
MixNN: Protection of Federated Learning Against Inference
Attacks by Mixing Neural Network Layers

Antoine Boutet
Univ Lyon, INSA Lyon, Inria, CITI

antoine.boutet@insa-lyon.fr

Thomas Lebrun
Univ Lyon, INSA Lyon, Inria, CITI

thomas.lebrun@inria.fr

Jan Aalmoes
Univ Lyon, INSA Lyon, Inria, CITI

jan.aalmoes@inria.fr

Adrien Baud
Univ Lyon, INSA Lyon, Inria, CITI

adrien.baud@inria.fr

Abstract
Machine Learning (ML) has emerged as a core technology to
provide learning models to perform complex tasks. Boosted
by Machine Learning as a Service (MLaaS), the number of
applications relying on ML capabilities is ever increasing.
However, ML models are the source of different privacy
violations through passive or active attacks from different
entities. In this paper, we present MixNN a proxy-based
privacy-preserving system for federated learning to pro-
tect the privacy of participants against a curious or mali-
cious aggregation server trying to infer sensitive attributes.
MixNN receives the model updates from participants and
mixes layers between participants before sending the mixed
updates to the aggregation server. This mixing strategy dras-
tically reduces privacy without any trade-off with utility.
Indeed, mixing the updates of the model has no impact on
the result of the aggregation of the updates computed by
the server. We experimentally evaluate MixNN and design a
new attribute inference attack, ∇Sim, exploiting the privacy
vulnerability of SGD algorithm to quantify privacy leakage
in different settings (i.e., the aggregation server can conduct
a passive or an active attack). We show that MixNN signifi-
cantly limits the attribute inference compared to a baseline
using noisy gradient (well known to damage the utility)
while keeping the same level of utility as classic federated
learning.

Keywords: Machine Learning, Federated Learning, Infer-
ence Attacks

1 Introduction
The collection of personal data is a subject firmly grounded
in public debates. The growing awareness of the population
on privacy issues led to stronger regulations on data protec-
tion (e.g., GDPR, HIPAA) and contributed to the appearance
of new services making privacy an incentive vector such
as privacy-based search engine (e.g., Duckduckgo, Qwant),
web browsing (e.g., Web Proxy, Tor, Brave), or mailing (e.g.,
Protonmail). These services rely on infrastructures setup by
companies, nonprofit organizations promoting privacy, or
are fully peer-to-peer involving devices of end-users.

However, personal and private data is still the fuel of all
desires. In this context, Machine Learning (ML) has emerged
as a core technology to analyze and provide learning models
from large volumes of data and to perform complex tasks
such as classifications, predictions or clustering. The suc-
cess of ML has driven different providers to launch Machine
Learning as a Service (MLaaS) engines to make ML opera-
tion easier for anyone, without the cost and time to build
in-house infrastructures. These new services has led to an
ever increasing number of new applications or services rely-
ing on ML capabilities in different domains such as computer
vision, health analytic and speech recognition to name a few.
However, it has been showed that ML models may leak in-
formation in the training data [1–3]. The fact that many
applications using this technology involve the collection and
processing of personal and sensitive data has raised privacy
concerns [4].

Despite being popular, the memorization of training data
by a ML model is the source of different privacy violations
such asmembership, property and attribute inference through
passive or active attacks. Membership inference [5, 6] refers
to the capacity of an adversary to identify if a data point (or
the data of an individual) has been used to train the target
model. This attack has a serious privacy implication if the
model is training with sensitive information (e.g., data from
people with certain health status). Property inference [7, 8],
in turn, corresponds to the inference by an adversary of the
properties of training data such as the features that charac-
terize each class. This property inference can also concern a
subset of the training inputs. This ability to learn from train-
ing data is desired if the inference is directly related to the
main task of the model. By contrast, attribute inference [9]
corresponds to the fact that an adversary is able to infer an
unintended and undesired attribute not correlated to class’s
characteristic feature. Root causes related to these attack sur-
faces as well as the link between utility (e.g., through model
overfitting [10, 11]) and privacy are not well understood.
Recently, Federated Learning (FL) [12] has emerged as

promising privacy-by-design alternatives to decentralized
learning schemes. In such a collaborative scheme, personal
data never leaves the user device. Instead, devices (comput-
ing and refining a learning model with their own data) and

ar
X

iv
:2

10
9.

12
55

0v
1

 [
cs

.L
G

]
 2

6
Se

p
20

21

a central server (aggregating models) work together to build
a global learning model. This new ML scheme has attracted
many attention these last years, not only from the research
community but also from major Internet companies, sug-
gesting future deployments. For instance, Google envisioned
to massively exploit FL in the near future (e.g., through its
FLoC API [13]). While the FL scheme is a clear step forward
towards enforcing users’ privacy, it still suffers from a large
ML-based attack surface including membership, property
and attribute inference from participants or from the server.
Different protection mechanisms to limit inference capabili-
ties of an adversary have been proposed [14]. For instance,
some solutions [15, 16] are based on perturbation in order
to reveal only a noisy information to the server, such as
differential privacy. However, these solutions significantly
damage the accuracy of the model and its capacity to con-
verge. Secure aggregation relying on a cryptographic scheme
has been also proposed [17–19]. Similar to MixNN, this so-
lution ensures that the server is only aware of the aggregate
of all models, keeping the model of each participant (and
the associated inference) private. Beside the overhead of this
solution remains low, the underlying cryptographic scheme
requires the participation of the server in the protection. We
argue that such solutions are not deployed in practice. In-
deed, few companies accept to afford the additional cost of
the protection. For instance, Private Information Retrieval
(PIR) protocols which follow similar cryptographic scheme
to protect the profile of users are not widely adopted in prac-
tice. Moreover, a curious or malicious server trying to infer
information from participants will certainly not adopt such
a protection.

