ACM/IEEE 15th International Conference on Cooperative and Human Aspects of Software Engineering

Check for
Updates

Coordination Value in Agile Software Development

A Multiple Case Study of Coordination Mechanisms Managing Dependencies

Viktoria Stray Nils Brede Moe
University of Oslo SINTEF Digital
SINTEF Digital Trondheim
Norway Norway
stray@ifi.uio.no nilsm@sintef.no

ABSTRACT

Background: Agile software projects involve a high degree of
coordination between project members to manage complexity and
frequent change. There is a need to understand what coordinating
mechanisms are valuable for project and team coordination.
Coordination mechanisms, such as meetings and Slack, can foster
a smooth workflow but also fragment work by interrupting the
focused work of developers. Objective: This study aimed to
investigate valuable coordination mechanisms and how they can be
balanced against the need for uninterrupted work periods. Method:
We conducted 30 interviews and observed 109 meetings in five
companies using agile software development methods. We used
coordination-dependency mapping to identify valuable
coordination mechanisms. Results: Valuable coordination
mechanisms included instant messaging tools, daily stand-up
meetings, boards, open work area, Scrum of Scrums, bug crush
days, BizDev meetings, and Make it Happen meetings. Conclusion:
We advise companies to identify valuable coordination
mechanisms using coordination-dependency mapping and then to
bundle, schedule, and substitute these coordination mechanisms to
reduce interruptions to development work.

CCS CONCEPTS

* Software and its engineering ~Software creation and management
KEYWORDS

Meetings, Interruptions, Fragmented work, Communication,

Theory, Teamwork, Large-scale agile, Start-up

ACM Reference format:

Viktoria Stray, Nils Brede Moe, Diane Strode and Emilie Mahlum. 2022.
Coordination Value in Agile Software Development. A multiple case study
of coordination mechanisms managing dependencies. In Proceedings of
CHASE'22: 15th International Conference on Cooperative and Human
Aspects of Software Engineering, 10 pages,
https://doi.org/10.1145/3528579.3529182.

This work is licensed under a Creative Commons Attribution International 4.0 License.

CHASE"22 , May 21-29, 2022, Pittsburgh, PA, USA
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9342-3/22/05.
https://doi.org/10.1145/3528579.3529182

Diane Strode Emilie Mahlum

Whitireia Polytechnic Blank
Porirua City University of Oslo
New Zealand Norway
diane.strode@whitireia.ac.nz em@blank.no

1 INTRODUCTION

To handle complexity and frequent changes, agile software
projects need a high level of coordination between project
participants [15]. This coordination depends on the context the
teams work in. For example, small co-located projects have
different coordination needs than e.g., large-scale, distributed,
virtual, or hybrid projects. Therefore, teams must reflect and adjust
how they coordinate their work and what agile practices are
effective for achieving effective coordination. Additionally, agile
teams need to balance individual work activities, such as
programming, with team activities that are primarily for
coordinating complex team action [31].

Developing software is complex because of the additional need
for teams to coordinate their work with multiple experts,
stakeholders, and other teams. Further, agile software projects
involve frequent changes in customer needs, business models, and
technology, including system architecture. Managing the
dependencies between these interconnected factors is critical [5].
However, it is not enough to put individuals together and expect
them to know how to manage all dependencies; there must be some
mechanisms in place to achieve coordination [3]. Coordination
mechanisms in software development include meetings,
communication tools, roles, documents, code repositories, and how
the project and teamwork are organized [7, 30].

Understanding how to manage dependencies in agile projects
may assist product leaders, managers, and developers develop
better work habits and more successful projects by selecting the
proper mechanisms from among the many mechanisms available.
Strode [29] proposed that dependencies can be managed well,
poorly, or not at all. Unmanaged dependencies can constrain or
block progress, leading to delays as people wait for resources,
features to be completed, or requirements to be clarified. When
dependencies are poorly managed, coordination mechanisms are
usually inappropriate, inadequate, or absent. Conversely, when
dependencies are well managed, this suggests that appropriate
coordination mechanisms are in place to support the smooth flow
of interdependent work and that there will be fewer interruptions
and reduced waiting time.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528579.3529182&domain=pdf&date_stamp=2022-07-19

CHASE’22, May 2022, Pittsburgh, PA, USA

Description
Technical or task information is known only by
a particular person or group, and this affects or
has the potential to affect project progress.

Table 1. Eight dependency types and how they can be managed [30]

Example

Expertise dependencies are managed in daily stand-up meetings
when people identify the expertise of other project members that is
needed to solve obstacles.

Domain knowledge or a requirement is not
known and must be located or identified, and this
affects or has the potential to affect project
progress.

Requirement dependencies are managed when team members
become aware of details of user stories in sprint planning meetings.

Who is doing what and when is not known, and
this affects or has the potential to affect project
progress.

Task allocation dependencies are managed when the team members
in daily meetings discuss who should be involved in solving the
tasks and obstacles raised.

Knowledge about past decisions is needed, and
this affects or has the potential to affect project
progress.

Historical dependencies are managed when a senior developer
shares important information about architectural principles and how
they emerged.

An activity cannot proceed until another activity
is complete, and this affects or has the potential
to affect project progress.

Process dependencies are managed when the board displaying
stories and tasks acts as an indicator of potential activity timing
conflicts.

An existing business process causes activities to
be carried out in a certain order, and this affects
or has the potential to affect project progress.

Business process dependencies are managed when the backlog is
prioritized according to the order occurring in the business process.

Resource A resource (person, place, or thing) is not | Entity dependencies are managed when the IT support team is
dependency— Entity available, and this affects or has the potential to | available and can be approached directly when needed.
when an object is affect project progress.
required for project A technical aspect of development affects or has | Technical dependencies are managed when the continuous
to progress . the potential to affect project progress. integration and automated unit test system ensure that changes to
Technical L
one part of the code base have a minimal impact on other parts (API-
first design approach).

