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ABSTRACT
Medical data is often highly sensitive in terms of data privacy and
security concerns. Federated learning, one type of machine learn-
ing techniques, has been started to use for the improvement of
the privacy and security of medical data. In the federated learning,
the training data is distributed across multiple machines, and the
learning process is performed in a collaborative manner. There
are several privacy attacks on deep learning (DL) models to get
the sensitive information by attackers. Therefore, the DL model
itself should be protected from the adversarial attack, especially for
applications using medical data. One of the solutions for this prob-
lem is homomorphic encryption-based model protection from the
adversary collaborator. This paper proposes a privacy-preserving
federated learning algorithm for medical data using homomor-
phic encryption. The proposed algorithm uses a secure multi-party
computation protocol to protect the deep learning model from the
adversaries. In this study, the proposed algorithm using a real-world
medical dataset is evaluated in terms of the model performance.

CCS CONCEPTS
• Theory of computation→Cryptographic protocols; • Secu-
rity and privacy;
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1 INTRODUCTION
Machine learning (ML) is a widely used technique in almost all
fields, where a computer system can learn from data to improve
its performance. This technique is widely used in many applica-
tion areas such as image recognition, natural language processing,
and machine translation. Federated learning is a machine learning
technique where the training data is distributed across multiple
machines, and the learning process is performed in a collaborative
manner [13]. This technique can be used to improve the privacy
and security of medical data [10].

Medical data is often highly sensitive and is often subject to data
privacy and security concerns [1]. For example, a person’s health
information is often confidential and can be used to identify the
person. Thus it is essential to protect the privacy and security of
medical data. Health Insurance Portability and Accountability Act
(HIPAA) (US Department of Health and Human Services, 2014) and
General Data Protection Regulation (GDPR) (The European Union
,2018) strictly mandate the personal health information privacy.
There are various methods to safeguard the private information.
Federated learning is one of the techniques that can be utilized for
the protection of sensitive data during multi-party computation
tasks. This technique can be used to improve the privacy and secu-
rity of medical data by preventing the data from being centralized
and vulnerable.

Keeping the data local is not sufficient for the security of the
data and the ML model. However, there are several privacy attacks
on deep learning models to get the private data [9, 25]. For example,
the attackers can use the gradient information of the deep learning
model to get the sensitive information. Thus the deep learning
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model itself should be protected from the adversaries as well. One
of the solutions for this problem is homomorphic encryption-based
model protection from the adversary collaborator. Homomorphic
encryption is a technique where the data can be encrypted, and
the operations can be performed on the encrypted data [4]. This
technique can be used to protect the deep learning model from the
adversaries.

This paper proposes a privacy-preserving federated learning
algorithm based convolutional neural network (CNN) for medi-
cal data using homomorphic encryption. The proposed algorithm
uses a secure multi-party computation protocol to protect the deep
learning model from the adversaries. We evaluate the proposed
algorithm using a real-world medical dataset and show that the
proposed algorithm can protect the deep learning model from the
adversaries.

2 RELATEDWORK
Data-driven ML models provide unprecedented opportunities for
healthcare with the use of sensitive health data. These models are
trained locally to protect the sensitive health data. However, it is
difficult to build robust models without diverse and large datasets
utilizing the full spectrum of health concerns. Prior proposed works
to overcome this problems include federated learning techniques.
For instance, the studies [5, 17, 24] reviewed the current applications
and technical considerations of the federated learning technique
to preserve the sensitive biomedical data. Impact of the federated
learning is examined through the stakeholders such as patients,
clinicians, healthcare facilities and manufacturers. In another study,
the authors in [16] utilized federated learning systems for brain tu-
mour segmentation on the BraTS dataset which consist of magnetic
resonance imaging brain scans. The results show that performance
is decreased by the privacy protection costs. Same BraTS dataset
is used in [19] to compare three collaborative training techniques,
i.e., federated learning, institutional incremental learning (IIL) and
cyclic institutional learning (CIIL). In IIL and CIIL, institutions train
a shared model successively where CIIL adds a cycling loop through
organisations. The results indicates that federated learning achieves
similar Dice scores to that of models trained by sharing data. It
outperform the IIL and CIIL methods since these methods suffer
from catastrophic forgetting and complexity.