In this paper, we presentMixNN, a new privacy-preserving
service for FL against inference attacks from a curious or ma-
licious aggregation server. To achieve that, MixNN relies on
a proxy mixing the layers of the model updates among par-
ticipants before sending them to the aggregate server. Like
Mixnets to ensure anonymity in information routing [20],
mixing the layers of the participants’ updates of neural net-
work prevents inference attack without decreasing the accu-
racy of the aggregated model. This solution, albeit simple,
leads to drastically improving the privacy without any trade-
off with utility. In addition, MixNN is transparent to the FL
service, participants only need to configure a web proxy for
the associated traffic. Tomake the deployment of MixNN eas-
ier by anyone (e.g., operate by an individual or non profit
organizations willing to protect privacy) and possibly on
an untrusted infrastructure, the proxy mixing the neural
network layers is running inside an SGX enclave ensuring
confidentiality and attestation on its behavior.
To illustrate the capability of MixNN to protect privacy

while maintaining the same level of utility, we design ∇Sim a
new attribute inference attack exploiting the privacy vulner-
ability of the Stochastic Gradient Descent (SGD) algorithm.

More precisely, the server infers sensitive attributes of par-
ticipants from their model updates. These updates represent
the gradient vectors which minimize their contribution to
the model’s training loss. These gradient vectors are conse-
quently influenced by the local data of the user. Based on
auxiliary information on themodel updates from participants
belonging to each class of sensitive attributes, ∇Sim uses the
gradient vector as a fingerprint to infer attributes. ∇Sim can
be conducted passively only though the observation of model
updates (i.e., the case of a curious and undetectable adver-
sary server), or actively by influencing the model sent to
participants to extract more information (i.e., the case of a
malicious adversary server modifying the protocol).
Our work takes a quantitative and empirical approach.

We implement MixNN and experimentally evaluate it with
several datasets and neural networks architectures. We also
leveraged∇Sim to quantity privacy leakage through attribute
inference attack on classical federated learning scheme, a
baseline using perturbation (i.e., noise) to protect the model
updates (widely used in Differential Privacy), and MixNN .
We show that MixNN limits the attribute inference com-
pared to other baselines without decreasing the accuracy of
the global aggregated model. Moreover, we show that the
MixNN proxy introduces only a small latency on the model
updates. The code of MixNN and ∇Sim are publicly available.
The remainder of this paper is organized as follows. Sec-

tion 2 presents background, Section 3 defines the problem
and the threat model, Section 4 explains the design and the
implementation of MixNN, Section 5 presents the new at-
tribute inference attack, Section 6 reports the evaluation
of MixNN, Section 7 reviews related work, and Section 8
concludes this paper.

2 Background
In this section, we review background related to Neural
Networks 2.1, Federated Learning 2.2, inference attacks 2.3,
Mixnet 2.4, and Intel SGX 2.5.

2.1 Neural Networks
An ML model is a function 𝑓 (𝜃) : 𝑋 ↦→ 𝑌 parameterized
by a set of parameters 𝜃 , where X denotes the input (or
feature) space (𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑘), and Y the output space
(𝑌 = 𝑦1, 𝑦2). Training an ML model corresponds to find the
optimal set of parameters 𝜃 that fits the training data. This
is done by optimizing an objective function (loss) which
penalizes the model when it is wrong. For instance, if we
consider a classification task trained through a supervised
learning, parameters 𝜃 are updated if the model misclassifies
training data.
Neural networks are a family of ML models which have

become popular for a variety of ML tasks. A neural network
is composed of multiple layers of non-linear mappings from
input to intermediate hidden states (or hidden layers) and

2

Figure 1. Example of Neural Network.

then to output where each layer transforms the output of
the preceding layer to produce input for the next layer. The
topology of the connections between layers and the type of
considered transformation function are task-dependent and
impact the accuracy of themodel. For instance, convolutional
layers account for locality where each neuron receives a
restricted input space while a neuron receives the entire
previous layer in a fully connected layer.

A neural network 𝑓 is composed of a collection of𝑛 hidden
layers (𝑓 = (𝑙1, 𝑙2, ..., 𝑙𝑛)). Each layer 𝑙𝑖 is composed of a set
of𝑚 neurons (𝑙𝑖 = (𝑛𝑖1, 𝑛𝑖2, ...𝑛𝑖𝑚)). For input 𝑋 , the output of
the neural network, can be formally written as:

𝑓 (𝜃) = 𝐹𝑛 (𝐹𝑛−1 (...𝐹2 (𝐹1 (𝑋)))),

where𝑋 is the input, 𝑛 the number of layers, 𝐹𝑖 represents
a transformation function of the layer 𝑙𝑖 , and 𝜃 is the set
of floating-point weights associated with each connection
between two neurons of different layers. Considering a fully
connected neural network (as depicted Figure 1), 𝜃 𝑡

𝑎𝑏
repre-

sents the weight connecting the node 𝑛𝑡𝑎 to the node 𝑛𝑡−1
𝑏

.
These weights are updated during training according to the
method to optimize the objective function. In this work, we
consider Stochastic Gradient Descent (SGD) to do this opti-
mization. SGD is an iterative approach where the optimizer
receives a batch of training data and updates the model pa-
rameters 𝜃 at each iteration according to both the direction
of the gradient of the objective function and a learning rate
𝜂 which scales the update. Once the gradient is close to zero,
the model has converged to a local minimum and the train-
ing is finished. The model is evaluated through its accuracy
over testing data points not used to train the model. The
hyperparameters refer to the set of tunable parameters not
related to the neural network (e.g., weights associated to
connection) such as the number of training iterations, the
size of the training batch or the learning rate.

2.2 Federated Learning
Federated Learning (FL) is a collaborative learning scheme
to train an ML model [12]. In such a scheme, personal data
never leaves the device of participants. Instead, devices train
a ML model locally and interact with a central server to build
a global learning model.
The iterative-based operating flow of classical FL is de-

picted Figure 2. Each iteration contains three steps. First, the

Figure 2. Operating flow of Federated Learning.

aggregation server disseminates a global model to partici-
pants (step ❶ in the figure). Each participant then trains and
refines this model with its own data stored locally (step ❷).
After this local training, each participant holds its own vari-
ation of the model sent by the server. Participants then send
their updated model parameters to the aggregation server.
Finally, the server aggregates all these updates to generate
a new global model (step ❸) which will be disseminated
to participants in the next iteration. Iteratively, the global
model maintained on the server converges without requiring
access to the personal data of participants.