Dependencies in agile software projects are handled primarily
by mutual adjustment [7, 19], with meetings as the primary
mechanism. Meyer et al. [13] found that developers spend around
five hours in planned meetings during a typical work week. Stray
and Moe studied global agile teams and found that the project
members spent approximately eight hours per week in scheduled
meetings and nine hours in unscheduled meetings [26]. Despite
being essential to coordination, meetings often result in
interruptions and a temporary suspension of primary activities such
as programming [1]. Immersion in coding tasks is vital for good-
quality software, the progress of tasks, and developers’ perceived
productivity, and getting into “the flow” is difficult when
developers experience fragmented work because of coordination
activities [13]. After an interruption, developers returning to
programming tasks need 15 minutes to collect their thoughts and
make the first edit [21]. Because of this, companies need to identify
the most valuable coordination mechanisms and organize them to
reduce the interruption problem. They need to identify the most
useful meetings to conduct, the best way to structure teams, the
most effective tools to use, and the optimal number, type, and
timing of activities for interacting with stakeholders and other
teams (e.g., balancing synchronous and asynchronous
coordination). Therefore, this study addresses the following
research question: RQI: What are valuable coordination
mechanisms in agile software projects? We applied a research-
based tool for evaluating coordination mechanisms in a multiple-
case study to answer this question.

12

Evidence from the study reported in this paper is part of a broad
study of coordination in agile software development. Among the 30
interviews of this study, 9 were reused from the study reported in
[30], 4 were reused from the study reported in [27] and 8 were
reused from the study reported in [26]. The remaining 9 interviews
were new interviews for this study. This study extends our previous
findings. Firstly, the current study combines results from studies in

Dependencies

Cordination
mechanisms

isation ‘
chI‘O“‘sa
Sy =

AK

i
% w | 'nl
Synchronization is achieved
with activities and artefacts
produced and used during Availability, proximity, and
those activities. substitutability are aspects of
Such activities are performed structure. For example, how
by project members available is the customer for
simultaneously that promote ~ clarifications, are team

a common understanding of —members continually present.
a task or process.

Boundary spanning
Structure

#y W

Structure is related to how
the project is set up.

Boundary spanning occurs
when someone within the
project interacts with other
organizations, business
units, or stakeholders to
achieve project goals.
Boundary spanning
activities are performed to
elicit assistance or
information externally.

Figure 1: Three types of coordination mechanisms

Coordination Value in Agile Software Development

Project

CHASE’22, May 2022, Pittsburgh, PA, USA

Table 2. The five cases

Context — product development

About the company

Interviews and observations

Steel Steel was a Scrum project we studied in 2010 with a team A commercial service provider with 200
of 10 that took place in a quasi-public sector organization, = employees in Australia, Asia and Europe.
which provided information critical to New Zealand and
various international agencies.

Silver Silver was a Scrum project we studied in 2010 with a single =~ A commercial software development firm
small team of four that was critical to the country. The = with 20 employees in New Zealand.
purpose of the project was to redevelop a legacy system
using new technologies.

Copper Project Copper was a Scrum and DevOps project we studied A municipality in Norway with 50,000
in 2018. The project had seven teams, developing web, employees and 50 organizational units.
mobile and document-handing services for the citizens. The ~ The municipality —has its own
five DevOps teams had full responsibility from developing development program, which is
and testing to deploying to production and monitoring of a responsible for integrating hundreds of
feature. internal systems.

Gold We studied Project Gold in 2017. Gold had a group of 30 = A large Norwegian software company
team members in four agile virtual Scrumban teams that produces and sells specialized
distributed equally across Norway and Poland (15 people at software for the engineering domain. The
each site). They delivered a system for companies to = company also has offices in Poland,
improve risk performance and to manage quality, healthand =~ Germany, China, Malaysia, the US, and
safety. the UK.

Titanium A start-up company developing a multisided platform for =~ A company founded in late 2016 that has

sustainable consumer behavior in Norway. We studied the
teams from 2019 to 2020.

around 20 employees. It was among the
top 10 promising Norway-based start-ups

Interviews (5), Work environment (1), Daily
Stand-up (1), Story breakdown meeting (1)

Interviews (4), Work environment (1)

Interviews (4), Daily Stand-up (12), Demo
meetings (6), Sprint meetings (2), Scrum of
Scrum meetings (5), Project meetings (7),
Workshops (3), Team leader meetings (2),
Retrospective (1)

Interviews (8), Daily Stand-up (6), Retrospective
(7), Demo meetings (1), Scrum of Scrum
meetings (1), Workshops (3), Task force meeting
(1), Bug Triage (1)

Interviews (9), Daily stand-up meetings (19),
Make it Happen meetings (11), Company-wide
meetings (2), BizDev meetings (2), Sprint

to watch in 2020

different countries, different agile contexts, and carried out by
different researchers. Using the same coordination-dependency
mapping technique in all cases, and finding both the same and new
coordination mechanisms, provides stronger evidence, beyond that
of single studies, for the utility of coordination mapping for
identifying valuable coordination mechanisms in software
development. Secondly, this study presents new coordination
mechanisms not previously reported. Thirdly, this study presents
new ways that agile project teams can organize coordination
mechanisms to reduce the problem of work interruptions.

2 BACKGROUND

Complex software projects generate a mesh of dependencies
[29]. When many teams and stakeholders are spread across
continents, complexity increases [4, 25]. Software projects that do
not effectively handle dependencies experience coordination
breakdowns [5]. Therefore, managing dependencies is a critical
aspect of success in a software project [11].

The association between coordination and dependencies is not
new. In 1994, Malone and Crowston [12] defined coordination as
“the managing of dependencies between activities.” Their work led
to the idea that agile software development projects need
appropriate coordination mechanisms to manage dependencies
[30]. Recently, companies are implementing large-scale
frameworks, but they still experience coordination challenges [6].

