model is terminally-strict, which means each join edge goes
from the last instruction of a task to any of its ancestors in the
inheritance tree [47]. In the following, we discuss dynamic
data race detection techniques for async-finish programs.

SPD3. SPD3 [48] uses a dynamic program structure tree
(DPST) to capture the semantics of an async-finish program.
A DPST consists of step, finish, and async nodes. A step node
represents the maximal sequence of instructions without any
task management. An async node represents the spawning of a
child task by a parent task. The descendants of an async node
execute asynchronously with the remainder of the parent task.
A finish node is created when a parent task spawns a child
task and waits for the child, and its descendants, to complete.
A finish node is thus the parent of all async, finish, and step
nodes executed by its children or their descendants. Figure 1
shows an async-finish program and the corresponding DPST.
All executions of a data-race-free async-finish program with
the same input result in the same DPST [48].

The operational semantics of async-finish programs imply
a left-to-right computation order of sibling nodes belonging
to a common parent task. Thus, a DPST node’s children are
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also ordered left-to-right to reflect the computation order
in their parent. On a variable access, SPD3 searches for
the lowest common ancestor (LCA) of the current access
(i.e., a step node) and the last access stored in the variable’s
metadata. SPD3 reports a race if the left child of the LCA,
which is an ancestor of the step node representing the last
access, is an async node that indicates concurrent execution of
the last access and the current task. The DPST allows SPD3 to
maintain one metadata location for writes and two locations
for reads in shadow memory.

PTRacer. PTRacer extends SPD3 by detecting apparent
races in async-finish programs with locks [63]. PTRacer main-
tains two metadata locations each for reads and writes to a
shared variable. The metadata per variable is proportional
to the number of different locksets (i.e., set of locks held by
the tasks at any time) with which the variable is accessed,
which is reasonable in practice because variables are usually
accessed with similar locking patterns.

PTRacer selects two “last read” (“last write’”) accesses from
multiple parallel accesses with the same lockset to maintain
constant metadata, such that any future write which can race
with any one of the parallel reads (writes) will race with
either one of the two chosen “last readers” (“last writers”).
PTRacer makes these choices by selecting step nodes with the
highest LCA among all parallel step nodes. PTRacer detects
all races for a given input even in the presence of lock-based
synchronization. Consider the shared variable var1 which is
updated by the parallel tasks T2, T4, and T5 in Figure la. The
step nodes corresponding to these accesses are S21, S41, and
S51, respectively. Since, S21 and S51 have the highest LCA
in the corresponding DPST, PTRacer will store these two
accesses and discard the access information for S41.

The race analysis in PTRacer is similar to SPD3. PTRacer
will report a race on var?2 for the example in Figure 1 because
the left child of the LCA of step nodes S21 and S31 is an async
node. SPD3 will report false races on the variable var1.

PTRacer uses the DPST to maintain a constant amount of
per-variable metadata independent of the number of tasks exe-
cuting the program. Furthermore, PTRacer performs frequent
lookups in the DPST to check whether two accesses can hap-
pen in parallel. However, the DPST can be deep for programs
with a recursive pattern of task creation and large because of
many step nodes. These lead to high run time and memory
overheads. PTRacer uses an array-based representation of the
DPST and caches LCA lookups to improve the performance
of LCA. However, the DPST and the LCA computation con-
tinue to be a significant bottleneck for several benchmarks,
as we show in Section 5.2. Thus, there is a need for more
efficient techniques to help detect data races in async-finish
programs.
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3 FastRacer: Efficient Dynamic Data Race
Detection for Async-Finish Programs

The thesis of this work is that vector clocks can provide
better data locality for series-parallel (SP) maintenance in
task-based programs compared to tree-based data structures
used in prior work (e.g., [48, 58, 63]). We present FastRacer,
a novel algorithm that integrates the benefits of vector-clock-
based analysis and exploits structured parallelism of async-
finish programs to limit the amount of per-variable metadata.

Task-based programs create more, often orders of magni-
tude, parallel tasks than threads in multithreaded programs.
For example, the benchmark nearestNeigh creates up to ~ 3 x
10° tasks (Table 2). Race detectors like FastTrack use per-
thread and per-variable vector clocks to capture the clock
values of all the threads in the system. While this representa-
tion works fine for multithreaded programs where the number
of concurrent threads is comparatively small (~#cores), it is
impractical for task-based programs and leads our FastTrack
implementation to run out of memory on several benchmarks
(Section 5.2). Storing only non-zero entries in a vector clock
does not help since several concurrent tasks potentially ac-
cess shared read-only variables. Furthermore, maintaining
vector clocks proportional to the number of threads can detect
only feasible data races and misses races among concurrent
tasks [24]. In the following, we discuss novel ideas to solve
these challenges.