2.3 Inference Attacks
By keeping locally data of the users on their device, FL im-
proves privacy by design. However, FL can disclose sensitive
information via model updates that are based on the training
data. Indeed, any useful ML model reveals something about
the population from which the training data was drawn. In-
deed, a classifier model for instance may reveal the features
that characterize a given class or help construct data points
that belong to this class. The first privacy violation is prop-
erty inference: identification of the features that characterize
each class, making it possible to construct representatives of
these classes through model inversion attacks [1]. Another
privacy violation is attribute inference [10]: the leak of per-
sonal and unintended information (i.e., properties that hold
for certain subsets of the training data, but not generically
for all class members). The last privacy violation in our set-
ting is membership inference [21]: given an exact data point,
determine if it was used to train the model.
Memorization of training data by deep neural networks

enables an adversary to conduct all these privacy violations.
Firstly, this memorization usually combined with over-fitting
of the model are exploited by an adversary to conduct a
membership inference attack in order to discriminate if a

3

user has been part of the training or not [5]. This attack
has a serious privacy implication especially if the learning
model is related to sensitive information (e.g., presence of a
certain pathology). Secondly, as deep-learning models come
up with separate internal representations of all kinds of
features, some of which are unpredictable and independent
of the task being learned, the memorization of the training
data can be leveraged by an adversary to infer a sensitive
attribute [9]. In addition, due to the distributed nature of FL,
passive and active inference attacks can be conducted by any
participant or by the server.

Introducing Differential Privacy in the Stochastic Gradient
Descent (DP-SGD) [14, 22] has been proposed to reduce the
inference capability of an adversary, however this solution
significantly damages the accuracy of the model and its ca-
pacity to converge [15, 16]. In addition, the noise calibration
and the management of the privacy budget is not trivial.
Other defenses propose to reduce the overfitting [23] but
inherently decrease the utility.

2.4 Mixnets
The concept of mixing information to make them indistin-
guishable or unlinkable is not new.Mix networks (Mixnets) [20]
uses this concept to provide a proxy-based anonymity sys-
tem. This system aims to provide unlinkability between the
message sent by an user, and the message received by the des-
tination. More precisely, to prevent traffic analysis attacks,
Mixnets route each message of the user through a set of
anonymity servers called mixes. Mixes collect and shuffle (or
mix) many messages before to route then to the destination.
A variety ofmixnets have been proposed includingAqua [24],
Riffle [25], and Mixminion [26] addressing differently the
tradeoff between anonymity, latency and bandwidth.

The limitation of these systems are similar to Tor, it is dif-
ficult for a user to determine which edge is uncompromised
and powerful adversaries controlling both ends of the circuit
can still deanonymize clients.

2.5 Intel SGX
The MixNN proxy relies on a Trusted Execution Environ-
ment (TEE), which leverages custom microprocessor zones,
to enforce isolation, confidentiality and integrity of code and
data. Specifically, we use Intel Software Guard Extensions
(SGX) [27, 28] which defines the concept of enclave. The
memory of an enclave is encrypted and cannot be directly
accessed by other system software even by privileged code
(e.g., the operating system or hypervisor). Enclaves can be
attested to prove that the code running in the enclave is the
one intended, and that it is running on a genuine Intel SGX
platform. Once attested, enclaves can be provisioned with se-
cret data by using authenticated secure channels. Moreover,
enclaves can persist secret data outside the trusted zone by
using a sealing mechanism. However, such protection comes
with resource constraints. More precisely, only 96 MB out

of the 128 reserved for the enclave can be used by appli-
cations. Although virtual and dynamic memory support is
available [29–31], it incurs significant overheads in paging
(i.e., the sealing and unsealing operations used an encryption
key derived from the CPU hardware).

3 System and adversary model
Before presenting MixNN and our attribute inference attack
∇Sim, we describe our assumptions and the considered threat
model. The operating flow of MixNN involves three premises
with different level of trust, namely: (i) the client machine;
(ii) the MixNN proxy; and (iii) the aggregation server.

First, we assume that the client machine is trusted. This in-
cludes the training data and all the computations performed
locally. We do not consider malicious users trying to poison
the model or to introduce backdoors.
Second, we assume that the MixNN proxy is running in-

side an Intel SGX enclave on an untrusted node. An adversary
is thus not able to compromise the behavior or the data of
the proxy but can monitor the node (i.e., honest but curious),
possibly physically (e.g., monitoring network traffic, power
consumption or memory access patterns). Consequently, an
adversary can leverage side channel attacks [32] to infer
information. We assume that the SGX enclave has generated
a public and private key pair (𝑘𝑝𝑢𝑏 and 𝑘𝑝𝑟𝑖𝑣).
Lastly, we consider a malicious aggregation server. This

server builds a model for a main classification task through
a federated learning scheme but also aims to infer sensitive
attributes from participants. This aggregation server can
either conduct a passive or an active attack. Specifically, it
can passively follow the FL operational flow to infer sensitive
attributes or abuse the protocol by sending a specific model
to each participant to amplify the possible inference. We
do not consider any mechanism on participants to detect
misbehavior of the server. In addition, we consider protected
exchanges between participants and the MixNN proxy.
We consider an adversary able to collect or to use a pub-

lic dataset with similar raw data (including the sensitive
attribute) in order to build attack models. Each of these at-
tack models is trained only with data from one specific class
of sensitive attribute (e.g., one attack model for activity de-
tection trained only with data from men, and another one
trained only through data from women). These specialized
attack models allow the adversary to compare for each partic-
ipant the parameter models (i.e., the direction of the gradient
obtained from the local training) to the direction of the gra-
dient which would result in attack models. The attribute
inference is computed based on a similarity metric between
these directions as detailed Section 5.

4 MixNN Framework
In this section, we first present an overview of theMixNN (Sec-
tion 4.1), the equivalence in terms of utility with a classical

4

Figure 3.MixNN introduces a proxy which receives the parameter updates from each participant, shuffle them to remove
attribute footprint before to route them to the aggregation server.

