
Reversible Conflict-free Replicated Data Types
Yunhao Mao

yunhao.mao@mail.utoronto.ca

University of Toronto

Zongxin Liu

zongxin.liu@mail.utoronto.ca

University of Toronto

Hans-Arno Jacobsen

jacobsen@eecg.toronto.edu

University of Toronto

ABSTRACT
Conflict-free replicated data types (CRDTs) are popular for opti-

mistic replication and ensuring strong eventual consistency (SEC)

in distributed systems. However, reversibility is an underdeveloped

functionality for CRDTs, despite its usefulness in system restoration

from an erroneous state or undoing unwanted operations. In this pa-

per, we define the concept and design of reversible CRDTs (rCRDTs).

Reverse operations compensate for the effect of reversed updates,

and they extend existing CRDT interfaces. Three abstractions for re-

versibility are proposed: reversing a single update, multiple causally

related updates, and multiple logically related updates that capture

the user intention behind the updates. Moreover, a replicated and

distributed key-value store, rKVCRDT, is implemented as a proof

of concept that integrates the support of reversible CRDTs. The

rCRDTs’ evaluation show that although adding reversibility affects

the system’s performance, the end result depends on multiple fac-

tors and varies based on the underlying CRDTs. System designers

must consider the trade-off between the benefit of reversibility and

the performance impact.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms.

KEYWORDS
Conflict-free Replicated Data Types (CRDTs), Eventual Consistency,

Replication

ACM Reference Format:
YunhaoMao, Zongxin Liu, andHans-Arno Jacobsen. 2022. Reversible Conflict-

free Replicated Data Types. In 23rd ACM/IFIP International Middleware Con-
ference (Middleware ’22), November 7–11, 2022, Quebec, QC, Canada. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3528535.3565252

1 INTRODUCTION
With the increasing popularity of cloud computing, cloud service

providers are more reliant on geo-replicated data to ensure ser-

vice reliability and improve performance in large-scale distributed

systems, such as massively scalable replicated data stores [19]. How-

ever, to remain strongly consistent, replicated data may suffer from

low availability to account for network partition or high latency

when conducting updates because of the CAP theorem [10]. As a

result, weaker consistency models, such as eventual consistency,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9340-9/22/11. . . $15.00

https://doi.org/10.1145/3528535.3565252

are used in replicated systems when high availability instead of

strong data consistency is favored [3]. For example, Amazon’s Dy-

namoDB [15] employs eventual consistency to ensure data are

"always writable". This means that users can expect to perform

updates on any replica and that any writes are always preserved

even when replicas cannot instantaneously communicate with each

other and real-time coordination is impossible.

An important problem with such optimistic replication [30] meth-

ods is the reconciliation of conflicting concurrent updates. Solutions

such as DynamoDB simply present all concurrent versions to the

user to perform reconciliation. Conflict-free replicated data types
(CRDTs) [32] adopt a convenient and practical method that uses

predefined concurrency semantics in the form of abstract data types

(ADTs) to achieve automatic reconciliation no matter the orders of

the updates.

CRDT updates are immediately executed on a replica when they

are received, and CRDTs guarantee strong eventual consistency (SEC)
to ensure that all correct replicas that are eventually propagated

with the same updates expose an equivalent state without any

ordering or coordination, which results in "conflict-free" opera-

tions. CRDTs are seen in key-value databases [29] [28] [1] [34],

collaborative editing tools [23] [22], application-specific data syn-

chronization [17] [9] and even in blockchains [18] [25].

However, CRDTs usually lack reversibility or the ability to "undo".

This is because, first, the "undo" is rarely a concern for regular ADTs,

and there is no universal abstraction for reversing an ADT oper-

ation. As a result, developing a definition that applies to different

data types and that makes universal sense is challenging. Second,

the traditional linearized undo is not directly applicable to con-

current updates in CRDTs [36]. Last, many CRDTs require their

internal data structures to be inflationary; that is, any new state

must encompass earlier states, thereby restricting the ability to

undo by removing existing updates [27].

Including reversibility in CRDTs can be beneficial. For exam-

ple, it can be applied to maintain data invariants: consider a stock

counter that cannot go below zero or an inventory set that has

an upper limited of items stored. Maintaining such an invariant

may be difficult in eventually consistent systems and particularly

in CRDTs, because the boundary detection may accept the allowed

precondition on one replica, but the precondition on another replica

is rejected [5]. Using reversible CRDTs, such boundary violations

can be simply undone when detected.

Reversibility can also be applied in conjunction with distributed

transaction protocols: algorithms that attempt to coordinate up-

dates on different nodes as a single atomic commit [26]. For ex-

ample, the SAGA transaction [16] conducts a series of database

operations and rolls back executed operations if one of the steps

fails. If one or more steps employ CRDTs to store data, reversibility

alleviates the need to explicitly define rollback operations or mod-

ify the distributed transaction framework in-use, by simply letting

295

https://doi.org/10.1145/3528535.3565252
https://doi.org/10.1145/3528535.3565252
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528535.3565252&domain=pdf&date_stamp=2022-11-08

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

the datatype itself be responsible for the rollback. Furthermore,

CRDTs are usually served as bundled packages through libraries or

distributed data stores. Even if adding reversibility is type-specific,

doing so to commonly-used data types can benefit many users with

minimal effort.

In this paper, we propose a novel solution to incorporate re-

versibility in CRDTs. Reversibility is defined as achieving the counter-
effect of selected updates through the use of compensation, similar

to the concept of compensating transactions found in databases

transaction [10] [21]. For example, the reverse of an "add" operation

can be the "subtract" operation for a counter CRDT. The effect of
an update is defined as the change in the value before and after an

update because only user-perceived values are meaningful. Since

CRDT updates may be independent of each other, a past update can

be reversed individually with unrelated updates unaffected, instead

of conducting a linear undo of updates.

Finally, reversible CRDTs (rCRDT) are extensions to existing

CRDTs with the additional reverse operation in their interfaces and

the compensating operations must be designed on a type-by-type

basis, as we have discussed.We also propose bulk reverse operations

for reversing multiple causally, semantically, or logically related

updates to capture the user’s intention behind the updates; that

is, updates that are dependent on their execution orders, interface

definitions, or the context of the operation are reversed in bulk.

In this paper, we make the following contributions:

(1) We propose a universal definition of reversibility for CRDTs.

The definition is generic and compatible with most CRDTs that

include variants to reverse multiple updates through the causal

and logical bulk reverse operations.

(2) We design the operation-history log that captures the causal rela-
tionships among updates and is used to identify the updates to

be reversed. We also propose two methods to achieve reversibil-

ity: the lazy approach and the eager approach with different

performance trade-offs under different workloads.

(3) We present a distributed and replicated key-value database, the

rKVCRDT, that interfaces with CRDTs and implements our

reversible algorithms as a proof of concept. We also perform

comprehensive evaluations using rKVCRDT to determine the

overhead of reversibility and performance characteristics of

different data types.

This paper is organized as follows. Section 2 discusses the back-

ground of CRDTs. Section 3 introduces our definition of reversible

CRDTs for reversing a single update and multiple updates. Section 4

describes algorithms that achieve reversibility. Section 5 presents

the replicated key-value database (rKVCRDT) and the evaluations

of rCRDTs. Section 6 discusses the related work.

2 BACKGROUND
2.1 System Model
We assume an asynchronous distributed system consisting of a

set of nodes that exchange information via message passing. Node

failures may only occur as crash faults, and a crashed node may

either recover with its memory intact or may never recover. The

network is reliable, with no duplicated, lost, or corrupted messages;

it may partition but eventually recovers. A node that is not crashed

is referred to as a correct node and there is at least one correct node

in the system. If a correct node sends a message, the message will

eventually be delivered to all other correct nodes.

2.2 Conflict-Free Replicated Data Types (CRDTs)
Conflict-free replicated data types are ADTs designed for optimistic

replication [32] [30]. A CRDT replica always executes any received

request immediately upon arrival and then asynchronously prop-

agates the update to other replicas

A CRDT consists of three major components: the state, the inter-
face and the update propagation mechanism. The state is the internal

data structure that represents the data type and is sometimes re-

ferred to as the payload. The interface semantically defines the

behaviour of the CRDT by providing a set of operations that can

be interacted with. We refer to operations with side effects (can
cause a change in states) as updates. The update propagation mech-

anism, sometimes referred to as the anti-entropy protocol, defines
how an update is propagated and applied to other replicas. CRDTs

guarantee strong eventual consistency [32], this consistency model

ensures that the same value can be retrieved through the CRDT’s

query operations from any correct replica that has received the

same updates. Two replicas are considered equivalent if the query
returns the same value. The two most common update propagation

mechanisms are state-based and operation-based [32] [27].

State-based CRDTs (CvRDTs). In a CvRDT, the state of the source

replica after update execution is propagated to other replicas for

synchronization. The receiving replica merges the received state

with its own state, yielding a converged state. The merge func-

tion must be commutative, associative and idempotent. In addition,

states must monotonically increase after updates, which ensures

the set of all possible states to construct a join-semilattice. This

allows the states to eventually converge to the same value [32].

The state-based causal history defined by Shapiro et al. [32] is a set
that contains all the existing states and updates to a CRDT replica,

representing the progression of the states over the updates. The

order of the updates is determined by the order in which they are

inserted into the set [32]. An update is executed if it is successfully

included as part of the causal history.