Algorithm 2 FastRacer analysis at synchronization operations

1: procedure SPAWN > Task T spawns task U
2 if size(T.rw_vc) > THRESHOLD then
3 T.ro_vc <— REF({T.ro_vc U T.rw_vc})
4 Trw_vc < 0
5: else
6: U.ro_vc < T.ro_vc
7 U.rw_vc ¢~ T.rw_vc
8 U.rw_vc < U.rw_vc U {T.epoch}
9: U.joined <— Tjoined
10: U.lockset < T.lockset
11: U.IVC < T.IVC U {getClock(U.epoch)}
12: T.epoch < T.epoch + 1
13: U.epoch < U.epoch + 1
14: procedure JOIN > Task T joins with U
15: T.joined < T.joined U {getTaskId(U.epoch)}

16: function CHECKHB(c@u,T)
17: > Check HB between epoch c@u and T’s access
18: return c@u < T.rw_vc or c@u < T.ro_vc or u € T.joined

3.1 Adapting Vector Clocks for Task Parallelism

We analyzed the performance of FastTrack and found that
operations on task vector clocks incur high time and space
overhead. For example, the task join operation is a bottleneck
because it requires comparing and merging all the clock val-
ues in the child and the parent tasks’ vector clocks. Naively
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merging the vector clocks is not required since most vector
clock entries remain unchanged during the lifetime of a task.

Tracking read-only clock entries. The first insight in Fast-
Racer is that most vector clock entries for a task remain un-
changed during the lifetime of the task, and the clock values
continue to be the same as in the parent task. Thus, maintain-
ing per-task copies of the clock entries is mostly redundant.

In FastRacer, a task vector clock is partitioned into a read-
only (denoted by ro_vc) and a read-write portion (denoted
by rw_vc). Child tasks in FastRacer maintain a reference to
the ro_vc of their parents instead of maintaining redundant
copies. During a spawn operation (Algorithm 2), FastRacer
first checks if the size of rw_vc is greater than a threshold.
If yes, then FastRacer merges ro_vc and rw_vc of the parent
task into a new ro_vc for the child task and rw_vc of child
task is kept empty. Otherwise, the child ro_vc points to the
parent ro_vc and the parent’s rw_vc is copied to the child’s
rw_vc. Avoiding needless copies and redundant operations on
the read-only portions of vector clocks helps reduce space
overheads and improve performance. In the common case,
most vector clock entries of a task remain unchanged, i.e., the
size of rw_vc is small. Complete vector clock copies happen
only when the size of rw_vc is greater than THRESHOLD.

Optimizing vector clock join. An access to a shared vari-
able by a parent task after joining with a child task always
happens after the child’s accesses, since the accesses are syn-
chronized by the join operation. The second insight is that
FastRacer does not need to store the clock values of the child
tasks after the join operation. Instead, tracking the set of all
child tasks that have joined with the parent task suffice.

Each task in FastRacer maintains the set of child tasks
that have already joined with it in a joined data structure.
No vector clock join occurs when a task T joins with task
U, instead, the child task is added to the joined of the parent
task (Algorithm 2). When a parent task spawns a new child
task, the parent joined is copied to the child joined. The size
of task vector clocks reduces significantly due to the joined
optimization. Note that a trivial implementation of joined may
not give performance benefits over FastTrack. We use efficient
set implementations based on the Union-Find data structure,
which reduces the overhead of set operations.

Vector clock caching. The vector clocks for a few tasks
can be large even after the optimizations. FastRacer uses ex-
plicit attributes to cache recently used vector clock values
to avoid the cost of looking up the map data structure repre-
senting vector clocks. FastRacer indexes into the vector clock
map when the thread id is not among the most recently used.

3.2 Specializing for Async-Finish Programs

It can be expensive to maintain all concurrent readers of
a shared variable in task-based programs. FastRacer uses
coarse-grained tracking of task inheritance relationships to
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Task T1

IVC=[1] IVC=[2]

T3's clock value

Task T4 Task T5

Figure 2. The inheritance tree for program in Figure 1a.