Agile software development projects show three types of
dependencies: knowledge dependencies, process dependencies,
and resource dependencies [29]. Coordination mechanisms are
used to manage these dependencies. For example, an organization
can have a daily stand-up meeting where teams in 15 minutes get

planning (2), Backlog grooming (1), Tech Team
meetings (6), Project meetings (5), Workshop (1)

an overview of who is doing what and can solve problems and
address technical dependencies, task dependencies, or knowledge
dependencies by discussion and action. There are three types of
coordination mechanisms [29]: synchronization, structure, and
boundary spanning, see Figure 1.

Mapping coordination mechanisms and dependencies
(coordination-dependency mapping) provide a way to analyze what
coordination mechanisms address what dependencies in a situation
[29]. Such a mapping shows which coordination mechanisms
address multiple dependencies; these coordination mechanisms are
potentially more valuable in a project because one coordinative
activity (e.g. a stand-up meeting) or artefact (e.g. a task board) can
address many dependencies. Table 1 defines these dependencies,
their eight subtypes, and give examples.

While effective coordination mechanisms are vital for
managing dependencies, coordination potentially leads to
interruptions and fragmented work. When developers are faced
with fragmented work as a result of coordination, such as attending
a meeting, they believe their productivity is impaired [13]. A
meeting represents a special type of interruption which can lower
the employees' later motivation by influencing their mental state
[23]. After an interruption, people have to scan and evaluate any
new information they encounter and several short interruptions
have a greater effect than one long interruption [34]. When
employees feel that meetings constrain their time and are
unproductive, they get dissatisfied at work [2]. However, meetings
are mostly perceived as unproductive during development phases,
while during, for example, planning phases, they are seen as more
beneficial [14]. Therefore, the project phase also influences which
coordination mechanism that gives the most value.

CHASE’22, May 2022, Pittsburgh, PA, USA

Table 3. Dependencies and coordination mechanisms identified in Gold

Knowledge dependency

Process dependency

Resource dependency

SWISJUBYIIA| UOPBUIP.I00))

Synchronization
activities

Daily Scrums

Scrum of Scrum meetings

Retrospectives

Dependencies

Knowledge Process Resource
-l o] =
£ 8| K| 3| £| 8
g_ & ® 8. g8 < g
&8 8 7| & ge £

= § .

g

Retrospective of retrospectives

Mob specification meetings

Ad hoc conversations

Code reviewing

Preparation for product demos

Handover meetings

Tech leader meetings

Communities of practice

Bug triage meetings

Bug crush days

Synchronization
artifacts

Wiki and guidelines

Team backlog

Communication tools

Project management tools

Roadmap

ScrumBan board

Structure

Full-time team

Open work area

Customer on-site

Boundary
spanning
activities

Product demo to customer

Informal f2f negotiations

‘Webinar to customer

Boundary
spanning artifacts

Roadmap

Training schedule

Coordinator roles

Project manager

Site manager

Agile coach

Test lead

Product owner

Tech lead

3 RESEARCH METHODOLOGY

We chose five cases of agile software development from
different companies to study the coordination mechanisms used and
the dependencies they managed. We chose these five cases because
we wanted to study coordination in different contexts. Case studies
were appropriate to address our research question because they
provide in-depth detailed information about how work is carried
out in complex ongoing situations such as software development.
We followed the guidance for quality cases studies in Yin [32] and
Runeson and Host [24] in the design and execution of the study.

The cases selected were active agile projects at the time of data
collection. Each case was in a different company and had different
contexts. Two of the cases (Steel and Silver) were early colocated
Scrum projects. Two of the cases were in large-scale settings (Gold

14

and Copper), while Titanium was a start-up company. The
companies were in New Zealand and Norway.

3.1 Data Collection

We collected the data from 2010 to 2020. The context of the
cases and the details of the data collected are shown in Table 2. Our
source data included interview transcripts, field notes taken during
observations of meetings, project documents, photographs of work
sites, and Slack logs. Interviews and observations were the primary
data sources with other data used to understand the case team and
project and as supporting evidence for mechanisms and
dependencies in the case. In each company, we interviewed people
in different roles including project leader, developer, business
analyst, domain expert, or tester.

Coordination Value in Agile Software Development

The interviews began with asking for role and experience
information. Then the participant was asked to describe the main
work activities they carried out in their project and their
responsibilities, followed by questions regarding communication,
coordination, and dependencies. Appendix A shows the interview
guide.

3.2 Data analysis

The data analysis followed the guidelines of Miles and
Huberman [16]. We also closely followed the procedure for
identifying coordination mechanisms and dependencies in each
case as described in [29, 30]. We carefully checked that the
dependencies and coordination mechanisms we identified met the
definitions provided in [30] and that new coordination mechanisms
or dependencies were included in the results. An iterative procedure
was followed to constantly check and revise the allocation of data
(quotes from transcripts, observations, or other evidence) to
dependencies and coordination mechanisms and that there was
evidence for an association between each dependency and
mechanism we identified. To analyze the data, all the interviews
were transcribed, and we performed the data analysis using NVivo.
The observation notes and meeting minutes were included in the
analysis and treated as transcripts. First, each transcript was read to
identify dependencies and how they were managed (i.e., what
coordination mechanism was involved). Then the transcript was
read again to identify coordination mechanisms and what
dependency was being addressed. If new dependencies and
coordination mechanisms were identified, then transcripts were
reviewed again to look for instances of these dependencies. In this
way, the transcripts were read and checked more than once. An
example of the analysis is as follows. The following quote from
Steel has the identified coordination mechanism and dependency
underlined. “Most of the time ... that whiteboard will stay up for a
few days before the next design discussion happens or the next
whiteboard discussion happens, and then, in that case, people can
look over their shoulder and see what they drew, and get on with
actually coding to that plan...”. ‘whiteboard’ was coded as a
coordination mechanism of type ‘synchronization artefact’ and
named ‘whiteboard’. The dependency is also underlined in the
quote. The dependency was coded as a knowledge dependency of
type ‘requirements’ because the team members could all refer to
this one model to allow them to proceed with coding the required
model. Thus the whiteboard was an artefact that synchronized the
knowledge of the team about the design (which we considered to
be the detail of a requirement), enabling them all to have a common
understanding of what was needed.