Definition 2.1. Causal Ordering
For any two updates 𝑢𝑖 and 𝑢 𝑗 , 𝑢𝑖 happened-before 𝑢 𝑗 if 𝑢𝑖 is

included in the causal history of the replica when 𝑢 𝑗 is received,

denoted as 𝑢𝑖 ≺𝑢 𝑗 . Additionally, 𝑢𝑖 happens-after 𝑢 𝑗 if the opposite
is true, denoted as𝑢 𝑗 ≺𝑢𝑖 . Finally,𝑢𝑖 and𝑢 𝑗 are concurrent if neither
has a happened-before relation with the other.

By Definition 2.1, if an update happens-after another update, the
first update, at its execution, must know of the existence of the

second update from the causal history.

Operation-based CRDTs (CmRDTs). CmRDTs rely on commuta-

tive update operations. When an update is executed on one replica

through a process referred to as prepare-update, an encoded version

of the update is also propagated and the receiving replica executes

the same update through the effect-update process, resulting in an

equivalent state. Commutativity ensures that the execution order

does not affect the final state; however, a causally reliable delivery

is required.

296

Reversible Conflict-free Replicated Data Types Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

A state-based CRDT can emulate an operation-based CRDT by

representing the state as a set of updates and by modifying the

query interface to apply the saved updates on read. Similarly, a

state-based CRDT can be emulated by an operation-based CRDT

by making the effect-update just contains state. Therefore, they are

equivalent [7] [32].

3 REVERSIBLE CRDT (RCRDT) DESIGN
In this section, we introduce rCRDTs as extensions to existing un-
derlying CRDTs where the original behaviours are not changed. Al-
though exact behaviours of reversibility depend on the underlying

CRDT, we present three generic definitions that reverse operations

can be expected to follow.

3.1 User Intention Prediction
One important characteristic of CRDTs is that the client no longer

involves the traditional read-modify-write process while updating

a value. Since CRDT updates are executed on the replicas and "read-

ing the most recent writes" is not guaranteed for the clients, blind
updates (inserting a new value regardless of the old value) [12] could

happen, thus detaching the causality among reads and writes [2].

Therefore, not only are there concurrent updates that depend on

the same value, but also updates that depend on no previous value

or any arbitrary previous value. This means that causally ordered

updates in CRDTsmay not represent user-intended relations among

them. For example, when a user clicks the "like" button on a social

media post to increment the "like" counter, they may not check the

"likes" number in advance.

Thus, one of the main aims of our reversible CRDT design is

to provide reversibility abstractions that capture the "real" user
intention behind a series of updates where any past update can be

reversed: if an update is a standalone update, reversing it should

not affect other updates, even if there are new updates that occur

chronologically after; if later updates depend on this update in some

way, they will be reversed in bulk.

3.2 Operation History
Definition 3.1 (Operation History). The operation history of a state-

based CRDT instance is a tuple 𝐻 = (𝑆,𝑈 ,𝑄), where 𝑆 is a set of all

states of all replicas. 𝑈 is a set of all updates with side effects , in-
cluding merges, in the form of a tuple: (𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒,𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒)
where 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 ∈𝑆 and 𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 ∈𝑆 represent the state of

a replica before and after an update. 𝑄 is a set of all values that

are read through the CRDT’s query or read interface operation

corresponding to each state in 𝑆 . There is a one-to-one mapping

𝑄𝑢𝑒𝑟𝑦 :𝑆→𝑄 for states set (𝑆) to readable values set (𝑄).

We adopt the state-based causal history discussed in Section 2

to keep track of all updates. The operation history (op-history)

captures the state transitions of a CRDT instance as it progresses

through time and the causal execution order of the updates. It

provides an abstraction for accessing causal history.

Theorem 3.2 (Causally Dependent Updates). For any pair of
updates𝑢𝑖 ,𝑢 𝑗 ∈𝑈 , if there is a sequence of transitions𝑈 ′ ∈𝑈 , ∀𝑢𝑖 ∈𝑈 ′,
where 0≤ 𝑖 < 𝑗 ≤ |𝑈 ′ |, such that 𝑢𝑖 ’s 𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 ∈𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 of
𝑢𝑖+1, then 𝑢𝑖 ≺𝑢 𝑗 . Similarly, if there is a sequence of transitions that

brings 𝑢 𝑗 to 𝑢𝑖 , then 𝑢 𝑗 ≺𝑢𝑖 . If there is no such sequence, then 𝑢𝑖 and
𝑢 𝑗 are concurrent.

Proof. Consider two updates 𝑢𝑖 ,𝑢 𝑗 , where 𝑢𝑖 ’s 𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 is 𝑠0
and 𝑢 𝑗 ’s 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 is also 𝑠0. By the definition of happens-after
in Definition 2.1, if 𝑠0 is the state after the execution of 𝑢𝑖 , then

𝑢𝑖 is included in 𝑠0’s causal history because both 𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 and

𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 in 𝑆 by Definition 3.1. Since 𝑢 𝑗 is executed with the

knowledge of 𝑠0, it must have known 𝑢𝑖 as well; therefore, 𝑢𝑖 ≺𝑢 𝑗 .
If a pair of updates does not share a state 𝑢 as the 𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒

and 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 , respectively, we can traverse the pairs of inter-

mediate updates between 𝑢𝑖 and 𝑢 𝑗 that do recursively share the

same 𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 and 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 recursively until 𝑢 𝑗 is reached.

Using the same reasoning, we can say 𝑢𝑖 ≺ 𝑢𝑖+1 ≺ ... ≺ 𝑢 𝑗−1 ≺ 𝑢 𝑗
through intermediate updates. If a merge is included, it can be in-

dicated by checking whether the list of 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒s contains the

𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 of the previous update. □

Theorem 3.2 demonstrates how the operation history can be

applied to determine the partial order among updates and how one

state can lead to another through the causal ordering of updates. For

example, consider a state-based CRDT where there are four states

𝑠0,𝑠1,𝑠2,𝑠3 and three updates 𝑢0 = (𝑠0,𝑠1), 𝑢1 = (𝑠1,𝑠2), 𝑢2 = (𝑠2,𝑠3);
then, there is a sequence 𝑢0,𝑢1,𝑢2 that goes from state 𝑠0 to 𝑠3, and

we conclude 𝑢0≺𝑢2.
If there is a merge, we again assume that there are three up-

dates but an additional state 𝑠4 as follows: 𝑢0 = ([𝑠0,𝑠1],𝑠2), 𝑢1 =
([𝑠0,𝑠1],𝑠3), 𝑢2 = (𝑠3,𝑠4). Next, 𝑢0 ≺𝑢2 because 𝑠2 and 𝑠3 are equiv-
alent (they have the same value in 𝑄).

If two updates are executed on the same 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 , 𝑢0 =

(𝑠0,𝑠1), 𝑢1 = (𝑠0,𝑠2), this means that they are concurrent with any

subsequent updates until the replicas converge.

By connecting updates in𝑈 , the operation history can be plot-

ted as a directed acyclic graph to represent how the states change,

diverge and converge. We can traverse the graph and locate the

updates to reverse.

Definition 3.3 (Op-History Diagram (𝐻𝐺)). 𝐻𝐺 is a DAG (directed

acyclic graph) in which the vertices are ordered by the connecting

edges. 𝐻𝐺 can be constructed as follows:

(1) We start with an initial update 𝑢0 = (_, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑡𝑎𝑡𝑒) as the
origin vertex.

(2) Add a directed edge to pairs of updates such that the head ver-

tex’s 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒𝑠 contains the tail vertex’s

𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒𝑠 .

(3) Remove all vertices that are merge operations and connect the

previous and subsequent vertices of merges if they are not con-

nected.

(4) By Theorem 3.2, the updates are causally ordered. Since all

states must have predecessors (except for the initial state), 𝐻𝐺

must be a DAG.

An example of a state-based nested array CRDT’s 𝐻𝐺 after sev-

eral updates is shown in Figure 1. Consider an array of characters,

and there is an update operation 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑐,𝑖): inserting a character
𝑐 or an empty array at a given index 𝑖 . If a nested array resides at

𝑖 , 𝑐 is inserted to the inner array. The read operation returns the

array, and the merge function concatenates the arrays and discards

297

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Figure 1: Example of the 𝐻𝐺 of the nested array CRDT

duplicates (in this and future illustrations, 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 shows the

state after merging if a divergence exists).

The updates depicted in Figure 1 are carried out as follows:

(1) A CRDT instance with more then three replicas has an initial

state of an empty array: [].
(2) Two concurrent updates are executed on different replicas. Up-

date 𝑢1 inserts element 𝐴, and 𝑢2 inserts an empty inner array

[], causing a divergence.

(3) Before the replicas can converge, 𝑢3 inserts 𝐵 into the inner ar-

ray. Next, some replicas converge, and their states reach [𝐴,[𝐵]].
(4) 𝐶 is inserted into a replica with converged state [𝐴] by 𝑢4, and

𝐷 is concurrently inserted into [𝐴,[𝐵]] on another replica by

𝑢5, causing another divergence.

(5) Finally, when all replicas have converged, the final state is

[𝐴,𝐶,[𝐵,𝐷]]. Update 𝑢6 is trivial for displaying the final result.

3.3 Reversing a Single Update
The most basic reverse operation operates at the granularity of a

single previous update.

Definition 3.4 (Value Difference 𝑡). For an update 𝑢𝑘 ∈ 𝑈 with

𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 = 𝑠𝑖 ∈ 𝑆 and 𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 = 𝑠 𝑗 ∈ 𝑆 , the value difference
𝑡𝑘 is the difference in the queried value 𝑡𝑘 =𝑞𝑖−𝑞 𝑗 , where 𝑞𝑖 ,𝑞 𝑗 ∈𝑄
and 𝑄𝑢𝑒𝑟𝑦 (𝑠𝑖)=𝑞𝑖 , 𝑄𝑢𝑒𝑟𝑦 (𝑠 𝑗)=𝑞 𝑗 .