FL (Section 4.2), and then present implementation details
(Section 4.3).

4.1 Overview
To avoid inference attacks during the learning process of a
service using a federated learning scheme, MixNN operates
as depicted in Figure 3. To use MixNN, users have only to
configure its system to use a proxy for the associated traffic
(e.g., through the configuration of its browser). As such, users
seamlessly get protected without changing their habits. More
precisely, compared to the classical FL pipeline (Figure 2), all
parameter updates will be sent to the MixNN proxy instead
of the aggregation server. To secure these updates, they are
encrypted with the public key of the enclave (i.e., 𝑘𝑝𝑢𝑏) to
ensure that only the MixNN proxy is able to read and process
them. Once loaded in the enclave, the proxy decrypts and
stores the parameter updates of each layer in different lists.
The proxy then pick at random one update for each layer in
the associated list to generate the message containing the
parameter updates to send to the aggregation server. Note
that the proxy needs to initialize first each list with 𝑘 updates
before to send updates to the aggregation server.
The rest of the workflow remains unchanged compared

to the classical one. The server aggregates the parameter
updates to generate a global model which will be dissemi-
nated to all participants. Participants will then refine this
model locally with their personal data before sending the
parameter updates to the MixNN proxy.

The accuracy of the global model remains unchanged with
or without using MixNN . Indeed, whether mixed or not, the
aggregation of parameter updates of each layer are identi-
cal. In contrast, the privacy leakage through the footprint
of parameter updates returned by participants is drastically

reduced. Specifically, by receiving an update mixing infor-
mation from different users (breaking potential attribute
footprints), the aggregation server is not able to infer any
sensitive attribute. Consequently, MixNN is able to drasti-
cally improve privacy without compromising the accuracy
of the system (i.e., no trade-off between utility and privacy).

4.2 Utility Equivalence
By design, MixNN provides the same utility than a classical
FL scheme. In this section, we prove this equivalence.

Let𝐶 be the number of participants sending their updates
to the proxy. We show in this section that whether the partic-
ipants use MixNN or not, the resulting aggregated model is
the same. We assume that the considered MixNN proxy has
enough information to send 𝐿 updates to the server. Then
the proxy creates a sequence

(
𝑀𝑖 𝑗

)
such that ∀(𝑗1, 𝑗2) ∈

{1, · · · , 𝑛}2 with 𝑗1 ≠ 𝑗2 and ∀𝑖 ∈ {1, · · · , 𝐿} 𝑀𝑖 𝑗1 ≠ 𝑀𝑖 𝑗2 .
And also such that ∀(𝑖1, 𝑖2) ∈ {1, · · · , 𝐿}2 with 𝑖1 ≠ 𝑖2 and
∀𝑗 ∈ {1, · · · , 𝑛} 𝑀𝑖1 𝑗 ≠ 𝑀𝑖2 𝑗 .
According to previously defined notation for the nodes

of a neural network, we define the 𝑡-th layer of the 𝑐-th
participant of the proxy by

(
𝜃 . .

𝑡
)𝑐 . In the following matrix,

each line is a model sent by the proxy. We remark that each
combination of participant/layer appears once and only once
in the matrix. This is a fundamental assumption regarding
the equality of accuracy level between traditional FL and
MixNN .

𝐴 =

©­­­­«
(
𝜃 . .

1
)𝑀11

(
𝜃 . .

2
)𝑀12 · · · (𝜃 . .𝑛)𝑀1𝑛(

𝜃 . .
1
)𝑀21

(
𝜃 . .

2
)𝑀22 · · · (𝜃 . .𝑛)𝑀2𝑛

.

.

.
.
.
.

. . .
.
.
.(

𝜃 . .
1
)𝑀𝐿1

(
𝜃 . .

2
)𝑀𝐿2 · · · (𝜃 . .𝑛)𝑀𝐿𝑛

ª®®®®¬
5

Now, with the regular FL procedure, the information sent
by the participant is:

𝐵 =

©­­­«
(
𝜃 . .

1
)1 (

𝜃 . .
2
)1 · · · (𝜃 . .𝑛)1(

𝜃 . .
1
)2 (

𝜃 . .
2
)2 · · · (𝜃 . .𝑛)2

.

.

.
.
.
.

. . .
.
.
.(

𝜃 . .
1
)𝐶 (

𝜃 . .
2
)𝐶 · · · (𝜃 . .𝑛)𝐶

ª®®®¬
We note 𝐴𝑔𝑟 : M(𝐶 × 𝑛) −→ M(1 × 𝑛) the aggregation

function which makes the mean of the columns. We show
that 𝐴𝑔𝑟 (𝐴) = 𝐴𝑔𝑟 (𝐵)

𝐴𝑔𝑟 (𝐴) =
(
1

𝐿

𝐿∑︁
𝑖=1

(
𝜃 . .

1)𝑀𝑖1
,
1

𝐿

𝐿∑︁
𝑖=1

(
𝜃 . .

2)𝑀𝑖2
, · · · , 1

𝐿

𝐿∑︁
𝑖=1

(𝜃 . .𝑛)𝑀𝑖𝑛

)

𝐴𝑔𝑟 (𝐵) =
(
1

𝐶

𝐶∑︁
𝑐=1

(
𝜃 . .

1)𝑐 , 1
𝐶

(
𝜃 . .

2)𝑐 , · · · , 1
𝐶

𝐶∑︁
𝑐=1

(𝜃 . .𝑛)𝑐
)

We make the additional assumption that 𝐿 = 𝐶 which
means that the MixNN proxy waits for the 𝐶 participants to
send their updates before mixing. Which gives us that

𝐴𝑔𝑟 (𝐴) = 𝐴𝑔𝑟 (𝐵) ⇐⇒[
∀𝑙 ∈ {1, · · · , 𝐿}

𝐶∑︁
𝑐=1

(
𝜃 . .

𝑙
)𝑀𝑐𝑙

=

𝐶∑︁
𝑐=1

(
𝜃 . .

𝑙
)𝑐]

Which is true since our assumption on
(
𝑀𝑖 𝑗

)
gives us

that 𝜑 : {1, · · · ,𝐶} −→ {1, · · · ,𝐶} 𝑐 ↦→ 𝑀𝑐𝑙 is a bijective
mapping.