In the final stage of analysis, we created a coordination
dependency map for each case in spreadsheets. This spreadsheet
mapped each identified coordination mechanism with its associated
dependency. Some dependencies had no coordination mechanisms
and some coordination mechanisms could not be matched to a
dependency. These dependencies and coordination mechanisms
were not included.

CHASE’22, May 2022, Pittsburgh, PA, USA

4 RESULTS

In the five cases, we identified more than 60 coordination
mechanisms that address one or more of the eight dependencies
shown in Table 1. Coordination mechanisms that address multiple
dependencies are potentially more valuable than other coordination
mechanisms. Table 3 shows how we used coordination-dependency
mapping in the project Gold to identify valuable mechanisms. The
maps for Silver and Copper are available online
(doi.org/10.6084/m9.figshare.13850414).

In the next section, we first present the two ubiquitous
coordination mechanisms Instant messaging tools and Daily stand-
up meetings. These mechanisms managed the most dependencies
across all the cases (at least six). Then we present two coordination
mechanisms from each of the three different agile contexts we
studied: co-located (Steel and Silver), large-scale (Copper and
Gold), and start-up (Titanium). For coordination in the large-scale
projects, two inter-team practices were valuable: Scrum of Scrum
meetings and bug crush days. In the start-up company Titanium,
two valuable coordination practices were BizDev meetings and
Make it Happen (MiH) meetings. All these coordination
mechanisms we considered valuable because they addressed four
or more types of dependencies.

4.1 Ubiquitous coordination practices

Instant messaging tools for ad hoc conversation. Slack, and
similar tools, enabled informal communication and fast feedback
across teams and sites and provided transparency regarding what
people were doing and who should do what (i.e. addressed task
allocation dependencies). These tools reduced the waiting time for
information and missing resources. Surprisingly, even in projects
with open work areas, Slack was used to ask fellow team members
questions when a team member did not want to approach and
disturb another team member (for example, they saw that the
person was concentrating when working with a headset). Slack
managed entity dependencies because project members could reach
out to the whole project. One developer in the project Gold stated,
“I find that Slack is much more efficient than e-mail. The team
members know and respond immediately when someone posts a
screenshot on Slack.”

Some teams used Slack for spontaneous conversations, which
made it a mechanism that initiated and maintained other
coordination mechanisms. Such ad hoc conversations were used to
get information members needed when solving problems or when
requirements were unclear, and they often led to unscheduled
meetings. Further, because the conversations were spontaneous,
they reduced waiting time. In distributed teams, we found instant
messaging tools overcame the problem of not being co-located. Ad
hoc conversations on Slack were initiated to get help on a problem,
gain access to a service, or request specific information. For
example, the following messages were sent one early morning on
Slack in Gold:

CHASE’22, May 2022, Pittsburgh, PA, USA

Person 1: Anyone able to reach https:## at the moment? I get
Runtime Error

Person 2: Same for me

Person 3: I sent an e-mail to NN

Within 30 minutes, the problem was solved. Slack logs can be
searched and therefore support handling historical dependencies. A
developer in Titanium stated, “/ usually communicate via Slack
because I am not going around trying to find people. It is easier to
Just write to them if need something, and then I have it documented
somewhere.”

The daily stand-up meeting. This meeting was vital in all
projects for managing internal team dependencies, especially task
allocation and expertise dependencies (i.e., knowing who knows
what). The project members stated what they planned to work on
and explained the obstacles they faced. Explaining an obstacle
often caused another team member to share a solution. Team
members often raised obstacles that were of types process
dependencies (having to wait for other teams/persons to complete
a module) and resource dependencies (having to wait for
information or technical bugs to be solved). The meeting also
enabled the team leader to be aware of and manage the
dependencies with other stakeholders. The meeting often ended by
coordinating tasks in a discussion about who should be involved in
solving the task and the obstacles involved (task allocation
dependencies). One developer in Titanium stated, “At first [didn’t
really like the daily stand-up meetings, but now I see that they give
you a good idea of what the team as a whole is working towards,
and it’s good to know in case what you are working on might affect
other team members’ work, so you can collaborate and come up
with some solution.” The team members also said that problem-
focused communication was the most important part of the daily
stand-up meetings because it helped them identify dependencies
and make decisions more effectively. Most teams in Copper had
their daily stand-up meeting scheduled right before lunch. This time
choice reduced the number of interruptions because the team
members would go to lunch together immediately following the
meeting.

4.2 Co-located coordination practices

Open work area. In an open work area, when project members
were unsure about the details of requirements, it was easy to talk to
a specialist or to the customer representative. As one developer in
Steel commented, “We have a person on our team, who is one of
the gurus, and he sits with us, and we annoy him constantly ...” In
the large-scale projects, it was possible to walk between teams to
solve inter-team dependencies and get help from other experts. One
product owner in Copper stated, “By sitting in the same location as
the customer and a short distance from the DevOps teams, it is
possible to make important decisions through fast, informal
conversations.” Moreover, with meeting rooms just a few meters
from the seating arrangements, it was easy to organize spontaneous
meetings to discuss project matters and come to common
understandings. Open work area was a coordination mechanism
that managed knowledge, process, and resource dependencies.