The definition of the subtraction operator and 𝑡 depend on the

underlying CRDT or is defined by the CRDT designer. For example,

between two lists, [𝑎,𝑏,𝑐] and [𝑏,𝑐,𝑑], 𝑡 can be (𝑖𝑛𝑠𝑒𝑟𝑡 (𝑎),𝑑𝑒𝑙𝑒𝑡𝑒 (𝑑)).

Definition 3.5 (Compensation Function). 𝐶 (𝑢𝑘) is a user-defined
function that takes an update as the only argument and then returns

a compatible compensating operation 𝑓 s.t. 𝐶 (𝑢𝑘)= 𝑓 (𝑡𝑘), where 𝑓
is based on update 𝑢𝑘 ’s operation and the change in value 𝑡𝑘 .

Definition 3.6 (Single Reverse). Executing 𝑅_𝑆𝑖𝑛𝑔𝑙𝑒 (𝑢) for update
𝑢 will apply a compensating operation 𝐶 (𝑢) to the current state,

denoted as 𝑅_𝑆𝑖𝑛𝑔𝑙𝑒 (𝑢)=𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝐶 (𝑢)).

The compensation function that is described in Definitions 3.5

and 3.6 is a function that considers an update as input, reads the

changes in values 𝑡 imposed by the update and then generates

a compensating operation based on the update content. It is type-

depended, and it can be designed to have arbitrary behaviour. The

reverse operation simply executes it as a new update.

The most intuitive design for a compensating operation is to

obtain the inverse function of the original update. For example, 𝑢4
in Figure 1 is an insertion operation that adds element 𝐶 . There-

fore, the compensating 𝐶 (𝑢4) should remove 𝐶 from the set. After

executing 𝑅(𝑢4), the result would be [𝐴, [𝐵,𝐷]]. In addition, the

compensating operation must also be compatible, where it must fit

existing CRDT operations. For example, a grow-only counter [31] is
a counter where its only update operation is to add a non-negative

integer. In this case, the compensating operation cannot be sub-

traction, the reverse is not simply the inverse of addition and an

alternative must be defined.

We use compensating operations because it is just another up-

date executed on a replica from the system’s perspective, where

complicated issues, such as execution and concurrency are handled

automatically with the CRDT’s replication mechanism. No extra

failure handling is required either.

3.4 Reversing Causally Related Updates
As discussed in Section 3.1, we wish to account for related up-

dates that depend on the reversed updates. The first method for

predicting user intention among related updates is the traditional

causal dependency (even if it may not be accurate as discussed in

Section 3.1). This dependency is defined by the causal ordering in

Definition 2.1 and captured by the op-history of Theorem 3.2.

Definition 3.7 (Causal Bulk Reverse). Given a start update 𝑢𝑠 and
an end update 𝑢𝑒 . Let a set 𝐶′ = {𝐶 (𝑢𝑖) |∀𝑢𝑖 ∈ 𝑈 s.t. 𝑢𝑠 ≺ 𝑢𝑖 ∧
(𝑢𝑖 ≺ 𝑢𝑒 ∨ 𝑢𝑖 concurrent with 𝑢𝑒)} and 𝑅_𝐵𝑢𝑙𝑘_𝐶𝑎𝑢𝑠𝑎𝑙 (𝑢𝑠 ,𝑢𝑒) =
𝑒𝑥𝑒𝑐𝑢𝑡𝑒 ({∀𝑢 ∈𝐶′∪𝐶 (𝑢𝑠)∪𝐶 (𝑢𝑒)}).

We use the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 updates as anchor points to indicate

the range of causally related updates. An update that happens-after
the 𝑠𝑡𝑎𝑟𝑡 must have knowledge of its existence, implying that they

may be related. If an update happens-after the 𝑒𝑛𝑑 , it is included
because it knows the 𝑒𝑛𝑑 exists and thus cannot be related.

Updates that are concurrent with 𝑒𝑛𝑑 are reversed, but updates

that are concurrent with 𝑠𝑡𝑎𝑟𝑡 are not reversed. This is because if

an update is concurrent with 𝑒𝑛𝑑 , the update cannot depend on

𝑒𝑛𝑑 , but it may depend on 𝑠𝑡𝑎𝑟𝑡 , so it may still be relevant. In con-

trast, being concurrent with 𝑠𝑡𝑎𝑟𝑡 signifies that this update cannot

depend on 𝑠𝑡𝑎𝑟𝑡 . Similarly, updates that are concurrent with both

𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 are not included either.

An example of a causal bulk reverse execution on a counter CRDT

is shown in Figure 2: The CRDT has an initial value of 5. Update𝑢1 is

𝑠𝑡𝑎𝑟𝑡 and update𝑢7 is 𝑒𝑛𝑑 . Assume that 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 are special up-

dates that do not change the value in this example. The updates with

star labels are the updates to be reversed. Update 𝑢2 is concurrent

with𝑢1, so it is not included, even if its effect is known by other repli-

cas between 𝑢1 and 𝑢7; update 𝑢6 is concurrent with 𝑢7; therefore,

it is included even if its effect is known only after 𝑢7. Updates 𝑢3,

𝑢4, and𝑢5 are obviously included. Finally, if 𝑅_𝐵𝑢𝑙𝑘_𝐶𝑎𝑢𝑠𝑎𝑙 (𝑢1,𝑢7)
is executed, the compensation will deduct 1+3+3+2=9 from this

counter, and the final result is 15−9=6, coinciding with 𝑢2.

298

Reversible Conflict-free Replicated Data Types Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Figure 2: Causal bulk reverse Figure 3: Logical bulk reverse

An example use case would be a system where users are required

to examine the current value before requesting an update, the causal

bulk reverse can be used for undoing. When reversing an update

𝑢, it can be set to the 𝑠𝑡𝑎𝑟𝑡 , and the most recent update observed

on the operating replica is the 𝑒𝑛𝑑 so all dependent updates to 𝑢

are reversed.

3.5 Reversing Logically Related Updates
To capture the "real" logic behind a series of dependent updates, we

can use the semantics of operations to determine their dependency.

For example, the insertion into the inner array in Figure 1 requires

the nested array to exist, because the index of the inner array is a

parameter to insertion. Another alternative is simply requiring the

user to input the dependency of related updates. These dependen-

cies are also type-specific and need to be individually designed.

Definition 3.8 (Relative Set). Each 𝑢𝑖 ∈𝑈 includes a set 𝐿𝑖 that

stores its related updates.While a new update𝑢 𝑗 is added to𝑈 ,∀𝑢𝑖 ∈
𝑈 , 𝑢𝑖 is checked with a user-defined CRDT-specific 𝑅𝑒𝑙𝑎𝑡𝑒 (𝑢𝑖 ,𝑢 𝑗)
function. If it returns true, 𝑢𝑖 is added to 𝐿𝑗 , and 𝑢 𝑗 is added to 𝐿𝑖 .

Definition 3.9 (Logical Bulk Reverse). Let 𝑙 (𝑢𝑖) be a function that

returns the relative set 𝐿𝑖 of 𝑢𝑖 and recursively adds updates to

𝐿𝑖 ’s relative sets: 𝑙 (𝑢𝑖) = {𝐿𝑖 ∪ {𝑙 (𝑢 𝑗) |∀𝑢 𝑗 ∈ 𝐿(𝑖)})}. Given an

update 𝑢𝑖 to be reversed, let set 𝐶′ = {𝐶 (𝑢𝑘) |∀𝑢𝑘 ∈ 𝑙 (𝑢𝑖)} and
𝑅_𝐵𝑢𝑙𝑘_𝐿𝑜𝑔𝑖𝑐𝑎𝑙 (𝑢𝑖)=𝑒𝑥𝑒𝑐𝑢𝑡𝑒 ({∀𝑢 ∈𝐶′∪𝐶 (𝑢𝑖)}).

With the logical bulk reverse, the relative set is searched re-

cursively during a reverse operation, and every related update is

reversed as per Definition 3.9.

Figure 3 demonstrates logical bulk reverse with the nested array

example, where there exist semantic dependencies among updates

𝑢2, 𝑢3 and 𝑢5. Update 𝑢3 and 𝑢5 are related to the creation of the ar-

ray, which is 𝑢2. Thus, if 𝑢2 is reversed, 𝑢3 and 𝑢5 are also reversed.

One use case for the logical bulk reverse can be a collaborative

graphical editing tool that uses a reversible CRDT-Graph [31] to

store editable shapes. Adjacent shapes are linked to each other by

graph edges, so they can be moved or jointly deleted. Logical bulk

Figure 4: Non-serializable concurrent updates

reverse can make sure that reversing the creation of one shape au-

tomatically removes all linked shapes without affecting unrelated

shapes.

3.6 Concurrent and Non-serializable Updates
When attempting to linearly order CRDT updates, it is possible

that the original outcome of certain concurrent updates cannot be

reached or that there are multiple possible serial orders [7] [8]. For

example, a multi-value register acts like a single-value last-write

win register with any sequential order of inputs, but if there are

concurrent writes, its value becomes a set [31].

A more detailed example is illustrated in Figure 4, where two

replicated counters both have an invariant which their values must

be greater than 0 with slightly different behaviours. On the left, the

constraint resets the value to 0 if any update decreases it below 0, so

the result is 0 after 𝑢1, 𝑢2 are merged. On the right, the constraint

allows concurrent updates to produce results that are temporarily

below 0 after merging, but the subsequent update must increase
the value above 0.