4.3 Implementation
MixNN is implemented inside an Intel SGX enclave to pro-
tect its behaviors and confidentially even if it is deployed
on an untrusted node. In addition, the parameter updates
are encrypted by participants with the public key 𝑝𝑢𝑏 of the
enclave. Each update received by the MixNN proxy, once
decrypted, is split by layer and the parameters associated
to each layer are stored in different lists. The size of these
lists (noted 𝑘) and the memory allocation according to the
considered neural network models are initialized at the cre-
ation of the enclave. The 𝑘 first parameter updates are used
to fill out the different lists. Once these lists are full, for each
further received parameter update, the MixNN proxy picks
at random and removes one element in each list to build
a parameter update to send to the aggregation server. The
empty element in each list is then filled out with information
coming from the incoming update.
To avoid side-channel attacks against SGX [32], the cost

(i.e., the execution time) to process an update is constantly
the same. Depending on the considered model, the size of a
model can be important and not fit into the memory limit
of the enclave (96MB), requiring encrypted storage outside
the enclave. To avoid side-channel attack based on mem-
ory access, ORAM mechanisms (e.g., ZeroTrace [33]) can
be adopted to carry out secure and oblivious access of data.

Figure 4. ∇Sim infers attributes according to the gradient
vector returned by participants (i.e., the parameter updates)
and the learning models representative to each class of sen-
sitive attributes (background knowledge).

The associated overhead is negligible in our context where
updates are sent only periodically.

5 ∇Sim: A Similarity-Based Attribute
Inference Attack

We design a new attribute inference attack, ∇Sim, exploiting
the privacy vulnerability of the SGD algorithm. Specifically,
∇Sim is based on a similarity metric measuring the gradient
vector returned by participants to minimize its contribution
to the model’s training loss (i.e., the parameter update). Fig-
ure 4 illustrates how the inference attack works. During one
round, the gradient vector returned by a participant reflects
how its local data have influenced the global model dissem-
inated by the aggregation server at the beginning of the
round. This gradient vector is used as a fingerprint to infer
the sensitive attribute. This fingerprint can be amplified if
the attack is conducted during multiple rounds. Indeed, in
this case, the influence of the user data on the evolution of
the global model is more observable.
More formally, ∇Sim measures the cosine similarity be-

tween the gradient vector returned by a participant and a
reference gradient vector representative to a specific sensi-
tive class of attribute (e.g., representative to men or women).
This reference gradient vector is computed through the back-
ground knowledge of the adversary. As described in Section 3,
we consider an adversary able to learn a classification model
(similar to the one used for the main task) trained only with
participants with a specific sensitive attribute. ∇Sim evalu-
ates for which of the representative models of each class of
sensitive attribute the returned gradient vector is closest.

∇Sim can be active or passive. In its passive form, the cu-
rious aggregation server follows the standard FL learning
round and compares the model update returned by partici-
pants to the models representative to the sensitive attributes

6

computed from auxiliary knowledge. In contrast, in its ac-
tive form, the aggregation server sends to participants the
model calculated for being equidistant from the models as-
sociated to the sensitive attributes (e.g., the model for men
and women). In this case, the server is malicious and actively
modifies the protocol to conduct the inference attack.

6 Evaluation
We now report the results in terms of utility (Section 6.2)
and privacy (Section 6.3) provided by MixNN under the con-
sidered experimental setup (Section 6.1). We also analyse the
robustness of MixNN against an aggregation server trying to
defeat the protection. (Section 6.4) as well as its performance
from a systems perspective (Section 6.5).

Our results show that MixNN efficiently reduces the infor-
mation leakage through an attribute inference attack without
compromise on the accuracy of the model. We also show
that MixNN introduces a negligible end-to-end latency.

6.1 Experiment Setup
In this section we presents the experimental setup used to
evaluate MixNN, which includes datasets, metrics, the com-
parative baseline we compared against, and the considered
methodology.

6.1.1 Dataset. We used two image recognition benchmark
datasets (CIFAR10 and LFW) and two motion datasets for
activity recognition (MotionSense and MobiAct) to assess
MixNN.
CIFAR10 is a major image classification benchmarking

dataset where the data records are composed of 60,000 32×32
RGB images where each record is mapped to one of 10 classes
of common objects such as airplane, bird, cat, dog. There
are 50,000 training images and 10,000 test images. The main
task is the classification of the images. We artificially define
20 participants split into three groups with different prefer-
ences. We define 3 types of preference which corresponds
to specific and non overlapping categories of images. The
dataset is slightly balanced, two groups gather 6 participants
and the last one gathers 8 participants. The profile of the
participant is composed of 80% of images corresponding to
its preferred classes, and the remaining 20% is composed of
random images from other classes. The sensitive attribute is
the preferences of the user.

MotionSense [34] contains data captured from an ac-
celerometer (i.e., acceleration and gravity) and gyroscope at
a constant frequency of 50Hz collected with an iPhone 6s
kept in the front pocket. Overall, a total of 24 participants
have performed six activities (i.e., going downstairs, going
upstairs, walking, jogging, sitting and standing) during 15
trials in the same environment and conditions. The main
classification task is the activity detection and the sensitive
attribute is the gender of the users.

MobiAct [35] records the motion data from 58 subjects
during more than 2500 trials, all captured with a Samsung
Galaxy S3 in the front pocket. This dataset includes signals
recorded from the accelerometer and gyroscope at 20Hz. We
only used the trials corresponding to the same activities as
MotionSense in order to do the evaluation with the same
settings. Similar to MotionSense dataset, the main classifica-
tion task is the activity detection and the sensitive attribute
is the gender of the users.

Labeled Faces in theWild (LFW) [36] contains face im-
ages for face recognition with 13,233 total samples with im-
ages for 5,749 people. The dataset additionally has attributes
such as age, race, gender, smile, facial hair, glasses etc. The
main classification task is smile detection and the sensitive
attribute is the gender of the users.