Boards. Readily visible boards on display in the open work area
were artefacts for coordinating activity dependencies by giving

information about when others had completed their tasks. The
boards also managed task allocation dependencies because all
project members could see who was working on what. Boards were
also used in daily stand-ups, showing coordination mechanisms are
interconnected. In project Silver, the board showed avatars of the
project members on each of the tasks. A developer in Silver
commented on how he knew who was working on what, “So,
normally, that would be the task wall you know, ‘Where are the
avatars?’ to quickly see what people are working on.” The teams
also used the boards in the meetings when discussing requirement
dependencies.

4.3 Large-scale coordination practices

Agile software development relies on mutual adjustment.
However, mutual adjustment in its pure form requires everyone to
communicate with everyone, which is a challenge in large-scale
projects. To cope with the coordination challenge in large-scale
projects, many projects introduce a plethora of meetings, which can
lead to an overwhelming number of meetings. The key to success
is identifying the most valuable meetings and combining them with
other practices. We now present Scrum of Scrums and bug crush
days — coordinative practices that were combined with Slack and
the daily meetings.

Scrum of Scrums. This was a weekly scheduled inter-team
synchronization meeting where one representative from each team
met. In Copper, the Scrum of Scrums meeting ensured that relevant
information and knowledge challenges from teams and their key
stakeholders were shared, to ensure solutions integrated well and
both technical and process impediments were quickly solved. Eight
team representatives met with the test lead, architect, security
manager, and project manager for a maximum of one hour. By
including relevant experts who formed a cross-functional team, the
meeting managed dependencies, such as when progress was
blocked as people waited for resources or necessary information or
for the activities of others to be completed. A team leader
explained, “We were supposed to integrate with other parts of the
system, but they had not completed their part and had not granted
us access. It is frustrating when we are done but we have to wait
for others to finish.” Knowledge and expertise dependencies were
also identified and solved in the meeting by the cross-functional
team.

Bug crush days. These days are an example of synchronous
work sessions where several project members focus on the same
task to increase speed. In Gold, testers registered bugs to be fixed
by the developer, who solved the bugs and passed the solution back
to the testers. Because developers were then working on other
issues, there was a lot of waiting, and it could take weeks to fix a
bug. If the testers and developers needed to talk to each other, one
of them was often not available. To solve this problem, Gold
introduced a bug crush day, where everyone worked on closing
bugs every other Tuesday. The bug crush day allowed testers and
developers to coordinate easily by getting fast feedback, reducing
the need to hold meetings or wait for responses. Because the
amount of context switching was reduced, the time to solve a

Coordination Value in Agile Software Development

specific task was shortened. A secondary effect was that the bug
count was kept low and fixing new bugs could be postponed until
the next bug crush day, reducing interruptions to ongoing work.

4.4 Start-up coordination practices

Software start-up companies have unique characteristics such as
cross-functional units operating under highly uncertain conditions,
often under extreme time pressure, which pose several coordination
challenges [22]. In Titanium, the development team had meeting-
free days to focus on programming and designing without
interruptions. A designer in Titanium explained how he appreciated
the practice: “It’s easier to think more clearly when you know which
days you have to get things done, and it’s easier to prioritize the
tasks to work on”. It also allowed for more unplanned meetings and
ad hoc conversations from Tuesday to Thursday. It also made it
easier for the rest of the organization to schedule meetings with the
development team since they knew which days they were available
for meetings. To ensure cross-company coordination, Titanium
relied on BizDev meetings and MiH meetings together with
ubiquitous coordination practices to increase the speed of decision-
making and make sure everyone was working towards the same
goal, which will be described next.

BizDev meetings. At these scheduled meetings, representatives
from the development team and from the business departments,
such as marketing, operations, and finance, came together every
week or other week to solve challenges, plan and prioritize for the
following weeks, and align the upcoming tasks and projects. They
also evaluated completed software features and tried to manage
dependencies for tasks that were delayed. At Titanium, these
meetings were usually held on Fridays at 11:00, lasted less than 30
minutes, and were supported by Google Meet with screen sharing,
an Excel sheet with chosen tasks for the upcoming period, and
Zendesk with issues from both customers and others in the
organization. A designer said, “It helps a lot with our process that
we all use Zendesk and go through the issues together and plan for
the next week.”

The frequent meeting with all key people in the company reduced
handover problems and enabled a continuous planning process and
alignment of the business and development teams. We observed
that the atmosphere in this meeting was good and that there was a
lot of laughter. In the start-up, this meeting was valuable for
handling dependencies between the different teams, as it dealt with
a total of six dependencies. This meeting addressed an activity
dependency because everyone learned that the developers had to
implement the possibility for a discount code before the marketing
campaign could be launched on Instagram. The meeting helped
align the development team’s plans with the plans of the other
departments such as Marketing.

Make it Happen (MiH). These weekly scheduled meetings were
held at 12:00 and involved all employees in the start-up. The goal
of the meeting was to align the different departments in the
company on what had been done and what was committed to for
the upcoming week. The meeting was held on Google Meet as the
departments were distributed and the CEO was sharing her screen

CHASE’22, May 2022, Pittsburgh, PA, USA

with a Google presentation. The departments had filled in their
information in the presentation before the meeting. They always
started the meeting by mentioning the goal for 2020 and a
representative from each department (tech, marketing, operations,
and finance) stated what had happened last week and what they
were going to do in the coming weeks. The MiH meetings usually
lasted between 15 and 30 minutes and were particularly important
for managing expertise and task allocation dependencies. One
developer expressed how he appreciated the MiH meetings: “We
have these weekly company-wide meetings where we hear from all
the different departments and know what’s going on. That’s really
helpful because you feel more motivated when you see that
everything is in place for us to work together and get to a certain
goal” A senior developer stated, “The overview we get from the
MiH meetings is more than enough to know what others outside the
teams are working on.”