On the left, both execution sequences of 𝑢0→𝑢1→𝑢2→𝑢3 and

𝑢0→𝑢2→𝑢1→𝑢3 work because the third update always brings

the value to 0. If𝑢2 is the second update, then 𝑡2=3. If𝑢2 is the third

update, then 𝑡2=1. This process causes the reversal of 𝑢2 to become

nondeterministic depending on the order that a replica observes. On

the right, it is not possible to create a total ordering because making

either𝑢1 or𝑢2 as the third update is not permitted by the constraint,

so the subsequent update cannot occur and 𝑢3 is irreversible.

Since this issue is caused by the behaviours of the underlying

CRDTs, a generic solution that suits all scenarios is unattainable.

We propose two compromises:

(1) Simply apply the compensating operations in the order in which

they are observed by the replica and disregard the nondeter-

minism, provided that common CRDTs do not exhibit such

problems.

(2) Modify 𝑅_𝑆𝑖𝑛𝑔𝑙𝑒 (𝑢) so that it inspects 𝑢’s concurrent updates,

then combine all concurrent updates into a single 𝑢′ and re-

verse 𝑢′. Bulk reverse operations need to be modified to avoid

duplicated reverses. However, if there is one update that is con-

current with all other updates, this method combines all updates

into a single large update, preventing any of the updates from

being reversed individually.

299

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

4 REVERSIBLE CRDT IMPLEMENTATION
In this section, we present algorithms that achieve the causal bulk

reverse. Since logical bulk reverse can be achieved with a few mod-

ifications to the given algorithms, it is not separately shown due

to space constraints. Concurrent updates are handled by the first

approach discussed in Section 3.6 for simplicity.

4.1 Op-History Log
We adopt the op-history 𝐻 from Definition 3.1 into a partially or-

dered log data structure called the op-history log (𝐻𝐿) to store past

updates, and it is replicated to each CRDT replica. Each update is

an entry in the log that contains the causal and logical relations

to other updates, and the state change. The causal relation among

updates are identified with logical timestamps (vector clocks) [14].

𝐻𝐿 is implemented as an operation-based CRDT to ensure strong

eventual consistency when used by reversible CRDTs. 𝐻𝐿 has the

following attributes:

𝐻𝐿.𝑙𝑜𝑔: a set that stores every update as a log entry.

𝐻𝐿.ℎ𝑒𝑎𝑑𝑠: a set of pointers to the latest updates (more than one

pointer if there are concurrent latest updates).

𝐻𝐿.𝑐𝑢𝑟𝑟𝑡𝑖𝑚𝑒: a vector clock of the latest update time.

Each update 𝑢 is an entry object in 𝐻𝐿.𝑙𝑜𝑔 with the following

attributes:

𝑢.𝑎𝑓 𝑡 : a set of pointers to updates that are executed immediately

after 𝑢.
𝑢.𝑝𝑟𝑒𝑣 : a set of pointers to updates that are executed immediately

before 𝑢.
𝑢.𝑑𝑖 𝑓 𝑓 : the difference 𝑡 in values between 𝑏𝑒 𝑓 𝑜𝑟𝑒_𝑠𝑡𝑎𝑡𝑒 and

𝑎𝑓 𝑡𝑒𝑟_𝑠𝑡𝑎𝑡𝑒 , utilized by the compensating operation.

𝑢.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 : a vector clock used to arbitrate the causal ordering

among updates, is set to 𝐻𝐿.𝑐𝑢𝑟𝑟𝑡𝑖𝑚𝑒 when 𝑢 is initialized.

𝑢.𝑟𝑒𝑙𝑎𝑡𝑒𝑑 : optional for logical bulk reverse as the 𝐿 set.

In the remainder of this paper, we use the symbol 𝑢 to refer

to either an update, an entry in 𝐻𝐿.𝑙𝑜𝑔 or the propagated update

message after inserting an update for convenience.

4.2 Log Insertion
The log needs to record all updates on the CRDT with causal infor-

mation and to synchronize it to all replicas as an operation-based

CRDT. The 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 () method (Algorithm 1) is called after any

update is executed on a replica, acting as the prepare-update of
an operation-based CRDT. The 𝑒 𝑓 𝑓 𝑒𝑐𝑡 () method (Algorithm 2) is

called on the replicas after receiving the propagated message, acting

as the effect-update.

Algorithm 1 Prepare Update

1: procedure Prepare(𝑑𝑖 𝑓 𝑓) ⊲ on the replica executing a new update
2: 𝑢.𝑖𝑛𝑖𝑡 ()
3: 𝑢.𝑑𝑖 𝑓 𝑓 =𝑑𝑖 𝑓 𝑓

4: 𝑢.𝑝𝑟𝑒𝑣.𝑖𝑛𝑠𝑒𝑟𝑡 (ℎ𝑒𝑎𝑑𝑠)
5: 𝑢.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 =𝐻𝐿.𝑐𝑢𝑟𝑟𝑡𝑖𝑚𝑒

6: 𝑒 𝑓 𝑓 𝑒𝑐𝑡 (𝑢)
7: 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 (𝑢)
8: 𝐻𝐿.𝑐𝑢𝑟𝑟𝑡𝑖𝑚𝑒.𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 ⊲ advance the vector clock

When a new update 𝑢 is executed on a replica, the 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 ()
method initializes a new entry, records the changes in the value 𝑡

and sets other metadata; then,𝑢 takes𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 as its 𝑝𝑟𝑒𝑣 pointers.

Algorithm 2 Effect Update

1: procedure Effect(𝑢) ⊲ on all replicas when receiving the propagated update
2: if 𝑢 in 𝐻𝐿.𝑙𝑜𝑔 then ⊲ see Line 12
3: update other attributes of 𝑢

4: else
5: 𝐻𝐿.𝑙𝑜𝑔.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑢)
6: if 𝑢.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 >𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 [0] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 then
7: 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠←[𝑢] ⊲ if 𝑢 is newer than the latest updates on this replica
8: else if 𝑢.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ==𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 [0] .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 then
9: 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑢) ⊲ if 𝑢 is concurrent with the latest updates on this

replica
10: 𝐻𝐿.𝑐𝑢𝑟𝑟𝑡𝑖𝑚𝑒.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑢.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⊲ advance the logical clock
11: for all 𝑢′ in 𝑢.𝑝𝑟𝑒𝑣 do
12: if 𝑢′ not in 𝐻𝐿.𝑙𝑜𝑔 then ⊲ in case 𝑢 is propagated before 𝑢′

13: create an empty placeholder 𝑢′

14: 𝑢′ .𝑎𝑓 𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑢)

𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 contains the latest known updates on this replica, and 𝑢

must immediately succeed 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 in terms of causal ordering.

It is then stored in the log.

When a replica receives a propagated𝑢, first, the 𝑒 𝑓 𝑓 𝑒𝑐𝑡 ()method

updates 𝐻𝐿.𝑙𝑜𝑔, then the timestamp is used to determine the causal

order between the new update and previous updates. The pointers

of the relevant updates are also updated accordingly. For logical

reverse, the 𝑢.𝑟𝑒𝑙𝑎𝑡𝑒𝑑 set is also updated by checking the 𝑅𝑒𝑙𝑎𝑡𝑒

function of Definition 3.8 among new and existing updates.

4.3 Bulk Reverse Approaches
In this section, we discuss how the compensations are applied to

the current replica and how this information is propagated.

Lazy compensation. The reverse operation stores only the 𝑠𝑡𝑎𝑟𝑡

and 𝑒𝑛𝑑 timestamps of the causal bulk reverse or the 𝑠𝑡𝑎𝑟𝑡 updates

of the logical bulk reverse in a 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 . At each query oper-

ation, a search procedure traverses the 𝐻𝐿.𝑙𝑜𝑔 to determine the up-

dates that need to be reversed and then applies the compensation to

the queried value before returning it to the user. The 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡

should be implemented with a unique set CRDT, such as a grow-

only set [31], to provide the necessary consistency guarantees.

Eager compensation. Each reverse operation immediately applies

the compensating operations to the current state according to

the updates that are already recorded on the executing replica. A

𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 is still required in this approach. When new updates

are propagated from other replicas, they are checked against the

𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 to determine whether they are a part of previous bulk

reverses. Reading requires no extra procedures in this approach.

Algorithm 3 Lazy Compensation Reverse

1: procedure BULKREVERSE(𝑢𝑠 ,𝑢𝑒) ⊲ 𝑢𝑠 is the start and 𝑢𝑒 is the end; 𝑢𝑒 is only
used in the causal bulk reverse

2: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 ((𝑢𝑠 ,𝑢𝑒))
3: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 .𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ((𝑢𝑠 ,𝑢𝑒)) ⊲ synchronize via a grow-only set

CRDT, details omitted

The processes of the reverse operation and query operation for

the lazy approach to the causal bulk reverse are specified in Al-

gorithms 3 and 4. The logical bulk reverse can be implemented

by modifying 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 to store only the start updates and by

changing Line 5 in 𝑞𝑢𝑒𝑟𝑦 () to conduct a recursive search with 𝑙 (𝑢)

300

Reversible Conflict-free Replicated Data Types Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Algorithm 4 Lazy Compensation Query

1: procedure QUERY
2: 𝑡𝑒𝑚𝑝_𝑠𝑡𝑎𝑡𝑒←𝑠𝑡𝑎𝑡𝑒 ⊲ does not modify the current state
3: 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒←[]
4: for all (𝑢𝑠 ,𝑢𝑒) in 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 do
5: loop traverse from 𝑢𝑠 to 𝑢𝑒 with breadth-first traversal

6: for the discovered 𝑢, 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑢) ⊲ search for the 𝑢 that
satisfies Definition 3.7

7: for all 𝑢′ in 𝑡𝑜_𝑟𝑒𝑣𝑒𝑟𝑠𝑒 do
8: 𝑡𝑒𝑚𝑝_𝑠𝑡𝑎𝑡𝑒 +=𝐶 (𝑢′)
9: return value based on 𝑡𝑒𝑚𝑝_𝑠𝑡𝑎𝑡𝑒

Algorithm 5 Eager compensation reverse

1: procedure BULKREVERSE(𝑢𝑠 ,𝑢𝑒)
2: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 ((𝑢𝑠 ,𝑢𝑒))
3: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 .𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 ((𝑢𝑠 ,𝑢𝑒))
4: loop traverse from 𝑢𝑠 to 𝑢𝑒 with breadth-first search

5: execute𝐶 (𝑢)

Algorithm 6 Eager compensation on received effect-update

1: procedure Effect(u)
... ⊲ see Algorithm 2

2: for all (𝑢𝑠 ,𝑢𝑒) in 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 do
3: if 𝑢𝑠 ≺𝑢 and (𝑢 ≺𝑢𝑒 or 𝑢 concurrent with 𝑢𝑒) then
4: execute𝐶 (𝑢)
5: done

in Definition 3.9 on the relative set 𝐿 of the reversed update. The

overhead in this approach is derived from the read operations.