Medical data is also safeguarded by encryption techniques such
as homomorphic encryption. In [15], authors propose an online
secure multiparty computation with sharing patient information to
hospitals using homomorphic encryption. Bocu et al. [7] proposed
a homomorphic encryption model that is integrated to personal
health information system utilizing heart rate data. The results
indicates that the described technique successfully addressed the
requirements for the secure data processing for the 500 patients
with expected storage and network challenges. In another study
by Wang et al. [23] proposed a data division scheme based homo-
morphic encryption for wireless sensor networks. The results show
that there is trade off between resources and data security. In [14],
applicability of homomorphic encryption is shown by measuring
the vitals of the patients with a lightweight encryption scheme.
Sensor data such as respiration and heart rate are encrypted using
homomorphic encryption before transmitting to the non-trusting

third party while encryption takes place only in medical facility.
The study in [20] developed an IoT based architecture with ho-
momorphic encryption to combat data loss and spoofing attacks
for chronic disease monitoring. results suggest that homomorphic
encryption provide cost effective and straightforward protection to
the sensitive health information. Blockchain technologies are also
utilized in cooperation with homomorphic encryption for the secu-
rity of medical data. Authors in [21] proposed a practical pandemic
infection tracking using homomorphic encryption and blockchain
technologies in intelligent trasnportatiton systems using automatic
healthcare monitoring. In another study Ali et al. [3] developed
a search-able distributed medical database on a blockchain using
homomorphic encryption. The increase need to secure sensitive
information leads to use of various techniques together. In the
scope of this study, a multi-party computation tool using federated
learning with homomorphic encryption is developed and analyzed.

3 PRELIMINARIES
3.1 Homomorphic encryption
Nowadays data encryption is a common practice not only for enter-
prises but also individuals. It is meant to protect privacy of the data.
Data encryption mostly done at rest, when the data is stored and
in transit when the data is transferred. However data encryption is
not popularly used upon when running or executing the operations
or computations.

Homomorphic encryption is an encryption method which allows
arithmetical computations to be performed directly on encrypted
or ciphered text without requiring any decryption. Outputs of the
computations are also in encrypted form and provide identical or
almost identical result when decrypted. This means that Homo-
morphic encryption allows data processing without disclosing the
actual data.

If 𝐸𝑛𝑐 denotes encryption, 𝐷𝑒𝑐 denotes decryption, and 𝑓 () is
a function applied on actual values (plaintexts) 𝑎 and 𝑏, using en-
crpytion key 𝑝𝑘 , then homomorphic encryption property would be:

𝑓 (𝑎, 𝑏) = 𝐷𝑒𝑐 (𝐸𝑛𝑐 (𝑝𝑘, 𝑎), 𝐸𝑛𝑐 (𝑝𝑘, 𝑏))
Homomorphic encryption can be used for privacy-preserving

outsourced storage and computation. This allows data to be en-
crypted and out-sourced to commercial cloud environments for
processing, all while encrypted.

There are several types of homomorphic encryption [2];

(1) Partially homomorphic encryption is homomorphic encryp-
tion that supports only one homomorphic operation, either
addition or multiplication, with unlimited number of times.

(2) Somewhat homomorphic encryption schemes allows both
addition and multiplication but only in a limited number of
times.

(3) Leveled fully homomorphic encryption supports the eval-
uation of arbitrary circuits composed of multiple types of
gates of bounded (pre-determined) depth.

(4) Fully homomorphic encryption (FHE) supports both addition
and multiplication operations with unlimited number of
times.
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Somewhat homomorphic encryption (SHE) is used in this work
since it allows both addition and multiplication operations on en-
crypted data which is required in aggregation of machine learning
model weights.

3.2 Brakerski-Fan-Vercauteren (BFV) scheme
The BFV scheme is a well-known homomorphic encryption scheme.
It encrypts polynomials instead of bits. The encrypted polynomials
can be evaluated homomorphically. It is secure in the sense that it
is CCA secure. The security is based on the hardness of the problem
SIS. It can be described as follows.

We now briefly describe the BFV scheme. Let 𝑛 be a positive
integer, 𝑞 be a prime number, F𝑞 be the finite field with 𝑞 elements,
𝑡 be a positive integer, (𝛼0, 𝛼1, . . . , 𝛼𝑛−1) be a random tuple in F𝑛𝑞 ,
𝑠 be a positive integer, 𝜂 be a positive integer. Let 𝑁 = 𝑞𝑠 and
𝑀 = 𝑞𝜂 . The secret key is (𝛼0, 𝛼1, . . . , 𝛼𝑛−1). The public key is
(𝛼𝑁0 , 𝛼𝑁1 , . . . , 𝛼𝑁

𝑛−1). The message space is F𝑞 [𝑥]<𝑡 . The message
𝑚(𝑥) is encrypted to 𝑐 (𝑥) = 𝑚 (𝑥)

(𝑥−𝛼0) (𝑥−𝛼1) ...(𝑥−𝛼𝑛−1) + 𝑒 (𝑥), where
𝑒 (𝑥) is a polynomial of degree less than 𝑡 . The decryption is done by
evaluating 𝑐 (𝑥) at all points of the form 𝛼𝑀

𝑖
and then interpolating

𝑚(𝑥) from the resulting evaluations.