5 DISCUSSION

We set out to identify valuable coordination mechanisms in agile
software development projects. We used coordination-dependency
mapping to understand what mechanisms were used, what
dependencies they managed, and which mechanisms were most
valuable for coordinating a project. In five independent case studies
we found and described eight coordination mechanisms that all
addressed more than four types of dependencies and are therefore
valuable in coordinating agile software projects. These
coordination mechanisms were as follows:

e Ubiquitous in all situations
o Instant messaging tools for ad hoc
conversation
o The daily stand-up
e For colocated situations
o Open work area
o Boards
e For large scale coordination mechanisms
o Scrum-of-Scrums
o Bug crush days
e For startups
o BizDev
o MiH

A coordination-dependency mapping gives a picture of those
coordination mechanisms that are valuable because they are
managing multiple dependencies. However, just prioritizing the
coordination mechanisms according to how many dependencies
they manage is not enough. To increase the value of coordination
mechanisms, organizations and their agile teams need to consider
how to arrange coordination activities to reduce their potential to
interrupt development work. Our findings show that organizations
can bundle coordination mechanisms together in time, schedule
them at appropriate times, and substitute mechanisms if they both
address the same dependency.

Bundling. While migrating to a strategy based on ad hoc
coordination seems to be a good solution, it is still crucial to balance
the need to reduce waiting time and get fast feedback against being

CHASE’22, May 2022, Pittsburgh, PA, USA

interrupted too often. One solution is to implement meeting-free
days and days allocated for meetings. This practice reduced work
fragmentation in Titanium. There had to be a very good reason to
invite tech people to a meeting on other days than Mondays and
Fridays. Consequently, the developers could focus on
programming for whole days, and it became easier to plan how
much time they had available for the development tasks. Whillans
et al [31] argue for the need to investigate which team activities
need to be scheduled and which can be allowed to occur on an ad
hoc basis.

Scheduling. In particular, there is a need to pay attention to the
scheduling of synchronization activities, usually meetings, to
further reduce interruptions. For example, when the daily meeting
is held in the morning, some team members wait until after the
meeting to start working on tasks that need concentration to avoid
work fragmentation [28]. In Copper, teams held the meeting right
before lunch to reduce the number of interruptions, and in
Titanium, teams sometimes conducted the daily stand-up meeting
by writing to each other in Slack.

Substitution. Mutual adjustment, which is coordination by
feedback between project members [17], is vital in agile software
development [7, 19] but there are different ways to achieve mutual
adjustment. Our findings suggest that projects and teams could rely
on using instant messaging tools for mutual adjustments, both in
co-located and distributed settings. Further, implementing common
work sessions, such as bug crush days, reduced the need for
scheduled, more formal, meetings to achieve mutual adjustment. If
projects can reduce the number of meetings, the speed of
development increases because project members are interrupted
less often and are available for quick clarifications. If key experts
are in meetings all day, the process becomes slow. Since distance
makes team members communicate less [20], organizations must
find ways to foster mutual adjustments in the virtual and hybrid
settings that agile teams are often required to work in today.

In this study, we call mechanisms that address multiple
dependencies ‘valuable’. However, some agile practices that have
a coordinative function also serve other useful purposes in a project
or in a team (e.g. a product demonstration meeting can improve the
relationship with a customer; pair programming improves the
quality of code). Our claims about the value of a practice are only
related to its value for coordinating. Practices with limited
coordination value might have other values we have not considered.

5.1 Key takeaways

We have demonstrated the benefits of mapping coordination
mechanisms (e.g. artefacts such as boards and practices such as
BizDev meetings) to the different types of dependencies that occur
in agile software development projects.

We argue that prioritization should be given to mechanisms that
can reduce work fragmentation. Coordination has a time and effort
overhead and can interrupt workflow. Therefore, if a mechanism
addresses few dependencies, involves many people, requires
significant time, or creates many interruptions, it is a candidate for

being removed, replaced, or changed—for example, by reducing
the frequency of a specific meeting.

A practice that was vital for the coordination of dependencies
was the use of instant messaging tools. Tools such as Slack can
replace one or more coordination mechanisms (e.g., a stand-up or
ad hoc meeting), support both synchronous and asynchronous
coordination, and can be adjusted to the needs of the individual.
Further, Slack increased the awareness of what others were
working on. Earlier studies have also found that instant messaging
tools make communication more transparent and open [8]. When
team members know what others are doing it is easier to initiate
contact, which is especially important when project members are
working distributed [9, 26]. Therefore, Slack supports both
frequent feedback and monitoring, which is key for good teamwork
[18]. Open communication is also crucial for start-ups because of
the need to respond fast to changes, use limited resources in an
optimal way by effectively handling engineering activities, reduce
misunderstandings and confusion, and improve the understanding
of progress, code conflicts, and competences [22]. Relying on tools
that can be adapted to a context is beneficial for coordination,
because people have different sensitivities to interruptions
depending on the type of work they are doing, and tools may also
be adaptable to accommodate changing coordination needs over
time.

Start-up companies are known to rely on hypothesis-driven
development and continuous experimentation [10]. They need to
quickly analyze the data from experiments, organize frequent
feedback loops, and make new decisions. Frequent cross-company
coordination and dialogue are therefore central for such companies
to develop successful products and services. Further, start-ups are
typically small and must align their business and technology
strategies to avoid waste of resources [33]. Open communication
was facilitated in our start-up case with the practices of MiH and
Bizdev meetings. These meetings were considered vital for open
communication and the handling of dependencies across
departments. Developers view time spent in meetings as inefficient,
but still perceive most meetings to be valuable [14]. Further, the
use of Slack was vital for effective coordination, especially to
manage resource dependencies.

Meeting duration is a key consideration in large-scale projects.
Our large-scale cases often coordinated in Scrum of Scrum
meetings. These meetings needed to have a long enough duration
to enable participants to discuss problems and achieve the
managing of dependencies. Getting together for only 15 minutes
was not adequate because this would initiate several extra meetings
to resolve issues raised.