For CIFAR10, MotionSense and MobiAct datasets, we use
a neural network composed of two convolutional layers and
three fully connected layers for the classification task. For
LFW, in turn, we use a more complex architecture provided
by Facebook, named Deep Face [37]. This neural network
is composed of multiple convolutional, locally connected,
maxpooling, and fully connected layers.

6.1.2 Evaluation Metrics. We evaluate MixNN through
three complementary dimensions: utility, privacy and system
performance.
To evaluate the utility of the target model, we consider

the classification accuracy for the main task (e.g., the activity
detection), noted 𝑀𝑜𝑑𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, measuring the ratio of
number of correct predictions to the total number of predic-
tions made.
We use ∇Sim to conduct the inference attack and we use

the classification accuracy of the sensitive attribute to esti-
mate the success of the attribute inference, noted 𝐼𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦. The value of this metric indicates a data leakage
according to the number of classes and if the dataset is bal-
anced over all classes. For instance, with a balanced dataset
over the gender, an accuracy above 50% indicates a data leak-
age through attribute inference attack. This indicates that
the adversary is able to identify the gender of a participant
with an accuracy higher than random guess.

To evaluate the behavior of MixNN from a systems per-
spective, we consider the end-to-end latency which is the
time spent by the proxy to route the parameter updates to
the aggregation server.

6.1.3 Baselines. We compare the utility and privacy pro-
vided by MixNN against a comparative approach using noisy
gradient widely used in Differential Privacy studies [14, 38].
We consider an implementation based on an introduction of
Gaussian noise to the updates computed through a classical
local training such as using in local differential privacy [14].

7

(a) CIFAR10

(b)MotionSense

(c) MobiAct

(d) LFW

Figure 5.MixNN provides the same utility than a standard FL scheme, noisy gradient however decreases significantly the
utility and slows down the convergence.

6.1.4 Methodology. The dataset is split between training
and testing, with 5/6 of trials used for training and valida-
tion and 1/6 for testing. For CIFAR10, the federated learning
model is trained on 3 local epochs for a size of data batch of
32 samples on each learning rounds, the server aggregates
16 users on each of the 10 learning rounds. For MotionSense
(and MobiAct), the training is (respectively) done on 2 (and 3)
local epochs for batches of 256 (and 64) samples for each of
the 20 learning rounds, and the server aggregates 20 users for
MotionSense and 40 users for MobiAct. For LFW, the train-
ing is done on 2 local epochs for batches of 16 samples for
each of the 30 learning rounds, and the server aggregates 20
users. For every datasets, we use the "Adam" optimizer pro-
posed by Tensorflow.We use 5-fold cross-validation in which
the testing set is randomly generated from 1/5 of the users.
Reported results correspond to average over 5 repetitions
of each experiment. The experiments have been computed
on a Laptop DELL, intel core i7 (i7-6600U) and 4G of RAM,

using TensorFlow version 2.4. The noise introduced consists
on adding a Gaussian noise N(0, 1) on each scalars of the
neural network weights. The attack models are trained for
5 learning rounds of the previous architecture and use 4/5
users as background knowledge.

6.2 No compromise with utility
In this section, we evaluate the capacity of MixNN to protect
privacy without compromising the utility. We compare the
accuracy performance for the main classification task pro-
vided by MixNN against a classic FL scheme (i.e., without
MixNN proxy) and a baseline using noisy gradient such as
using in local differential privacy. Figure 5 reports the accu-
racy according to the learning round for all datasets. First,
the results show that the same level of accuracy is provided
by a standard FL scheme and MixNN with an accuracy grow-
ing according to the learning rounds. This result is expected

8

(a) CIFAR10

(b)MotionSense

(c)MobiAct

(d) LFW

Figure 6. Using noisy gradient decreases the utility for all participants.

due to the aggregation equivalence of both approaches. Sec-
ond, the results show that noisy gradient provides 10% lower
accuracy on average and slows down the convergence. Fig-
ure 6 reports the cumulative distribution of the accuracy
over the population of participants at the learning round 6.
Results show that most of the participants have an accuracy
with noisy gradient smaller than MixNN for all datasets (on
average 0.56 for noisy gradient against 0.68 for MixNN).

6.3 Prevent information leakage
In this section, we evaluate the privacy leakage through
the sensitive attribute attack ∇Sim through an active attack
(i.e., which represents the worst case where the aggrega-
tion server is malicious and sends a calibrated model to
participants to amplify the inference). Figure 7 reports for all
datasets the accuracy of the inference for MixNN, Classical
FL and noisy gradient according to a growing number of
learning rounds. First, results show that without any protec-
tion, the server can infer the sensitive attribute of partici-
pant with a quasi perfect accuracy (100% of accuracy after
4 rounds for CIFAR10, and around 80%, 94%, and 66% of ac-
curacy after 5 rounds for MotionSense, MobiAct, and LFW

dataset, respectively. This means that the gradient vector
returned by participants and exploited by ∇Sim provides an
efficient footprint to infer attributes. Second, results show
that MixNN successfully limits the privacy leakage with an
inference accuracy close to a random guess (0.33 for CIFAR10,
and around 0.5 for MotionSense, MobiAct and LFW). The
precision of the inference tends to increase with the number
of local learning round but becomes stable once the model
is converged. Finally, results show that noisy gradient leaks
less information than a standard FL scheme but much more
information than MixNN for all datasets (on average around
65% more inference accuracy).

As described Section 5, ∇Sim leverages background knowl-
edge to build a model representative to men and a model rep-
resentative to women. The attack then measures the distance
between these representative models and the model updates
returned by participants, the closest distance indicating a
predominance towards a sensitive attribute. We evaluate
now the impact of this background knowledge on the accu-
racy of the inference. Figure 8 depicts the inference accuracy
according to a growing ratio of data used as background

9

(a) CIFAR10

(b)MotionSense

(c)MobiAct

(d) LFW

Figure 7. MixNN better prevents attribute leakage compared to using noisy gradient.

knowledge to build the representatives models of the sensi-
tive attributes (the quality of a model is usually correlated to
the volume of data used in learning, the larger, the better). As
expected, a model built with more background knowledge
is more representative to individuals with a specific sensi-
tive attribute and consequently improves the accuracy of the
inference for both a classic FL and a solution using noisy
gradient. However, results show that MixNN successfully
protects participants against inference attack regardless the
quantity of background knowledge used by the aggregation
server.