IVC=[2}1]

T3's IVC

IVC=[2,2]

select relevant accesses from parallel readers/writers,® which
allows maintaining constant per-variable metadata per-lockset
(i.e., the set of locks held by the task).

Maintaining constant per-variable metadata. FastRacer
models the parent-child relationship among different tasks
with a task inheritance tree. The nodes represent tasks, and
edges represent the creation of child tasks by the parent. Fig-
ure 2 shows the inheritance tree for the program shown in
Figure 1a (ignore the IVC labels for now). FastRacer uses the
inheritance tree to efficiently select two accesses out of multi-
ple concurrent accesses with the same lockset, such that any
racy future access that races with any one of the concurrent
accesses must be racy with either one of the two chosen last
accesses. For parallel tasks accessing a variable with the same
lockset, FastRacer stores the access history of the two tasks
with the highest LCA in the inheritance tree. Consider the
three accesses to var1 from tasks T2, T4, and T5 in Figure la.
In the inheritance tree shown in Figure 2, task nodes T2 and
T4 (or T5) have the highest LCA, and so FastRacer stores the
access histories from T2 and T4 and discards T5. Any later
access to var1, which is not parallel with both T2 and T4, will
not be parallel with T5. So, discarding T5’s access information
is correct.* The metadata stored per shared variable in Fast-
Racer is proportional to the number of the different locksets
with which the variable has been accessed.

The primary difference between a DPST and FastRacer’s
inheritance tree is in the granularity of the nodes. While a
DPST decomposes a task into several unsynchronized regions
represented by step nodes, an inheritance tree has just one
node per task. The coarser modeling makes the inheritance
tree much smaller and shallower than the DPST. Unlike a
DPST, there is no left-to-right ordering in an inheritance tree.
While PTRacer uses DPST to check the concurrency between
two accesses and select accesses with the highest LCA, Fast-
Racer only does the latter with the inheritance tree. FastRacer
uses vector clocks for data race detection to compensate for
the coarser modeling and loss of ordering between the nodes
(Section 3.3).

3When tasks use locks, two writes can happen in parallel but do not constitute
arace if they are protected by the same lock.

“In async-finish semantics, a task must join with its ancestor, either immediate
or recursive. In case a parent task calls join, all children tasks within this join
scope, either immediate or recursive, join with it.

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

Inheritance vector clock. Instead of building an inheri-
tance tree, FastRacer encodes the inheritance relations in a
per-task array of clock values called Inheritance Vector Clock
(IVC) for better performance. An IVC is an immutable vec-
tor clock that contains the clock values of all the reachable
parents of a task T at the time of the creation of T. An IVC
identifies the unique path in the inheritance tree from the root
task to T, since a task spawn increments the scalar clock of
the caller task. Whenever a parent task creates a child task,
FastRacer copies the parent’s IVC to the child and appends
the parent’s clock value at the end of child IVC. In Figure 2,
the IVC of the parent task T3 is copied to the child task T4
and the current clock of T3 (assumed to be one) is appended.

Both IVC labeling and the Offset-Span (OS) labeling [36]
schemes compute a unique label from the label of the immedi-
ate predecessor, and guarantee that the length of a task’s label
will always be proportional to the depth of the task in the
inheritance tree. However, there are two differences. First, the
IVC of atask, once created, is immutable. Unlike OS labeling,
any further task join operations do not modify the IVC. Sec-
ond, the Span part of OS labeling can only be assigned after
the task graph is complete, i.e., OS labels cannot be computed
while building the task graph. Intuitively, IVC labels are more
similar to the Offset part, with the constraint that they do not
get updated at join operations. Whereas prior work uses OS la-
bels for race detection [24, 36], FastRacer uses IVC labels to
identify two accesses out of multiple parallel accesses having
the highest LCA in the inheritance tree.

Computing tasks with the highest LCA. To compute the
highest LCA among three parallel tasks, FastRacer iterates
over the IVCs of all the tasks simultaneously and stops at the
first point of difference. After that, FastRacer chooses the task
with a different clock value and any one of the other two. If
all the three clock values are different, any two out of three
tasks can be chosen. If FastRacer reaches the end of an IVC
for any task T, it indicates that T must be the parent of the
other two in the inheritance tree, and so, FastRacer chooses
the parent task T and any one from the other two. The tasks so
chosen will have the highest LCA in the inheritance tree (see
Lemma 3.2). The computation overhead depends on the sizes
of the IVC, which is equal to the height of the inheritance
tree. Since an inheritance tree is much shallower compared to
a DPST, the computation is relatively efficient.