5.2 Limitations, Validity and Reliability

This empirical research has limitations. The case study findings
are not necessarily applicable or generalizable to all agile software
development contexts, although we chose a range of cases so our
findings should have some relevance to similar contexts. During
observations, the presence of researchers can be intrusive and
change the behavior of the meeting participants. Nevertheless, we

Coordination Value in Agile Software Development

consider this effect to be small since most of the teams were
observed over a long period of time. Another caveat is that the
number of observations per meeting type likely influenced the
number of dependencies that were managed by that particular
meeting. For example, if we had observed more planning meetings,
we might have found that the practice manages more dependencies.
Also we might have identified more or different dependencies if we
interviewed more people or engaged with the organizations for
longer periods.

We designed this case study to achieve construct and external
validity and reliability [16, 24, 32] Internal validity is concerned
with causal relationships and is not relevant in our study. To
identify the constructs, which are dependencies and coordination
mechanisms, we followed the same data analysis procedure in each
case. Although this procedure is prone to the analysts' subjective
interpretation, we mitigated this by analyzing the data material
according to an existing framework that defines common types of
mechanisms [30] and dependencies [29]. To strengthen construct
validity, we shared draft findings for each case with the research
participants so they could comment on their relevance. We used
triangulation: of cases by choosing to study more than one case; of
participants by including a range of people in different roles to
interview and a range of meetings to observe within each case.

External validity in case study research is concerned with
analytical generalizability. We carefully selected a range of cases
that were typical of agile software development and also unique in
some respects and found that the theory we employed was
supported, that dependencies are associated with coordination
mechanisms in agile software development. Our selected cases
have characteristics common in agile software development
situations, so our findings may be useful for organizations in
similar situations. Reliability is concerned with the extent to which
the data and analysis are independent of the specific researchers.
By using the same unit of analysis (employing case selection
criteria), and analysis procedures in each case we aimed for a
degree of researcher independence and consistency in the study.

6 CONCLUSION

Our multiple-case study shows that coordination mechanisms are
integrated; they support each other and are developed and co-
evolved in the organizational environment. This ecosystem of agile
practices, tools, meetings, roles, and artefacts must be evaluated
continuously. Mapping the value of each mechanism and
understanding their interactions and how they can be better
organized to reduce work interruptions can help complex agile
projects to succeed. We have shown that some coordination
mechanisms have a higher value than others: communication tools
such as Slack, Scrum of Scrums, bug crush days, BizDev meetings,
and Make it Happen meetings. We highlight at least three ways that
companies can organize coordination to reduce interruptions: by
bundling coordination mechanisms in time (having meeting-free
days), by scheduling them to suit the situation (by adjusting the
timing of meetings), and by substituting one coordination
mechanism for another (when two mechanisms address the same

CHASE’22, May 2022, Pittsburgh, PA, USA

dependency). Overall, this study shows that organizations can
foster spontaneous coordination and reduce disruptions to
development work by identifying how they coordinate and then
taking considered steps to balance coordination work and
development work so that developers have significant time to focus
on development.

Future work on coordination could strengthen the success of agile
software development organizations. For example, conducting
research to understand the dependencies that commonly occur in
software development and identify all of the possible alternative
coordination mechanisms that can manage those dependencies.
Studies of how organizations optimize coordination, by bundling,
scheduling, substituting, or other means, to reduce the coordination
burden on projects and teams would be valuable. Finally, by
studying how coordination needs change over the lifecycle of a
software development project, we can design flexible coordination
tools and ensure that coordination is minimized but effective.

ACKNOWLEDGMENTS

We acknowledge and appreciate the time and effort of our research
participants in contributing to this study. We thank Andreas
Aasheim for helping collect data. This work was supported by the
Research Council of Norway (grant 267704 and grant 309631).

REFERENCES

[1] Addas, S. and Pinsonneault, A. 2018. Theorizing the Multilevel Effects of

Interruptions and the Role of Communication Technology. Journal of the

Association for Information Systems. 19, 11 (2018), 1097-1129.

DOLI:https://doi.org/10.17705/1jais.00521.

Allen, J.A., Sands, S.J., Mueller, S.L., Frear, K.A., Mudd, M. and Rogelberg,

S.G. 2012. Employees’ feelings about more meetings: An overt analysis and

recommendations for improving meetings. Management Research Review.

(2012).

Berntzen, M., Hoda, R., Moe, N.B. and Stray, V. 2022. A Taxonomy of Inter-

Team Coordination Mechanisms in Large-Scale Agile. IEEE Transactions on

Software Engineering. (2022). DOI: https://doi.org/10.1109/TSE.2022.3160873.

Bick, S., Spohrer, K., Hoda, R., Scheerer, A. and Heinzl, A. 2017. Coordination

challenges in large-scale software development: a case study of planning

misalignment in hybrid settings. IEEE Transactions on Software Engineering. 1

(2017), 1-1.

Cataldo, M. and Herbsleb, J.D. 2013. Coordination breakdowns and their impact

on development productivity and software failures. IEEE Transactions on

Software Engineering. 39, 3 (2013), 343-360.

Conboy, K. and Carroll, N. 2019. Implementing large-scale agile frameworks:

challenges and recommendations. IEEE Software. 36, 2 (2019), 44-50.

Dingseyr, T., Moe, N.B. and Seim, E.A. 2018. Coordinating knowledge work in

multiteam programs: findings from a large-scale agile development program.

Project Management Journal. 49, 6 (2018), 64-77.

Giuffrida, R. and Dittrich, Y. 2013. Empirical studies on the use of social

software in global software development—A systematic mapping study.

Information and Software Technology. 55, 7 (2013), 1143-1164.

Herbsleb, J.D. 2007. Global Software Engineering: The Future of Socio-technical

Coordination. Future of Software Engineering (FOSE *07) (May 2007), 188-198.

Khanna, D., Nguyen-Duc, A. and Wang, X. 2018. From MVPs to pivots: a

hypothesis-driven journey of two software startups. International Conference of

Software Business (2018), 172-186.