The eager approach is shown in Algorithm 5, where compensa-

tions are applied during the reverse operation. Algorithm 6 is mod-

ified from Algorithm 2 so that whenever a propagated 𝑢 is received

on a replica, the effect()method checks whether this update is a part

of a previous bulk reverse that is not accounted for. For the logical

bulk reverse, a recursive search with 𝑙 (𝑢) of Definition 3.9 replaces

Line 3 of Algorithm 6. The overhead in this approach is mainly

derived from the log synchronization instead of the read operations.

4.4 Algorithm Correctness
Here, we show that the algorithms are correct by showing that

both approaches adhere to strong eventual consistency. Specifically,

when the same updates and op-history log 𝐻𝐿 entries are received

by correct replicas, they will have equivalent states after separately

running reverse operations on each replica. This can be proven by

showing the following:

(1) 𝐻𝐿 is an operation-based CRDT (updating 𝐻𝐿 commutes).

(2) The algorithms of the op-history capture the relations of the

updates in Definition 3.3.

(3) Reversing algorithms are deterministic given the same recorded

updates, and the compensation either executes exactly once or

has no side effect.

Lemma 4.1. Given two updates, 𝑢 𝑗 and 𝑢𝑘 , 𝑒 𝑓 𝑓 𝑒𝑐𝑡 (𝑢 𝑗) and
𝑒 𝑓 𝑓 𝑒𝑐𝑡 (𝑢𝑘) of Algorithm 2 commute.

Proof. We show thatwith two consecutive 𝑒 𝑓 𝑓 𝑒𝑐𝑡 (𝑢 𝑗) and 𝑒 𝑓 𝑓 𝑒𝑐𝑡 (𝑢𝑘)
executed on a single replica, either order of execution will produce

the same state in 𝐻𝐿.𝑙𝑜𝑔, 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 and each 𝑢 𝑗 in 𝐻𝐿.𝑙𝑜𝑔.

HL.log: Line 3 and Line 5 are where𝐻𝐿.𝑙𝑜𝑔 is updated; both𝑢 𝑗 ,𝑢𝑘 ∈
𝐻𝐿.𝑙𝑜𝑔 regardless of the order of execution, because it is incremen-

tally appending to the set.

HL.heads:𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 is only updated on Line 7 to Line 11, and there

are four cases:

(1) When both 𝑢 𝑗 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 and 𝑢𝑘 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 < 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 [0],
𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 is not updated.

(2) When one of 𝑢 𝑗 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 or 𝑢𝑘 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≥ 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 [0],
only one is inserted or set to head regardless of the order.

(3) When 𝑢 𝑗 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ==𝑢𝑘 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≥𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 [0], the first
arrival is either inserted or set to head, and the second arrival

has to be inserted in Line 9.

(4) When 𝑢 𝑗 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 > 𝑢𝑘 .𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≥ 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 [0], if 𝑢 𝑗 ar-
rives first, 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠←[𝑢 𝑗] in line 8, and 𝑢𝑘 is disregarded; if

𝑢𝑘 arrives first, 𝑢𝑘 is inserted or set to 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 [0], but as 𝑢 𝑗
arrives, it overwrites 𝑢𝑘 and is set to head.

HL.currtime is only advanced whenever a new update is received,

and a vector clock must commute by definition.

For each update u: Attributes 𝑢.𝑑𝑖 𝑓 𝑓 , 𝑢.𝑝𝑟𝑒𝑣 , 𝑢.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 and

𝑢.𝑟𝑒𝑙𝑎𝑡𝑒𝑑 are never changed after initialization. Attribute 𝑢.𝑎𝑓 𝑡

is updated in Line 17, and since 𝑢.𝑝𝑟𝑒𝑣 does not change, all of

𝑢′ ∈𝑢𝑖 .𝑝𝑟𝑒𝑣 and 𝑢′ ∈𝑢 𝑗 .𝑝𝑟𝑒𝑣 are visited regardless of the order. □

Theorem 4.2. The op-history log 𝐻𝐿 is an operation-based CRDT.

Proof. Define state 𝑆 = (𝐻𝐿.𝑙𝑜𝑔,𝐻𝐿.ℎ𝑒𝑎𝑑𝑠) and let each new log

entry insertion consist of 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 () and 𝑒 𝑓 𝑓 𝑒𝑐𝑡 () operations. Then,
by Lemma 4.1, it is sufficient to conclude that 𝐻𝐿 is an operation-

based CRDT according to the definition since 𝑒 𝑓 𝑓 𝑒𝑐𝑡 () is commu-

tative [7] [32]. □

Lemma 4.3. For two updates 𝑢𝑖 and 𝑢 𝑗 , if 𝑢𝑖 ≺𝑢 𝑗 , then a path can
be created from 𝑢𝑖 to 𝑢 𝑗 by traversing with 𝑢.𝑎𝑓 𝑡 pointers.

Proof. Assume by contradiction that there is no path between

𝑢𝑖 and 𝑢 𝑗 . Without loss of generality, let 𝑢𝑖′ ,𝑢 𝑗 ′ be two updates

such that both 𝑢𝑖 ≺ 𝑢𝑖+1 ...𝑢𝑖′−1 ≺ 𝑢𝑖′ and 𝑢 𝑗 ′ ≺ 𝑢 𝑗 ′+1 ...𝑢 𝑗−1 ≺ 𝑢 𝑗
have paths between them. The paths can have any length > 0.

Additionally, 𝑢𝑖′ ≺𝑢 𝑗 ′ with no update between them.

Since there are paths for (𝑢𝑖 ,𝑢𝑖′) and (𝑢 𝑗 ′ ,𝑢 𝑗), no path can exist

between𝑢𝑖′ ≺𝑢 𝑗 ′ because of the assumption. There are two possible

cases:

(1) Assume that𝑢𝑖′ and𝑢 𝑗 ′ are executed on the same replica. When

𝑢𝑖′ is added, either it is propagated from other replicas or locally

executed; Line 8 or Line 10 of 𝑒 𝑓 𝑓 𝑒𝑐𝑡 () is executed because 𝑢𝑖′

always has a newer timestamp than the previous heads 𝑢′
𝑖−1

by our assumption. Therefore, 𝑢𝑖′ must be the head of Line 8.

Then, by Line 4 of 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 (), 𝑢𝑖′ is inserted into 𝑢 𝑗 ′ .𝑝𝑟𝑒𝑣 , and

after Line 17 of 𝑒 𝑓 𝑓 𝑒𝑐𝑡 (), 𝑢 𝑗 is inserted to 𝑢𝑖′ .𝑎𝑓 𝑡 . This process

contradicts the assumption that 𝑢𝑖′ and 𝑢 𝑗 ′ cannot be executed

on the same replica.

(2) Assume that 𝑢𝑖′ and 𝑢 𝑗 ′ are executed on different replicas.

If 𝑢𝑖′ .𝑎𝑓 𝑡 does not contain 𝑢 𝑗 ′ , this means that 𝑢𝑖′ is not in

𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 of the replica with 𝑢 𝑗 ′ when 𝑢 𝑗 ′ is executed, so Line 8

or Line 9 of 𝑒 𝑓 𝑓 𝑒𝑐𝑡 (𝑢) is not executed. This outcome can mean

either of two things: 𝑢𝑖′ is executed before some other update

in 𝐻𝐿.ℎ𝑒𝑎𝑑𝑠 , which is impossible because 𝑢𝑖′ ≺𝑢 𝑗 ′ directly; or
𝑒 𝑓 𝑓 𝑒𝑐𝑡 (𝑢𝑖′) is not executed, which is also impossible because

this means that𝑢𝑖′ and𝑢 𝑗 ′ are concurrent and contradicts the as-

sumption. Therefore,𝑢𝑖′ and𝑢 𝑗 ′ cannot be executed on different

replicas.

301

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

By contradiction, there must be a path connecting 𝑢𝑖′ and 𝑢 𝑗 ′

and a path connecting 𝑢𝑖 and 𝑢 𝑗 .

□

Theorem 4.4. 𝐻𝐿.𝑙𝑜𝑔 represents 𝐻𝐺 in Definition 3.3.

Proof. Let 𝑢 in 𝐻𝐿.𝑙𝑜𝑔 be vertices and the 𝑢.𝑎𝑓 𝑡 pointers be

edges. It is obvious that 𝐻𝐿 and 𝐻𝐺 have the same properties as

shown in Definition 3.1 by Lemma 4.3 and Theorem 3.2. □

We show that 𝐻𝐿 is an operation-based CRDT by Theorem 4.2,

and it captures the relations among updates by Theorem 4.4. Since

the op-history log represents 𝐻𝐺 , related updates can be located

by traversing the graph, according to the causal or logical require-

ments specified in Definitions 3.7 and 3.9. The 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 is also

a CRDT so it guarantees strong eventual consistency.