6.4 Robustness of the protection
MixNN shuffles model updates sent by participants. A mali-
cious aggregation server could then try to break the protec-
tion by enumerating through possible combinations of the
shuffled updates to "reconstruct" back the original update
for instance. Figure 9 reports for all datasets the cumulative
distribution over all participants of the number of neighbors
who have a gradient very close (i.e., in a radius of 0.5 using

euclidean distance). All participants have at least a few other
alter egos with very close gradients making it difficult for a
malicious aggregation server to retrieve and distinguish all
pieces of the gradient (i.e., the layers of the neural network)
coming from the same participant once mixed by MixNN.

6.5 System performance
We implemented a MixNN proxy inside an SGX enclave to
evaluate its system performance. To do that, the enclave re-
ceives the update parameters in an encrypted binary format
and then decrypts and stores each layer of the updates in the
trusted memory of the enclave. We ran the experiment using
the model designed for CIFAR10 (i.e., two convolutional lay-
ers and three fully connected layers). Each update consumes
26.9MB inside the enclave and is processed in 0.19s (0.17s
for the decryption and 0.02s for the storage). The mixing
operation spends only 0.03s on average in our experiment.
This processing time and the memory consumption are de-
pendent on the size of the model. Using a model with three
convolutional layers and three fully connected layers slightly

10

(a) CIFAR10

(b)MotionSense

(c)MobiAct

(d) LFW

Figure 8.With more background knowledge, the malicious aggregation server infers more information with a standard FL
scheme or using noisy gradient. This background knowledge has only a small impact on the protection of MixNN.

Figure 9. Many participants have very close model updates
making it difficult for a malicious aggregation server to re-
trieve and distinguish all pieces of the gradient coming from
the same participant once mixed by MixNN.

increases this time to 0.22s and 51.3MB. However, the con-
stant processing time over all updates for a given model

(i.e., the MixNN proxy waits to receive a constant number
of model updates before to mix them) reduces the surface
for side channel attacks. As the learning round of classical
FL scheme is usually not conducted at high rate (e.g., only
when the device is plugged in and has a WiFi connection),
this short delay introduced by MixNN is negligible.

7 Related work
The incentive behind using FL is to collectively build a learn-
ing model with better accuracy than if each user trained a
model with their own data. The goal is to improve the ac-
curacy as much as possible but several dimensions have an
influence. The standard FL scheme [39] learns one global
model and replicates it locally on every client. However het-
erogeneity of data across user devices can severely degrade
performance of standard federated averaging for ML learn-
ing applications, especially for atypical users. Indeed, one
uniquemodel cannot cope with the heterogeneity of data and
provide the best utility for all users [40]. To address this data
heterogeneity, several approaches have been proposed such
as local adaptation [16, 41] and clustering [42]. Specifically,

11

the clustering mechanism proposed in [42] also leverages a
similarity metrics between the model updates sent back by
participants (similar to MixNN) to cluster the population.
[5] designs passive and active inference algorithms for

federated learning. However, this work only targets member-
ship inference. In addition, while this attack also exploits the
privacy vulnerabilities of the SGD algorithm, authors used a
neural network to classify if a participant is a member of the
training data or not a member. [38] also exploits the gradient
exchange to infer private training data of participants. To do
that, authors iteratively optimize "dummy" inputs and labels
to minimize the distance between dummy gradients and real
gradients. Once the optimization finished, the dummy data
is close to the private training data. [43], in turn, investi-
gates the guarantees of differentially private SGD but via
data poisoning attacks.
Running MixNN in an Intel SGX enclave improves trust

and confidentiality through an isolated execution environ-
ment. However, this TEE is still vulnerable to side channel
attacks [32, 44]. The most common countermeasure is to use
data oblivious algorithms. The objective of this technique is
to eliminate the link between the nature of data inputs and
the execution of the program (e.g., through the execution
time or memory footprints). To achieve that, the obfuscation
technique consists to hide potential patterns by making them
all uniform regardless of the considered data. To reduce its
inherent cost, the considered data oblivious algorithm needs
to be chosen carefully according to the application [45].

8 Conclusion
We presented MixNN, a proxy-based privacy-preserving
framework to prevent attribute inference attacks conducted
from a curious or malicious aggregation server exploiting
the model updates. MixNN breaks the attribute footprint
leaked in the model updates by mixing layers between multi-
ple participants. As this mixing strategy does not impact the
result of the model aggregation performed by the server, the
privacy improvement of MixNN does not compromise the
utility of the model learned collaboratively. We also designed
∇Sim, a new attribute inference attack which exploits the pri-
vacy vulnerability of the SGD algorithm. This attack can be
passive or active. We experimentally evaluated MixNN with
a standard image recognition bench-mark dataset and com-
pared it against a state-of-the-art baseline using local dif-
ferential privacy. Results show MixNN provides the same
model accuracy than a classical FL scheme (i.e., the same
utility) while providing a better protection against attribute
inference attack (i.e., a better privacy).

References
[1] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion

attacks that exploit confidence information and basic countermeasures.
In CCS, page 1322–1333, 2015.

[2] Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks
of machine learning models. arXiv:2003.10595, 2020.

[3] Benjamin Zi Hao Zhao, Aviral Agrawal, Catisha Coburn, Has-
san Jameel Asghar, Raghav Bhaskar, Mohamed Ali Kaafar, Darren
Webb, and Peter Dickinson. On the (in)feasibility of attribute inference
attacks on machine learning models. arXiv:2103.07101, 2021.

[4] Emiliano De Cristofaro. An overview of privacy in machine learning.
arXiv:2005.08679, 2020.

[5] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive pri-
vacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In S&P, 2019.

[6] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan
Gu. Revisiting membership inference under realistic assumptions.
arXiv:2005.10881, 2020.

[7] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov.
Property inference attacks on fully connected neural networks using
permutation invariant representations. In CCS, page 619–633, 2018.