In Figure 1a, the accesses to var1 from three parallel tasks,
T2, T4, and T5, are with the same lockset {L13}. The IVCs of the
corresponding task nodes, shown in Figure 2, are IVCrp=[1],
IVCyr4 = [2,1], and IVCys = [2,2]. To select two out of the
three accesses, FastRacer iterates over the three IVCs simulta-
neously. The first point of difference is at the first entry itself:
IVCr3[0]=1, IVC7r4[0]=IVCr5[0]=2. So, FastRacer selects a
task with a different clock value, i.e., T2 and any one of other
two, say T4 (or T5). For the example in Figure 2, tasks T2 and
T4 (or T5) indeed have the highest LCA in the inheritance tree.
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(a) Metadata maintained in FastTrack.

class PerVariableMetadata {

epoch wr_md, rd_md; // Write and Read epoch
map<taskid, clock> rd_vc; // Read vector clock
}
class PerlLockMetadata {
map<taskid, clock> vc;
}
class PerTaskMetadata {
epoch epoch;
map<taskid, clock> vc;
}

(b) Metadata maintained in FastRacer.

class PerVariableMetadata {

PerLockMetadata lock[];
}
class PerlLockMetadata {
set<lockID> lockset;
epoch rd1, rd2; // Reader 1 and 2 metadata
IVC* rdl_ivc, rd2_ivc; // IVC of Reader 1 and 2
epoch wrl, wr2; // Writer 1 and 2 metadata
IVC*x wrl_ivc,wr2_ivc; // IVC of Writer 1 and 2
}

class PerTaskMetadata {
epoch epoch;
map<taskid,
map<taskid,
set<taskid>
set<lockId>
int IVC[];

clock> ro_vc; // Rd-only vector clock
clock> rw_vc; // Rd-wr vector clock
joined; // All joined child tasks
lockset; // Locks held by the task

Figure 3. Comparison of metadata state maintained in Fast-
Track and FastRacer.

3.3 Detecting Data Races

FastRacer extends the FastTrack algorithm (Section 2.1) to
detect races and update metadata.

Metadata. Figure 3 compares the metadata maintained in
FastTrack and FastRacer. Given a task T, FastTrack uses a
vector clock for storing the epoch values of all other tasks
(line 10, Figure 3a). The attributes ro_vc, rw_vc, and joined in
PerTaskMetadata in Figure 3b correspond to the optimizations
introduced in Section 3.2. While FastTrack uses vector clocks
to track lock operations, FastRacer uses the lockset mech-
anism [52]. Every task in FastRacer maintains and updates
lockset at lock acquire and release operations.

The per-variable state in FastRacer is an array of lock
metadata. Each lock metadata stores the access history of
the variable with the distinct set of locks held before the
access. Every per-lock metadata contains four access history
entries, two each for reads and writes, which contain the
epoch value and a reference to the IVC of the task at the time
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of access. Storing references to the IVCs suffice since they
remain unchanged during the lifetime of a task.

Race checks. When a shared variable is accessed, Fast-
Racer iterates over all the lock metadata corresponding to
distinct locksets with which the shared memory variable has
been accessed. An empty intersection of the lockset of the cur-
rent access and the lock metadata implies potentially parallel
accesses. If the two locksets are disjoint, FastRacer checks if
the epoch values stored in the access history happens before
the current access using vector clocks (CHECKHB, Algorithm 2).
If there is no such relationship, it implies that the prior ac-
cess is concurrent with the current access. Finally, FastRacer
reports a data race if one of the two accesses is a write.

Before accessing a shared variable x, FastTrack compares
the current task’s vector clock with the epoch(s) stored in x’s
access history to determine if the current access to x happens
after the past accesses (CHECKHB, Algorithm 1). FastRacer,
apart from the vector clock entry check, also checks if the
tasks present in x’s access history belong to joined of the cur-
rent task. If all the tasks are present in joined, FastRacer infers
that the current access happens after prior accesses. Since
the vector clock is spread across ro_vc, rw_vc, and joined,
CHECKHB (Algorithm 2) checks the HB relation against all of
them.