3.3 Regulatory Aspects of Privacy in Health
Sector

Trust and privacy are among the fundamental elements of digi-
tal healthcare systems and platforms. The trust is expected to be
built between various stakeholders of the digital healthcare ecosys-
tems such as patients, medical care providers, health authorities
and healthcare systems providers. The following medical data are
among the most critical ones in terms of privacy and have to be
protected:

• Personal information related to patient such as address, so-
cial security number, birth date, and bank account number,
• Provided medical and psychological services, drugs, equip-
ment, and procedures,
• Status of the patients’ medical or psychological conditions,
• The information related to the hospital, clinic or the medical
professionals who provided the medical and psychological
services.

The European General Data Protection Regulation (GDPR) is among
the mostly applied regulatory framework in terms of data privacy
that concentrates on individual control for data subjects of ‘their’
data. Public and private healthcare data privacy is handled under
GDPR regulations [22].

3.4 BFV Scheme
The Brakerski/Fan-Vercauteren (BFV) architecture [8, 11, 12] incor-
porates powerful Single Instruction Multiple Data (SIMD) paral-
lelism, making it ideal for applications that handle massive volumes
of data. In this crypto scheme, the messages are the vectors of inte-
gers,m ∈ Z𝑛 . The messages are encoded into plaintext polynomials
of degree 𝑛.

3.5 Federated Learning
Federated learning is a machine learning technique that enables
multiple parties to build and train a common machine learning
model without exchanging or sharing data. Each party (client) stores
and processes their own dataset (local dataset) while there is a
common model shared with all parties (clients). In this case each
client trains the common model using local dataset, and sends
trained model to a centralized server. The server then aggregates
model received from all the clients and distributes the aggregated
model back to the clients.

Federated learning addresses data security and privacy issues
since it doesn’t require access to dataset of each client, nor requires
the dataset to be distributed. The local dataset itself doesn’t have to
be identically distributed and can be heterogeneous. This behaviour
makes Federated Learning more popular in healthcare applications.
Federated Learning enables health institutions to form and train a
common model without transferring sensitive patient data out.

There are several types of Federated Learning setting:[6]
(1) Centralized federated learning. In this setting, a central server

is used to populate and aggregate models from participating
clients during learning process. A global common model is
pushed from the server down to the clients.

(2) Decentralized federated learning. In this setting, participat-
ing clients coordinate among themselves to obtain a global
common model [18].

(3) Heterogeneous federated learning. In this setting, participat-
ing clients come from different technical platfrom, e.g. PC
and mobile phones, with own local dataset and model while
obtaining single global model.

In this work, centralized federated learning setting is imple-
mented, to demonstrated model aggregation by single centralized
server.

4 SYSTEM MODEL
This section gives a high-level system overview of the proposed
BFV crypto-scheme-based privacy-preserving federated learning
COVID-19 detection trainingmethod. The proposed privacy-preserving
scheme is a two-phase approach: (1) local model training at each
client and (2) encrypted model weight aggregation at the server.
In the local model training phase, each client builds their local
CNN based DL model using their local electronic health record
dataset. The clients encrypt the model weights matrix using the
public key. In the second step, the server aggregates all clients’
encrypted weight matrices and sends the final matrix to the clients.
Each client decrypts the aggregated encrypted weight matrix to
update the model weights of their DL model. Figure 1 shows the
system overview.

Figure 2 shows CNN based COVID-19 detection model used in
the experiments.

4.1 Notations
• Boldface lowercase letters show the vectors (e.g., x)
• ⟦𝑊 ⟧ shows the ciphertext of a matrix𝑊 .
• ⊕ shows homomorphic encryption based addition, ⊗ homo-
morphic encryption based multiplication.
• (𝑘𝑒𝑦𝑝𝑢𝑏 , 𝑘𝑒𝑦𝑝𝑟𝑖𝑣) shows public/private key pairs.
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Figure 1: Overall system overview of the proposed method
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Figure 2: CNN based COVID-19 detection model.