[8] Wanrong Zhang, Shruti Tople, and Olga Ohrimenko. Dataset-level
attribute leakage in collaborative learning. arXiv:2006.07267, 2020.

[9] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative
learning. arXiv:1805.04049, 2018.

[10] Congzheng Song and Vitaly Shmatikov. Overlearning reveals sensitive
attributes. arXiv:1905.11742, 2020.

[11] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Pri-
vacy risk in machine learning: Analyzing the connection to overfitting.
In CSF, pages 268–282, 2018.

[12] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny, Ste-
fano Mazzocchi, H Brendan McMahan, et al. Towards federated learn-
ing at scale: System design. MLSys, 2019.

[13] Google Research and Ads. Evaluation of cohort algorithms for the floc
api, 2020.

[14] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Toward
robustness and privacy in federated learning: Experimenting with
local and central differential privacy. arXiv:2009.03561, 2021.

[15] Laurens van der Maaten and Awni Hannun. The trade-offs of private
prediction. arXiv:2007.05089, 2020.

[16] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. Salvaging feder-
ated learning by local adaptation. arXiv:2002.04758, 2020.

[17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical secure aggregation for federated learning on
user-held data. arXiv:1611.04482, 2016.

[18] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal,
and Karn Seth. Practical secure aggregation for privacy-preserving
machine learning. In CCS, page 1175–1191, 2017.

[19] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Le-
point, and Mariana Raykova. Secure single-server aggregation with
(poly)logarithmic overhead. In CCS, page 1253–1269, 2020.

[20] David L. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Commun., 24(2):84–90, February 1981.

[21] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models.
arXiv:1610.05820, 2017.

[22] Deep Learning with Differential Privacy, 2016.
[23] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario

Fritz, andMichael Backes. Ml-leaks: Model and data independent mem-
bership inference attacks and defenses on machine learning models.
arXiv:1806.01246, 2018.

[24] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter Druschel,
Hitesh Ballani, and Paul Francis. Towards efficient traffic-analysis
resistant anonymity networks. SIGCOMM Comput. Commun. Rev.,

12

43(4):303–314, August 2013.
[25] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle:

An efficient communication system with strong anonymity. Proc. Priv.
Enhancing Technol., 2016(2):115–134, 2016.

[26] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: design of a
type iii anonymous remailer protocol. In 2003 Symposium on Security
and Privacy, 2003., pages 2–15, 2003.

[27] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryp-
tology ePrint Archive, 2016(086):1–118, 2016.

[28] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. In-
novative technology for cpu based attestation and sealing. In HASP,
2013.

[29] Feng Chen, Chenghong Wang, Wenrui Dai, Xiaoqian Jiang, Noman
Mohammed, Md Momin Al Aziz, Md Nazmus Sadat, Cenk Sahinalp,
Kristin Lauter, and Shuang Wang. Presage: Privacy-preserving genetic
testing via software guard extension. BMC medical genomics, 10(2):48,
2017.

[30] Feng Chen, Shuang Wang, Xiaoqian Jiang, Sijie Ding, Yao Lu, Jihoon
Kim, S Cenk Sahinalp, Chisato Shimizu, Jane C Burns, Victoria JWright,
et al. Princess: Privacy-protecting rare disease international network
collaboration via encryption through software guard extensions. Bioin-
formatics, 33(6):871–878, 2016.

[31] FrankMcKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon John-
son, Rebekah Leslie-Hurd, and Carlos Rozas. Intel® software guard
extensions (intel® sgx) support for dynamic memory management
inside an enclave. In HASP, 2016.

[32] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In WOOT, 2017.

[33] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. Zerotrace :
Oblivious memory primitives from intel SGX. In NDSS, 2018.

[34] J. L. Reyes-Ortiz. Smartphone-based human activity recognition.
Springer, 2015.

[35] George Vavoulas, Charikleia Chatzaki, Thodoris Malliotakis, M. Pedi-
aditis, and M. Tsiknakis. The mobiact dataset: Recognition of activities
of daily living using smartphones. ICT4AWE, 2016.

[36] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. Technical Report 07-49, University of
Massachusetts, Amherst, October 2007.

[37] Yaniv Taigman,Ming Yang,Marc’Aurelio Ranzato, and LiorWolf. Deep-
face: Closing the gap to human-level performance in face verification.
In CVPR, 2014.

[38] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients.
arXiv:1906.08935, 2019.

[39] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Agüera y Arcas. Communication-efficient learning of deep
networks from decentralized data. arXiv:1602.05629, 2017.

[40] Antoine Boutet, Carole Frindel, Sébastien Gambs, Théo Jourdan, and
Claude Rosin Ngueveu. Dysan: Dynamically sanitizing motion sensor
data against sensitive inferences through adversarial networks. In
AsiaCCS, 2021.

[41] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh,
and Sunav Choudhary. Federated learning with personalization layers.
arXiv:1912.00818, 2019.

[42] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered
federated learning: Model-agnostic distributed multi-task optimization
under privacy constraints. arXiv:1910.01991, 2019.

[43] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing dif-
ferentially private machine learning: How private is private sgd?
arXiv:2006.07709, 2020.

[44] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
SGAxe: How SGX fails in practice. https://sgaxeattack.com/, 2020.

[45] A K M Mubashwir Alam, Sagar Sharma, and Keke Chen. Sgx-mr:
Regulating dataflows for protecting access patterns of data-intensive
sgx applications. arXiv:2009.03518, 2020.

13

https://sgaxeattack.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Networks
	2.2 Federated Learning
	2.3 Inference Attacks
	2.4 Mixnets
	2.5 Intel SGX

	3 System and adversary model
	4 MixNN Framework
	4.1 Overview
	4.2 Utility Equivalence
	4.3 Implementation

	5 Sim: A Similarity-Based Attribute Inference Attack
	6 Evaluation
	6.1 Experiment Setup
	6.2 No compromise with utility
	6.3 Prevent information leakage
	6.4 Robustness of the protection
	6.5 System performance

	7 Related work
	8 Conclusion
	References