For both the lazy and eager approaches, traversal is deterministic

since there is nomodification to𝐻𝐿.𝑙𝑜𝑔. Applying the compensation

is also failure-prune because: for the lazy approach, compensation

is applied only on the read value without side effects; for the eager

approach, the 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 (as an append-only unique set CRDT)

ensures the only once execution of compensating operation at local

replicas.

Therefore, we can conclude that as long as 𝐻𝐿 converges, the

reversing algorithms will produce a correct and strongly eventually

consistent result on all correct replicas and tolerate any number of

failures by the properties of CRDTs under our network assumption.

4.5 Complexity Analysis

Algorithms Op-History Log Insert Reverse Read

Lazy 𝑂 (1) 𝑂 (1) 𝑂 (𝐶𝑟)
Eager 𝑂 (𝑟) 𝑂 (𝐶) 𝑂 (1)

Table 1: Time complexity of the eager and lazy algorithms

In the lazy approach, Algorithms 1 and 2 for updating 𝐻𝐿 both

have 𝑂 (1) time complexity given that only a constant number of

updates are concurrent. Algorithm 3 has 𝑂 (1) time complexity. Al-

gorithm 4 for read operations has a time complexity of𝑂 (𝐶𝑟)=𝑂 (𝑟),
where 𝑟 is derived from reading the entire 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 and 𝐶 is

the constant representing the number of reversed updates per bulk

reverse operation. If 𝐻𝐿 is implemented as a hash table, locating

𝑢𝑠 and 𝑢𝑒 in 𝐻𝐿.𝑙𝑜𝑔 is𝑂 (1). Traversal only takes the constant time

of 𝐶 , since the updates in each bulk reverse are consecutive and

linked by 𝑢.𝑎𝑓 𝑡 . Both the worst case and the best case are identical

because every bulk reverse in the 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 is always checked.

This finding is true for both causal and logical reverses.

In the eager approach, Algorithm 5 has 𝑂 (𝐶)=𝑂 (1) time com-

plexity. Algorithm 6, which modifies Algorithm 2, has a time com-

plexity of 𝑂 (𝐶𝑟)=𝑂 (𝑟) for traversal similar to the lazy approach.

The space complexity of 𝐻𝐿.𝑙𝑜𝑔 is 𝑂 (𝑛), where 𝑛 is the total

number of updates because every update is stored in 𝐻𝐿. The

𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 has a space complexity of𝑂 (𝑟). Memory usage could

be a concern in a high-throughput environment due to the high

memory footprint of the metadata storage.

4.6 Examples of Reversible CRDTs
Reversible Counter (rCounter). The rCounter is an integer counter

CRDT using a PN-Counter [31] as the underlying CRDT. The

rCounter has two operations, increment and decrement, which adds

or subtracts an integer from its current value. The compensation for

an increment operation is a decrement of the same value and vice

versa. Each update request returns a uid (update id) to the client.

The uids are arguments of the reverse operations to determine the

updates to reverse. The rCounter is designed to support the causal

bulk reverse by providing uids of the 𝑠𝑡𝑎𝑟𝑡 and the 𝑒𝑛𝑑 updates.

Reversible Graph (rGraph). The rGraph is built upon the operation-
based directed graph CRDT (CRDT-Graph) [32] as the underlying

CRDTwith the support of the logical bulk reverse. The CRDT-Graph

has addVertex, removeVertex, addEdge and removeEdge operations.
Compensating operations are the inverse of the corresponding

operations (adding edges/vertices vs. removing edges/vertices). Ad-

ditionally, addEdge operations are logically related to addVertex
operations of the edges’ head vertex, which means that if the cre-

ation of a head vertex is reversed, all associated edges are removed

as part of the logical bulk reverse. Because the creation of an edge

semantically relates to the vertices that it is connecting, as adding a

new edge requires specifying these vertices. Reversing an addVertex
operation is different from the removeVertex operation: if one at-

tempts to removeVertex(𝑣) where 𝑣 is the head of an edge, it returns

a "cannot remove vertex" error to the user. A uid is also returned

for each update.

4.7 "False-Positive" Updates
The lazy approach may produce "false-positive" updates, that is,

with certain CRDTs, some updates seem to be successfully executed

even though they should fail because their dependent updates have

already been reversed. However, the dependent update remains

visible to the system until the lazy read removes it.

For example, if a vertex in the rGraph is reversed, an edge contain-

ing this vertex can still be created with the lazy approach. However,

with the eager approach, a "vertex not found" error will be returned.

This does not violate our guarantees, since the values are still con-

sistent when they are eventually read by the clients, but it may

cause issues in certain scenarios. The situation can be mitigated by

switching to the eager approach or adding a special check on the

validity of the updates.

5 EXPERIMENTAL ANALYSIS
In this section, we present the experimental analysis. The objective

of our evaluations is to answer the following questions: How much

overhead is introduced by enhancing CRDTs with our reversible al-

gorithms? What are the performance characteristics of a reversible

CRDT?

We implemented a replicated key-value (KV) database (rKVCRDT)

for evaluations [24]. Multiple rKVCRDT server instances can form a

cluster, and each KV pair is replicated among the cluster as CRDTs.

Clients send requests that are appropriate to KV pairs’ CRDT in-

terface, where values can be read and updated at any server in the

cluster. Four data types, the rCounter, PN-Counter, rGraph, and

CRDT-Graph, are included.

302

Reversible Conflict-free Replicated Data Types Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

5.1 Experimental Setup
We hosted an rKVCRDT cluster on five Ubuntu 20.04 cloud VMs

provided by the Compute Canada Cloud. Each VM had two Intel

Xeon vCPUs clocked at 2.4 GHz, 15 GB of RAM and hosted one

server instance. Clients were run on a separate VM within the same

cloud location. The VMs were interconnected by high-speed LAN

with less than 1 ms latency.

For workload generation, we did not use existing database bench-

mark tools because they do not consider reversibility in their work-

loads. In addition, there are no universally applicable benchmarks

for CRDTs that can be easily modified to conduct such experiments.

Thus, synthetic workloads were used by specifying a read/write (up-

date) ratio and then randomly generating a sequence of requests

that were equally assigned to all clients.

5.2 Results
The rCounter and the rGraph were used to demonstrate the per-

formance of reversible CRDTs and their underlying CRDTs, PN-

Counter and CRDT-Graph, were employed as baselines.

For each experiment, we first initialized 200 KV pairs, and per-

formed 1000 writes per KV pair with a variable amount of inter-

leaving reverse operations. We measured the performance metrics

of an additional 1000 operations (both reads and writes) after those
reversed had been completed, for a total of 200000 operations. This

was because the performance impact of reversed updates persisted

after they took effect, as discussed in the last section. Performance

was measured with write-heavy workloads that consisted of 30%

of reads and 70% of writes, balanced workloads with 50% of reads

and 50% of writes, and read-heavy workloads with 70% of reads

and 30% of writes.

Throughput vs. Latency and Peak Throughput. Figure 5 depicts
the throughput vs. latency for both counters and graphs using both

reversing approaches; Figure 6 depicts the peak throughput varied

by the number of reverse operations (indicated by 𝑟). In Figure 5, we

gradually increased the system load in terms of input throughput

by changing the number of clients and the rate of requests until

they saturated the system (peak throughput), then we measured

the end-of-end latency.

We noticed that all measurements followed a similar trend where

the latency increased slightly while the load increased. Just adding

the history log introduced a significant overhead in both latency

and peak throughput. For the lazy counter, we observed that when

there were few reverses, the write-heavy workload performed bet-

ter, but when there were more reverses, the read-heavy workload

performed better, as shown in Figure 5a and Figure 6a. This was

because the lazy approach conducted all compensations during

read as discussed in Section 4.5. The read-heavy workload in Fig-

ure 5c always performed better in the eager approach, until the gap

became narrower with a higher number of reverses.

For graphs, we obtained intersecting results. The lazy graph in

Figure 5c and Figure 6a followed a trend similar to that of the lazy

counter, but the impact on performance by the number of reverse

operations was less pronounced. In the eager graph (Figure 5d), we

even observed a performance increase when 𝑟 increased from 50 to

100. This increase was caused by the expensive implementation of

CRDT-Graph and rGraph (baseline peak throughput of PN-Counter

was approximately 43,000 ops/s but CRDT-Graph was in the range

of approximately 16,000 to 21,000 ops/s) in maintaining a large

state: two sets for vertices and edges, and the read operations iter-

atively checking all elements. Thus, the overhead of reverses was

overshadowed when the graph expanded. For the eager graph, the

eager compensation effectively removed elements from the sets,

rendering the checks less expensive.

Throughput Over Executed Operations. In this evaluation, we

inserted the reverse operations into experiments that measured

throughput to visualize how reverses impacted the performance in

real-time. Each KV pair was applied with a 2,000-operation balanced

workload in order to maintain a consistent number of updates vs.

number of reversed ratio for a total of 400,000 operations.

Figure 7a depicts the throughput vs. percentage of executed oper-

ations for counters.We noted that lazy counters gradually decreased

as the experiments progressed, but eager counters did not. The lazy

approach needed to apply increasing compensation as the number

of reverses increased, but the eager approach amortized the cost

during every update. For graphs, all experiment subjects gradually

decreased in performance even with the baseline. This outcome was

again caused by the implementation of the CRDT-Graph, whose

size constantly expanded.