[11] Kraut, R. and Streeter, L. 1995. Coordination in software development.
Communications of the ACM. 38, 3 (Mar. 1995), 69-81.
DOLI:https://doi.org/10.1145/203330.203345.

[12] Malone, T. and Crowston, K. 1994. The interdisciplinary study of coordination.
ACM Computing Surveys. 26, 1 (Mar. 1994), 87-119.
DOLI:https://doi.org/10.1145/174666.174668.

[13] Meyer, A.N., Barton, L.E., Murphy, G.C., Zimmermann, T. and Fritz, T. 2017.
The Work Life of Developers: Activities, Switches and Perceived Productivity.
IEEE Transactions on Software Engineering. 43, 12 (2017), 1178-1193.
DOT:https://doi.org/10.1109/TSE.2017.2656886.

(2]

(3]

(4]

[3]

(6]
(7]

(8]

[9]

(10]

CHASE’22, May 2022, Pittsburgh, PA, USA

[14] Meyer, A.N., Murphy, G.C., Zimmermann, T. and Fritz, T. 2019. Enabling Good
Work Habits in Software Developers through Reflective Goal-Setting. IEEE
Transactions on Software Engineering. 47, 9 (2019), 1872-1885.
DOLI:https://doi.org/10.1109/ts¢.2019.2938525.

[15] Mikalsen, M., Moe, N.B., Stray, V. and Nyrud, H. 2018. Agile digital
transformation: a case study of interdependencies. International Conference on
Information Systems 2018, ICIS 2018. (2018).

[16] Miles, M.B. and Huberman, A.M. 1994. Qualitative data analysis: An expanded
sourcebook. Sage.

[17] Mintzberg, H. 1980. Structure in 5’s: A Synthesis of the Research on
Organization Design. Management Science. 26, 3 (Mar. 1980), 322-341.
DOL:https://doi.org/10.1287/mnsc.26.3.322.

[18] Moe, N.B., Dingseyr, T. and Dybd, T. 2010. A teamwork model for
understanding an agile team: A case study of a Scrum project. Information and
Software Technology. 52, 5 (2010), 480-491.

[19] Moe, N.B., Stray, V. and Hoda, R. 2019. Trends and updated research agenda for
autonomous agile teams: a summary of the second international workshop at
XP2019. (2019), 13-19.

[20] Noll, J., Beecham, S. and Richardson, I. 2010. Global software development and
collaboration: barriers and solutions. ACM inroads. 1, 3 (2010), 66-78.

[21] Parnin, C. and Rugaber, S. 2011. Resumption strategies for interrupted
programming tasks. Software Quality Journal. 19, 1 (2011), 5-34.
DOL:https://doi.org/10.1007/s11219-010-9104-9.

[22] Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T. and
Abrahamsson, P. 2014. Software development in startup companies: A
systematic mapping study. Information and Software Technology. 56, 10 (2014),
1200-1218. DOI:https://doi.org/10.1016/j.infsof.2014.04.014.

[23] Rogelberg, S.G., Leach, D.J., Warr, P.B. and Burnfield, J.L. 2006. “ Not another
meeting!” Are meeting time demands related to employee well-being? Journal of
Applied Psychology. 91, 1 (2006), 83.

[24] Runeson, P. and Host, M. 2009. Guidelines for conducting and reporting case
study research in software engineering. Empirical software engineering. 14, 2
(2009), 131-164.

[25] Sekitoleko, N., Evbota, F., Knauss, E., Sandberg, A., Chaudron, M. and Olsson,

H.H. 2014. Technical dependency challenges in large-scale agile software

development. International conference on agile software development (2014),

46-61.

Stray, V. and Moe, N.B. 2020. Understanding coordination in global software

engineering: A mixed-methods study on the use of meetings and Slack. Journal

of Systems and Software. 170, (Dec. 2020), 110717.

DOL:https://doi.org/10.1016/j.jss.2020.110717.

Stray, V., Moe, N.B. and Aasheim, A. 2019. Dependency Management in Large-

Scale Agile: A Case Study of DevOps Teams. Proceedings of the 52nd Hawaii

International Conference on System Sciences (2019), 7007-7016.

[28] Stray, V., Moe, N.B. and Sjoberg, D.I.K. 2020. Daily Stand-Up Meetings: Start
Breaking the Rules. IEEE Software. 37, 3 (May 2020), 70-77.
DOL:https://doi.org/10.1109/MS.2018.2875988.

[29] Strode, D.E. 2016. A dependency taxonomy for agile software development
projects. Information Systems Frontiers. 18, 1 (Feb. 2016), 23-46.
DOL:https://doi.org/10.1007/s10796-015-9574-1.

[30] Strode, D.E., Huff, S.L., Hope, B. and Link, S. 2012. Coordination in co-located
agile software development projects. Journal of Systems and Software. 85, 6
(Jun. 2012), 1222-1238. DOL:https://doi.org/10.1016/j.jss.2012.02.017.

[31] Whillans, A., Perlow, L. and Turek, A. 2021. Experimenting during the shift to
virtual team work: Learnings from how teams adapted their activities during the
COVID-19 pandemic. Information and Organization. 31, 1 (2021), 100343.

[32] Yin, R.K. 2018. Case study research and Applications: Design and Methods.
SAGE publications.

[33] Yogendra, S. and Sengupta, S. 2002. Aligning business and technology
strategies: a comparison of established and start-up business contexts. [IEEE
International Engineering Management Conference (2002), 2—7.

[34] Zijlstra, F.R., Roe, R.A., Leonora, A.B. and Krediet, I. 1999. Temporal factors in
mental work: Effects of interrupted activities. Journal of Occupational and
Organizational Psychology. 72, 2 (1999), 163-185.

126

[27

APPENDIX A

Appendix A, the interview guide, is available here:
https://doi.org/10.6084/m9.figshare.19338041

20