4.2 Client Initialization
Algorithm 1 shows the overall process in the initialization phase.
Each client trains the local classifier, ℎ𝑖 with their private datase,
D𝑖 . The trained model’s weight matrix,𝑊 , is encrypted, ⟦𝑊 ⟧, and
shared with the server

Algorithm 1Model training in each client
Require: The dataset at client 𝑐 : D𝑐 = {(x, 𝑦) |x ∈ R𝑚, 𝑦 ∈ R}𝑚

𝑖=0, public
key: 𝐾𝑒𝑦𝑝𝑢𝑏

1: 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡 , y𝑡𝑟𝑎𝑖𝑛, y𝑡𝑒𝑠𝑡 ← 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡 (D)
2: ℎ ← 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙
3: ℎ.𝑓 𝑖𝑡 (𝑋𝑡𝑟𝑎𝑖𝑛, y𝑡𝑟𝑎𝑖𝑛)
4: 𝑊 ← ∅ // Create an empty matrix for the encrypted layer weights
5: for each 𝑙𝑎𝑦𝑒𝑟 ∈ ℎ do
6: ⟦𝑊 ⟧ ← 𝑒𝑛𝑐𝑟𝑦𝑝𝑡_𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 (𝑙𝑎𝑦𝑒𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑘𝑒𝑦𝑝𝑢𝑏 ) // En-

crypt the layer weights (𝑙𝑎𝑦𝑒𝑟 .𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ∈ R𝑚) with public key.
7: end for
8: Return ⟦𝑊 ⟧ // The encrypted weight matrix

4.3 Model Aggregation
The server collects all encryptedweightmatrices, {⟦𝑊 ⟧0, · · · , ⟦𝑊 ⟧𝑐 },
from the clients. It calculates the average weight value of each neu-
ron in the encrypted domain. Algorithm 2 shows the overall process
in the aggregation phase.

Algorithm 2 Model aggregation at the server
Require: public key: 𝐾𝑒𝑦𝑝𝑢𝑏 , the number of clients: 𝑐 , client model

weights: 𝐻 = {⟦𝑊 ⟧𝑖 }𝑐𝑖=0
1: ⟦𝑊 ⟧𝑎𝑔𝑔𝑟 ← ∅
2: for each ℎ ∈ 𝐻 do
3: for each ⟦𝑟𝑜𝑤⟧ ∈ ℎ do
4: ⟦𝑊 ⟧𝑎𝑔𝑔𝑟 ← ⟦𝑊 ⟧𝑎𝑔𝑔𝑟 ⊕ ⟦𝑟𝑜𝑤⟧ // Homomorphic addition
5: end for
6: end for
7: for each ⟦𝑟𝑜𝑤⟧ ∈ ⟦𝑊 ⟧𝑎𝑔𝑔𝑟 do
8: ⟦𝑟𝑜𝑤⟧ ← ⟦𝑟𝑜𝑤⟧ ⊗ 𝑐−1 // Homomorphic multiplication.
9: end for
10: Return ⟦𝑊 ⟧𝑎𝑔𝑔𝑟 // Return the aggregated weight matrix in the en-

crypted domain

4.4 Client Decryption
The last step is client decryption which each client decrypt the
aggregated and encrypted weight matrix, ⟦𝑊 ⟧𝑎𝑔𝑔𝑟 , and updates
their local model, ℎ. Algorithm 3 shows the overall process in the
client decryption phase.

5 RESULTS
5.1 Experimental Setup
We have implemented our proposed protocols and the classifier
training phase in Python by using the Keras/Tensorflow libraries
for the model building and the Microsoft SEAL library for the
somewhat homomorphic encryption implementation. To show the
training phase time performance of the proposed protocols, we
tested COVID-19 x-ray scans public dataset with different number
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Algorithm 3 Client decryption
Require: private key: 𝐾𝑒𝑦𝑝𝑟𝑖𝑣 , encrypted aggregated weights: ⟦𝑊 ⟧𝑎𝑔𝑔𝑟
1: ℎ ← 𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙
2: for each 𝑙𝑎𝑦𝑒𝑟 ∈ ℎ do
3: ⟦𝑟𝑜𝑤⟧ ← ⟦𝑊 ⟧𝑎𝑔𝑔𝑟 (𝑙𝑎𝑦𝑒𝑟 ) // Get the corresponding row for layer
4: 𝑙𝑎𝑦𝑒𝑟 ← 𝑑𝑒𝑐𝑟𝑦𝑝𝑡_𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 (⟦𝑟𝑜𝑤⟧, 𝑘𝑒𝑦𝑝𝑟𝑖𝑣) // Decrypt the

row and update the layer weights
5: end for
6: ℎ.𝑠𝑎𝑣𝑒_𝑚𝑜𝑑𝑒𝑙 (𝑔𝑙𝑜𝑏𝑎𝑙_𝑚𝑜𝑑𝑒𝑙) // Save the aggregated model as

global_model at client.