Latency. To evaluate the system responsiveness and the efficiency

of the replication algorithms, we reduced the input throughput to

1,000 ops/s so that the system was under a light load and then

measured the latency distribution.

For both counters shown in Figure 9a and Figure 9b, when the

number of reverses was low, latency for all operations was compa-

rable to the base PN-Counter where 99% of requests were below 1

ms. When the number of reverses increased, the lazy approach saw

a separation in read and write (update) latency. While the write

latency remained mostly lowwith approximately 90% being below 1

ms for 𝑟 =50 and 𝑟 =100, the read latency increased to 3ms and 4ms,

respectively, for the 90𝑡ℎ percentile. However, neither the read la-

tency nor the write latency changed much with the eager approach.

Figure 9c and Figure 9d depict the latency distribution for graphs.

For the lazy approach, the relative increase in the average read

latency were less pronounced than those for the rCounter, and we

saw that writes were much faster than reads (same for the baseline

CRDT-Graph), and adding reverses pronounced the difference. For

the lazy approach, we saw that the write latency slightly increased,

and the read latency did not change much.

Memory Usage. Figure 8 depicts the final memory usage after

the experiments that measured peak throughput by averaging the

memory usage at each server. For the rCounter, logging updates in

the op-history log consumed 6x to 7x the memory compared to the

PN-Counter. The memory usage linearly increased with the number

of reverses due to the increase in 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑑_𝑙𝑖𝑠𝑡 . We also observed

that with a read-heavy workload, the lazy approach consumedmore

memory; with a write-heavy workload, the eager approach con-

sumed more memory. The rGraph consumed approximately 4x to

5x more memory compared to the baseline. However, the memory

usage did not show an increase comparable with the number of

reverses as the graph decreased in size.

303

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

(a) PN-Counter and reversible counters (lazy) (b) Reversible counters (eager)

(c) CRDT-Graph and reversible graphs (lazy) (d) Reversible graphs (eager)

Figure 5: Throughput vs. latency of counters and graphs for different number of reverse operations

5.3 Summary and Potential Optimizations
We observed that the performance of reversible CRDTs was heavily

influenced by the implementation of the underlying CRDTs. There

was no universal conclusion on the performance of all reversible

CRDTs but only certain patterns. For lightweight CRDTs such as

the PN-Counter, the impact of adding reversibility was significantly

larger and more aligned with expectations. However, for CRDTs

such as the CRDT-Graph, the overhead may be overshadowed by

other factors. This finding indicates that, against intuition, adding

reversibility to more sophisticated and "heavier" CRDTs requires

fewer trade-offs than simpler CRDTs.

Based on the evaluation results, we also propose a few potential

optimization techniques. First is the "hybrid approach": we can ap-

ply compensating operations when reverse operations are received

as performed in the eager approach, but only check for newly prop-

agated updates on read like the lazy approach. This avoids the

repeating application of the same compensations on every read,

and also reduces the synchronization messages. Second, we can

support check-pointing to perform compaction and garbage collec-

tion when all replicas are stable (reach the same state) [31], which

can greatly reduce the metadata size and log search time. However,

there is the trade-off of the longevity of possible reversible updates,

as garbage-collected updates can no longer be reversed.

6 RELATEDWORK
Although reversibility is useful in many situations, the concept of

reversible CRDTs was largely unexplored in previous work when

this concept was surveyed by Preguica et al. (2018) [27]. In the

survey, the authors mentioned two potential reversible computation
use cases in CRDTs. The first case involves adding an undo function

in CRDTs that are used by collaborative editing tools. This case

was already investigated as a nontrivial problem prior to the use

of CRDTs in collaborative editing tools [13] [35] [33]. The second

case involves a system composed of multiple subsystems, some of

which are interdependent, for example, the previously mentioned

SAGA transactions [16].

Generic Undo Support for State-based CRDTs. Yu et al. (2020) devel-
oped a generic undo support for state-based CRDTs that expanded

previous research on undo in collaborative editing to any state-

based CRDTs [36]. The state-delta values are used to represent the

changes in states, which are also stored in a log-like structure sim-

ilar to that of our approach. However, this definition of undoing

304

Reversible Conflict-free Replicated Data Types Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

(a) Counters

(b) Graphs

Figure 6: Throughput vs number of reverse
operations

(a) Counters

(b) Graphs

Figure 7: Throughput overtime (balanced
workload)

(a) Counters

(b) Graphs

Figure 8: Memory usage vs. number of
reverse operations

again follows the traditional definition employed in text editors, i.e.,

reversing the changes made by the last few updates in a last-in, first-

out fashion, which does not allow the undoing of arbitrary updates.

Therefore, compensating operations do not need to be explicitly de-

fined. Their research focuses on defining the concurrency behaviour

for concurrent undo and redo operations instead of defining the

removing effect of any given update, such as in our approach.

Pure Operation-Based Replicated Data Types. Baquero, et al. (2014,
2017) [6] [7] proposed a partially ordered log called PO-Log. It is

used as a causally reliable broadcast middleware to implement pure-

operational based replicated data types. This allows CmRDTs to

disseminate effect-update messages that neither rely on any current

state information nor causal ordering for correct convergence.

PO-Log is similar to the OP-History log with respect to using vec-

tor clocks to determine the causal ordering of updates. However, the

OP-history log is also responsible for recording state changes and

providing means for searching through the log, whereas PO-Log

serves athe different purpose of providing causal information dur-

ing the effect-update process of pure op-based CRDTs. Still, some

of their optimization techniques are potentially useful with our

OP-history log, such as discarding stable operations as garbage

collection.

Hash Graph of Updates. Recent work in CRDTs may allow for

more efficient replication of the operation history log. In Klepp-

mann (2022)’s work [20], the author proposed a method to construct

updates’ causal dependency graph linked by hash values, similar

to certain blockchains [4]. In the hash graph, an update’s hash

is calculated based on its predecessors’ hash. This approach not

only ensures the causal dependency but also provides the ability of

tamper-resistance. Replication of the hash graph can be accelerated

by using a Merkle tree to compare the differences efficiently.

Other Work. In all the previous attempts at making CRDTs re-

versible, we noticed that the solutions were either limited to specif-

ically designed CRDTs or did not provide the flexibility that we

hoped to obtain. We also sought concepts in other areas of dis-

tributed systems for intuitions. For example, the eventually con-
sistent transaction [11] provides a formalization referred to as the

revision diagram to depict the history of a series of eventually consis-

tent operations that are similar to our op-history log and the causal

bulk reverse definitions. However, in this approach, transactions

can never fail, and it is impossible to undo a past operation.

7 CONCLUSIONS
In this paper, we introduced and defined the concept of reversible
CRDTs based on the idea of compensation. We presented designs

and algorithms for extending CRDT systems that allow users to

reverse historical updates. As a proof of concept and an evaluation

tool, we presented rKVCRDT, a replicated KV store with the support

of reversible CRDTs. The evaluations showed that extending CRDTs

with reversibility incurs a performance and memory consumption

penalty. However, the overall effect is influenced by many other

factors, especially the implementation of the underlying CRDTs.

305

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

(a) PN-Counter and reversible counters (lazy) (b) Reversible counters (eager)

(c) CRDT-Graph and reversible graphs (lazy) (d) Reversible graphs (eager)

Figure 9: Latency CDF for counters and graphs (balanced workload)

In future work, we hope to establish a generic method that of-

fers more predictable behaviour for reversing concurrent updates,

as discussed in Section 3.6. This approach requires some type of

coordination or stronger consistency requirements on replicas. For

example, we can run the coordination algorithm only when the

CRDTs’ replication mechanisms cannot resolve the concurrency.

In addition, we intend to further optimize reversible CRDTs as

discussed in Section 5.3.

ACKNOWLEDGMENTS
This work was in part supported by NSERC.

REFERENCES
[1] AntidoteDB. 2021. Antidote: A planet scale, highly available, transac-

tional database built on CRDT technology. Retrieved July, 2021 from

https://github.com/AntidoteDB/antidote

[2] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,

and Ion Stoica. 2014. Coordination Avoidance in Database Systems. Proc. VLDB
Endow. 8, 3 (Nov. 2014), 185–196. https://doi.org/10.14778/2735508.2735509

[3] Peter Bailis and Ali Ghodsi. 2013. Eventual Consistency Today: Limita-

tions, Extensions, and Beyond. Commun. ACM 56, 5 (May 2013), 55–63.

https://doi.org/10.1145/2447976.2447992

[4] Leemon Baird. 2016. The Swirlds Hashgraph Consensus Algorithm:
Fair, fast, Byzantine Fault Tolerance. Retrieved May 2022 from

https://eclass.upatras.gr/modules/document/file.php/CEID1175/Pool-of-

Research-Papers%5B0%5D/31.HASH-GRAPH.pdf

[5] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo

Rodrigues, and Nuno M. Preguiça. 2015. Extending Eventually Consistent Cloud

Databases for Enforcing Numeric Invariants. In 34th IEEE Symposium on Reliable
Distributed Systems, SRDS 2015 (Montreal, QC, Canada). IEEE Computer Society,

31–36. https://doi.org/10.1109/SRDS.2015.32

[6] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. 2014. Making Operation-

Based CRDTs Operation-Based. In Proceedings of the First Workshop on Principles
and Practice of Eventual Consistency (Amsterdam, The Netherlands) (PaPEC ’14).
Association for Computing Machinery, New York, NY, USA, Article 7, 2 pages.

https://doi.org/10.1145/2596631.2596632

[7] Carlos Baquero, Paulo Sergio Almeida, and Ali Shoker. 2017. Pure Operation-

Based Replicated Data Types. (2017). https://doi.org/10.48550/ARXIV.1710.04469

arXiv:1710.04469

[8] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos

Baquero, Valter Balegas, and Sérgio Duarte. 2012. An optimized conflict-free

replicated set. (2012). https://doi.org/10.48550/ARXIV.1210.3368 arXiv:1210.3368

[9] Peter Bourgon. 2014. Roshi: a CRDT system for timestamped events. Retrieved

July 2021 from https://developers.soundcloud.com/blog/roshi-a-crdt-system-

for-timestamped-events

[10] Eric Brewer. 2012. CAP twelve years later: How the "rules" have changed.