Metadata updates. FastRacer updates the read metadata
corresponding to the current lockset if a read does not race
with prior writes. FastRacer checks if any of the read epochs
in the lock metadata corresponding to the current lockset
happens before the current task’s access. If yes, then Fast-
Racer updates that access entry with the current task’s epoch
and IVC. Otherwise, there are three parallel reads, and Fast-
Racer needs to select two with the highest LCA. FastRacer
iterates over the IVC of all three access entries and stops
either at the first point of difference or if one of the IVCs end.
FastRacer stores the access history of the task corresponding
to the selected IVC and any one of the other two. Using any
one of the other two works since, in both the cases, the two
chosen tasks will have the highest LCA in the inheritance tree
(Section 3.2). Figure 4 shows an example of how FastRacer
updates the read metadata. Assume tasks T2, T3, and T4 all
read a shared variable x and task T5 writes x. After the reads
from T2 and T3, the two readers stored for the variable x are
T2 and T3, because both these tasks can run in parallel. Since
task T4 is spawned by T1 after T1 synchronizes with T2, so the
read by T4 happens after the read of T2. The read metadata
entry of T2 is replaced by T4. Next, when T5 writes x, Fast-
Racer checks the access with all previous reads and reports
a read-write race between the accesses from T4 and T5. The
steps performed by FastRacer on a write access are similar.

Synchronization operations. During a spawn operation
(Algorithm 2), FastRacer checks if the size of rw_vc is greater
than a threshold. If yes, FastRacer merges ro_vc and rw_vc of
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finish {
async { // Tl
finish {
async { // T2
async { // T3

}

async { // T4

async { //T5
}

Figure 4. An async-finish program with five tasks T1-T5 and
the corresponding inheritance tree.

the parent task into a new ro_vc for the child task and rw_vc of
the child is kept empty. Otherwise, the child ro_vc references
the parent ro_vc, and the child rw_vc is copied from parent
rw_vc. Thereafter, FastRacer copies the parent’s joined and
lockset to the child’s joined and lockset, respectively. In case
of a join operation, the joined of the parent task is updated to
contain the id of the child task.

A task’s vector clock is not updated in case of lock acquire
and release operations. Instead, FastRacer uses PTRacer’s
mechanism to deal with lock operations. Each task maintains
a lockset. When a task T acquires a lock L, the lockset of T is up-
dated to contain lock L. In case of a lock release, L is removed
from the lockset. When T accesses a shared variable x, the
lockset is copied to the variable metadata. During a race check,
FastRacer checks for the intersection of the locksets from the
metadata history to infer a data race. In practice, variables are
accessed with the same set of locks, and hence maintaining
access metadata for different sets of unique locks is reason-
able. Furthermore, metadata update operations depend on the
size of the IVC, but we find that the maximum depth of the
inheritance tree is small (< 30 for our benchmarks).

3.4 Characterizing FastRacer

Race coverage. While FastTrack’s race coverage is lim-
ited to the observed schedule, FastRacer can detect per-input
apparent races like PTRacer. Although both FastTrack and
FastRacer use vector clocks to track happens-before (HB)
relations among accesses, FastRacer can detect races in other
schedules due to the following algorithmic differences with
FastTrack.

e FastTrack stores per-thread vector clocks. The races
reported by FastTrack can vary across schedules since
many tasks can map to a single thread, and the exact
sequence of tasks mapped may vary across schedules.
FastRacer stores vector clocks per task, and is not im-
pacted by the mapping of tasks to threads.

e FastTrack tracks the HB relations to establish order
among synchronization operations, which is sensitive
to the order of lock operations and varies across sched-
ules. FastRacer uses the lockset technique to track syn-
chronization operations and stores two reads and two
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writes per lockset in per-variable metadata. The meta-
data structure enables FastRacer to detect races irre-
spective of the order of lock operations, so the number
of races reported is the same across schedules.

Correctness. The following two lemmas help prove the
correctness of FastRacer. We discuss the proofs in the Appen-
dix.

Lemma 3.1. Storing access entries of only two tasks such
that their LCA is the highest is sufficient. A future access to
the variable, which is racy with any of the existing parallel
accesses, must be racy with any one of the two access entries
with the highest LCA.

Lemma 3.2. The IVC correctly computes the two tasks with
the highest LCA among three parallel tasks.