(a) (b) (c)

(d) (e) (f)

Figure 3: An example of an X-ray scan images taken from
the dataset (a, b, c) with a label of COVID-19 negative, (d, e,
f) COVID-19 positive.

of clients and the ciphertext modulus, 𝑞 = {128, 192}, which de-
termines how much noise can accumulate before decryption fails.
Table 1 shows the dataset details.

Table 1: Dataset description

Dataset Rows Label

Training 800 Negative
800 Positive

Test 200 Negative
200 Positive

Samples of the dataset are depicted in Figure 3.
The dataset is arbitrarily partitioned among each client (𝑐 ∈

{2, 3, 5, 7}). , and then the prediction performance results in the
encrypted-domain are comparedwith the results of the plain-domain.

5.2 Experimental Results
Table 2 shows the best performance of the conventional CNN
method of COVID-19 Xray scans dataset.

Table 3 shows the prediction performance of the CNN based
classification model with and without encryption. As shown in the
table, when the number of clients varies from 2 to 7, then the overall

Table 2: Initial results in plain domain without using feder-
ated learning

Metric Value
Precision 0.868924
Recall 0.840000
F1 Score 0.836801
Accuracy 0.840000

prediction performance stays relatively stable at about 0.84 in the
proposed training method.

Figure 4 shows the execution times in seconds with three dif-
ferent configuration (i.e. plain, s=128, s=192). As expected, the ex-
ecution in the encrypted domain is much higher than the plain
domain.

2 3 5 7
Number of clients

2000

4000

6000

8000

10000

12000

14000

E
xe

cu
tio

n 
tim

e 
(s

ec
)

Parameters
No encryption HE, s=128 HE, s=192

Figure 4: Execution time in seconds with the different secu-
rity levels.

6 DISCUSSION
The experimental results in figure 4 provides new insights into the
relationships between different number of clients and execution
time. There is a significant difference in execution time between
plain ( Unencrypted) and encrypted data processes. This exponen-
tial differences are due to the complexity of the homomorphic
encryption and processing encrypted data. However the execution
times of different ciphertext modulus values (128,192) are indis-
tinguishable for two clients but, execution time variation is rising
with the growing the number of clients. That being so, there is an
anticipated trade off between execution time and security level of
the models.

For the prediction phase, the test performances of the both en-
crypted and unencrypted processes are very similar as indicated in
table 3. In fact, similar performances are achieved by each model
with increasing the number of clients. Moreover, for some cases,
results with plain data performs slightly better than the applied
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Table 3: Prediction performance of the somewhat HE and plain numbers based federated learning models.

Clients Accuracy F1 Precision Recall
128 192 Plain 128 192 Plain 128 192 Plain 128 192 Plain

2 0.8375 0.8400 0.8450 0.834132 0.837030 0.842123 0.867337 0.866735 0.872128 0.8375 0.8400 0.8450
3 0.8400 0.8400 0.8375 0.838040 0.836801 0.834369 0.857293 0.868924 0.865112 0.8400 0.8400 0.8375
5 0.8300 0.8325 0.8350 0.827078 0.829732 0.832164 0.853925 0.855624 0.859288 0.8300 0.8325 0.8350
7 0.8525 0.8450 0.8275 0.850776 0.842540 0.824649 0.869584 0.868000 0.850277 0.8525 0.8450 0.8275

encryption results. For instance, the accuracy results of five clients
indicates that plain versions accomplished better for each metric
namely, accuracy, F1, precision, and Recall.

7 CONCLUSION
Privacy preserving become an essential practice of healthcare insti-
tutions as it is mandated by both EU and the US. Federated learning
and homomorphic encryption will play critical role to maintain data
security and model training. With benefitting from both techniques,
the proposed model achieves compatitive performance while there
is a significant trade off for the execution time and number of
clients. The classification metrics, i.e. accuracy, F1. precision and
recall, reaches over %80 using both encrypted and plain data for
each federated learning case.

The privacy attacks will cause immense damages to the secu-
rity and privacy of the patient information. This will hinder the
advancement in healthcare using data-driven models. Therefore it
is indispensable to take imperative steps to strengthen not only the
safety of the information but also the way data is processed. This
study demonstrated that federated learning with homomorphic
encryption could be successfully applied to enhance data-driven
models by eliminating and minimizing the share of the sensitive
data. It is envisioned that this study could be useful for the scien-
tists and researchers working on the sensitive healthcare data in
multi-party computation settings.
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