Computer 45, 2 (Jan. 2012), 23–29. https://doi.org/10.1109/MC.2012.37

[11] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. 2012.

Eventually Consistent Transactions. In Programming Languages and Systems
- 21st European Symposium on Programming (Tallinn, Estonia) (ESOP 2012,

306

https://github.com/AntidoteDB/antidote
https://doi.org/10.14778/2735508.2735509
https://doi.org/10.1145/2447976.2447992
https://eclass.upatras.gr/modules/document/file.php/CEID1175/Pool-of-Research-Papers%5B0%5D/31.HASH-GRAPH.pdf
https://eclass.upatras.gr/modules/document/file.php/CEID1175/Pool-of-Research-Papers%5B0%5D/31.HASH-GRAPH.pdf
https://doi.org/10.1109/SRDS.2015.32
https://doi.org/10.1145/2596631.2596632
https://doi.org/10.48550/ARXIV.1710.04469
https://arxiv.org/abs/1710.04469
https://doi.org/10.48550/ARXIV.1210.3368
https://arxiv.org/abs/1210.3368
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://developers.soundcloud.com/blog/roshi-a-crdt-system-for-timestamped-events
https://doi.org/10.1109/MC.2012.37

Reversible Conflict-free Replicated Data Types Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Vol. 7211). Springer, 67–86. https://doi.org/10.1007/978-3-642-28869-2_4

[12] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-

doski, James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent

Key-Value Store with In-Place Updates. In Proceedings of the 2018 Interna-
tional Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 275–290.

https://doi.org/10.1145/3183713.3196898

[13] David Chen and Chengzheng Sun. 2001. Undoing Any Operation in Collabo-

rative Graphics Editing Systems. In Proceedings of the 2001 International ACM
SIGGROUP Conference on Supporting Group Work (Boulder, Colorado, USA)

(GROUP ’01). Association for Computing Machinery, New York, NY, USA,

197–206. https://doi.org/10.1145/500286.500316

[14] George Coulouris, Jean Dollimore, and Tim Kindberg. 2002. Distributed Systems
- Concepts and Designs (3. ed.). Addison-Wesley-Longman.

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.

In Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Prin-
ciples (Stevenson, Washington, USA) (SOSP ’07). Association for Computing Ma-

chinery, New York, NY, USA, 205–220. https://doi.org/10.1145/1294261.1294281

[16] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data (San Francisco,

California, USA) (SIGMOD ’87). Association for Computing Machinery, New

York, NY, USA, 249–259. https://doi.org/10.1145/38713.38742

[17] Kristof Jannes, Bert Lagaisse, and Wouter Joosen. 2021. OWebSync:

Seamless Synchronization of Distributed Web Clients. IEEE Transac-
tions on Parallel and Distributed Systems 32, 9 (March 2021), 2338–2351.

https://doi.org/10.1109/TPDS.2021.3066276

[18] Kolbeinn Karlsson, Weitao Jiang, Stephen Wicker, Danny Adams, Edwin

Ma, Robbert van Renesse, and Hakim Weatherspoon. 2018. Vegvisir: A

Partition-Tolerant Blockchain for the Internet-of-Things. In 38th International
Conference on Distributed Computing Systems (Vienna, Austria) (ICDCS 2018).
IEEE Computer Society, 1150–1158. https://doi.org/10.1109/ICDCS.2018.00114

[19] Martin Kleppmann. 2016. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly.

[20] Martin Kleppmann. 2022. Making CRDTs Byzantine Fault Tolerant. In Proceedings
of the 9th Workshop on Principles and Practice of Consistency for Distributed Data
(Rennes, France) (PaPoC ’22). Association for Computing Machinery, New York,

NY, USA, 8–15. https://doi.org/10.1145/3517209.3524042

[21] Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. 1990. A Formal

Approach to Recovery by Compensating Transactions. In 16th International
Conference on Very Large Data Bases (Brisbane, Queensland, Australia) (VLDB
’90). Morgan Kaufmann, 95–106. http://www.vldb.org/conf/1990/P095.PDF

[22] Xiao Lv, Fazhi He, Weiwei Cai, and Yuan Cheng. 2018. Support-

ing selective undo of string-wise operations for collaborative editing

systems. Future Generation Computer Systems 82 (May 2018), 41–62.

https://doi.org/10.1016/j.future.2017.11.046

[23] Xiao Lv, Fazhi He, Yuan Cheng, and Yiqi Wu. 2018. A novel CRDT-based synchro-

nization method for real-time collaborative CAD systems. Advanced Engineering
Informatics 38 (Oct. 2018), 381–391. https://doi.org/10.1016/j.aei.2018.08.008

[24] Yunhao Mao. 2022. rKVCRDT. Retrieved June 2022 from https:

//github.com/MSRG/rKVCRDT

[25] Pezhman Nasirifard, Ruben Mayer, and Hans-Arno Jacobsen. 2019. FabricCRDT:

A Conflict-Free Replicated Datatypes Approach to Permissioned Blockchains

(Middleware ’19). Association for Computing Machinery, New York, NY, USA,

110–122. https://doi.org/10.1145/3361525.3361540

[26] M. Tamer Özsu and Patrick Valduriez. 2020. Principles of Distributed Database
Systems, 4th Edition. Springer. https://doi.org/10.1007/978-3-030-26253-2

[27] Nuno M. Preguiça, Carlos Baquero, and Marc Shapiro. 2018. Conflict-

free Replicated Data Types (CRDTs). (2018). arXiv:1805.06358

http://arxiv.org/abs/1805.06358

[28] Redis. 2021. Redis: Developing applications with Active-Active databases.
Retrieved July, 2021 from https://docs.redis.com/latest/rs/databases/active-

active/develop/data-types/

[29] Riak. 2021. NoSQL Key Value Database | Riak KV. Retrieved July, 2021 from

https://riak.com/products/riak-kv/

[30] Yasushi Saito and Marc Shapiro. 2005. Optimistic Replication. ACM Comput.
Surv. 37, 1 (March 2005), 42–81. https://doi.org/10.1145/1057977.1057980

[31] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A
comprehensive study of Convergent and Commutative Replicated Data Types.
Technical Report. Inria Centre Paris-Rocquencourt.

[32] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011.

Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of
Distributed Systems - 13th International Symposium (Grenoble, France) (SSS 2011,
Vol. 6976). Springer, 386–400. https://doi.org/10.1007/978-3-642-24550-3_29

[33] Stéphane Weiss, Pascal Urso, and Pascal Molli. 2009. Logoot: A Scalable

Optimistic Replication Algorithm for Collaborative Editing on P2P Networks.

In 29th IEEE International Conference on Distributed Computing Systems

(Montreal, QC, Canada) (ICDCS 2009). IEEE Computer Society, 404–412.

https://doi.org/10.1109/ICDCS.2009.75

[34] ChenggangWu, Jose M. Faleiro, Yihan Lin, and JosephM. Hellerstein. 2021. Anna:

A KVS for Any Scale. IEEE Transactions on Knowledge and Data Engineering
33, 2 (Feb. 2021), 344–358. https://doi.org/10.1109/TKDE.2019.2898401

[35] Weihai Yu. 2014. Supporting String-Wise Operations and Selective Undo

for Peer-to-Peer Group Editing. In Proceedings of the 18th International
Conference on Supporting Group Work (Sanibel Island, Florida, USA) (GROUP
’14). Association for Computing Machinery, New York, NY, USA, 226–237.

https://doi.org/10.1145/2660398.2660401

[36] Weihai Yu, Victorien Elvinger, and Claudia-Lavinia Ignat. 2019. A Generic

Undo Support for State-Based CRDTs. In 23rd International Conference on
Principles of Distributed Systems (Neuchâtel, Switzerland) (OPODIS 2019,
Vol. 153). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:17.

https://doi.org/10.4230/LIPIcs.OPODIS.2019.14

307

https://doi.org/10.1007/978-3-642-28869-2_4
https://doi.org/10.1145/3183713.3196898
https://doi.org/10.1145/500286.500316
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/38713.38742
https://doi.org/10.1109/TPDS.2021.3066276
https://doi.org/10.1109/ICDCS.2018.00114
https://doi.org/10.1145/3517209.3524042
http://www.vldb.org/conf/1990/P095.PDF
https://doi.org/10.1016/j.future.2017.11.046
https://doi.org/10.1016/j.aei.2018.08.008
https://github.com/MSRG/rKVCRDT
https://github.com/MSRG/rKVCRDT
https://doi.org/10.1145/3361525.3361540
https://doi.org/10.1007/978-3-030-26253-2
https://arxiv.org/abs/1805.06358
http://arxiv.org/abs/1805.06358
https://docs.redis.com/latest/rs/databases/active-active/develop/data-types/
https://docs.redis.com/latest/rs/databases/active-active/develop/data-types/
https://riak.com/products/riak-kv/
https://doi.org/10.1145/1057977.1057980
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1109/ICDCS.2009.75
https://doi.org/10.1109/TKDE.2019.2898401
https://doi.org/10.1145/2660398.2660401
https://doi.org/10.4230/LIPIcs.OPODIS.2019.14