4 Implementation

Our implementation extends the PTRacer artifact.” A static
compiler pass using LLVM 3.7 instruments load and store
instructions in C++ programs, and inserts function calls to ex-
ecute the appropriate dynamic race detection analysis. The im-
plementation uses Intel Threading Building Blocks (TBB) [49]
for task parallelism. The public implementation of PTRacer
reports wrong race results for the benchmarks fluidanimate,
kmeans, streamcluster, and sort (see Section 5.1). We found
an implementation error was corrupting the DPST built by
PTRacer, and there was a race while updating a global ar-
ray data structure used for LCA hashing. After fixing these
issues, the race reports were the same across all the tools.
Our modifications have minimal (<1%) impact on the per-
formance of PTRacer, and we use our fixed version for the
evaluation. Our prototype implementation of FastRacer ex-
tend the same static compiler pass to ensure all the prototypes
do the same work. We have also reimplemented the FastTrack
algorithm [21, 22].

Race detection for fork-join programs. Utterback et al.
propose a parallel and asymptotically optimal algorithm called
WSP-Order for race detection of fork-join programs [58]. The
algorithm uses two order maintenance (OM) data structures
to maintain two total orders of all strands in the computation.
A strand is a sequence of instructions that contain no paral-
lel primitives and executes sequentially. A strand x logically
precedes strand y if and only if x precedes y in both orderings.
These orderings are sufficient to determine SP relationships.
The two OM data structures support constant-time operations
like insert and query, and most concurrent updates do not need
synchronization. However, large parts of the OM data struc-
ture are updated during relabel operations and hence require
synchronization. Since relabel operations are serialized, the
algorithm modifies a work-stealing task scheduler to priori-
tize the operations. Furthermore, workers blocked on an insert

Shttps://github.com/rutgers-apl/PTRacer
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or a query operation help with the relabel instead of being
idle. Note that the WSP-Order algorithm does not support
lock-based synchronization and requires tight coupling with
a work-stealing scheduler for good performance [58].

The public implementation of WSP-Order is called C-
RACER.° Since the original implementation uses the Batcher
runtime [1], we reimplement C-RACER with Intel TBB in
LLVM for a fair comparison. An important contribution in
the original C-RACER work is the parallelization of the re-
label operations. We have not implemented task scheduler
support for parallel relabel operations, relabels in our imple-
mentation are serial. The total time taken in the serial relabel
operations is small in our experiments. The run time of the
benchmarks we report for C-RACER does not account for the
time taken for the relabel operations, which is a lower bound
(Section 5.2). Note that our reimplementation can also differ
in performance from the original implementation because of
differences in the schedulers.

We reuse eighty unit test cases from the PTRacer artifact
and designed new test cases to check the correctness of our
FastTrack, FastRacer, and C-RACER implementations. The
unit tests include both racy and non-racy programs, with and
without locks. All the prototypes pass the unit tests. Our
implementations are publicly available.”

5 Evaluation

This section compares FastRacer with the closest prior work,
FastTrack [21], PTRacer [63], and C-RACER [58].

5.1 Experimental Setup

Benchmarks. We reuse twelve TBB-based applications
used by PTRacer for our evaluation. These include four appli-
cations, blackscholes, fluidanimate, streamcluster, and swaptions,
from the PARSEC benchmark suite [4], five geometry and
graphics applications, convexHull, delRefine, delTriang, near-
estNeigh, and rayCast, from the PBBS benchmark suite [56],
and three applications, karatsuba, kmeans, and sort, from the
Structured Parallel Programming book [35]. We left out the
PARSEC application, bodytrack, because of a compilation
error, and ignore the C-RACER benchmarks because they use
Cilk-5 [58].

The benchmarks follow spawn-sync semantics where a child
task joins with its immediate parent (async-finish semantics
are more general) and do not use locks, so we were able to
run C-RACER successfully for all the benchmarks.

Evaluation platform. The experiments execute on an Intel
Xeon Gold 5218 system with one 16-core processor with hy-
perthreading disabled, 128 GB DDR4 primary memory, run-
ning Ubuntu Linux 20.04.3 LTS with kernel version 5.11.0.

Ohttps://github.com/wustl-pctg/cracer
7https://github.com/prospar/fastracer-pmam-2022
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5.2 Performance Results

Figure 5 reports the performance of C-RACER, PTRacer, and
FastRacer for all the benchmarks (arranged alphabetically).
Every bar averages ten trials and is normalized to the baseline,
which run