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ABSTRACT
Estimating the software projects’ efforts developed by agile meth-
ods is important for project managers or technical leads. It provides
a summary as a first view of how many hours and developers are
required to complete the tasks. There are research works on auto-
matic predicting the software efforts, including Term Frequency -
Inverse Document Frequency (TFIDF) as the traditional approach
for this problem. Graph Neural Network is a new approach that has
been applied in Natural Language Processing for text classification.
The advantages of Graph Neural Network are based on the ability
to learn information via graph data structure, which has more rep-
resentations such as the relationships between words compared to
approaches of vectorizing sequence of words. In this paper, we show
the potential and possible challenges of Graph Neural Network text
classification in story point level estimation. By the experiments,
we show that the GNN Text Level Classification can achieve as
high accuracy as about 80% for story points level classification,
which is comparable to the traditional approach. We also analyze
the GNN approach and point out several current disadvantages that
the GNN approach can improve for this problem or other problems
in software engineering.
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1 INTRODUCTION
With the importance of story point effort estimation, there are re-
searches on how to apply the technique to automatically predict
the story point of a software task/ issue. To our knowledge, one of
the well-known datasets of software effort estimation is the dataset
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published by Choetkiertikul et al [8]. Machine learning-based ap-
proaches have been applied to this dataset for story point estima-
tions by [8]. The approaches range from the classical approach from
Bag of Word (BOW) [10] to modern deep learning approaches from
Recurrent Highway Network (RHN) and Long Short Term Memory
(LSTM). In general, these approaches are formalized as machine
learning regression problems.

The input of software effort estimation for each software issue
is the title and description of issues. The output is the number of
story points that usually ranged from 1 to 100. According to [1], the
value of story point should be in the modified version of Fibonacci
numbers to ensure that the different story points are not too close to
each other. Since then, the distribution of story points is range from
1 to 100 but not in continuous uniform distribution. The input of
this problem can be considered as a type of software documentation
that is used for requirement collection.

Since Graph Neural Network (GNN) had been applied in several
research works in SE [6, 7], it is a new area to apply GNN tech-
niques on software requirement datasets. In this work, we want to
study the potential and challenges when adapting a GNN model
in text classification for story points categorization. We split the
story points label in the dataset [8] into four levels. Next, we build
the training model using a technique called Text Level GNN [9].
This training model is used for story points level prediction. We
published our code and dataset at this site1.

2 RELATEDWORK
In the problem that we considered as text classification in SE, there
are several approaches to applyingGNN for this problem. Compared
to other deep neural network based model such as in [11] and [12],
GNN has an advantages of learning from graphs. The first approach
is proposed in [14]. In this work, there are two types of nodes
constructed from the graph. They are nodes as documents and
nodes as words inside documents. The second approach is called
text level graph in NLP [9], which worked by extracting the graph
for each input text or document. Compared to [14], [9] is considered
as an improvement approach since it can construct a graph for each
document that consumes less memory and be feasible to interact
with unseen test data. In our work, we inherit the model from [9]
for our problem.

3 APPROACH
In this project, we try to solve the story point estimation problem by
inheriting the Text Graph Neural Network proposed by [9]. We call
our solution as TextLevelGNN-StoryPointEstimator. The overview
architecture of our approach can be shown in Figure 1.
1https://github.com/pdhung3012/StoryPointEstimation-TextLevelGNN
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Figure 1: Overview Architecture of TextGraph GNN model

The target object given to each issue is the level of story points.
According to the distribution of software effort value, we divide
the level of story points into 4 levels. They are small (story point is
in range [1,5] ), medium ([6,15]), large ([16,40]) and huge ([41,100]).
This distribution can be summarized in Table 1.The process of issue
extraction can be illustrated as follows. First, a text combination of
title and description will be concatenated. Second, a graph will be
constructed for each issue, which reflects the relationship between
each word and its adjacent words. Finally, a GNN model is used to
train a model which can infer the software effort levels. Next, we
discuss important modules provided in our approach.

3.1 Graph Construction
Each issue contains two textual information: the issue’s title and
the issue’s description. We provide a combination of title and de-
scription as the textual representation of a software issue. There
are several types of graph construction from the text. For this prob-
lem, we inherit the graph construction from [9]. The idea of graph
generation is to make an edge from a word to an offset of adjacent
words in a sequence. There can be the case that there are edges that
appeared multiple times between two specific words. Those cases
will be reflected by the edge weight that highlights the popularity
of co-occurrence between words. Edges that appeared rarely be-
tween words are considered as public edges. The offset of neighbor
words between a specific word can be called the sliding window
offset𝑤 . The sliding window offset is larger, the number of edges
is increased, causing the increment of the complexity of the graph.

3.2 Graph Neural Network
One important element to construct a graph neural network is the
process of passing information between nodes and edges inside
the graph. This mechanism is called Message Passing Mechanism
(MPM). In this problem, TextLevelGNN [9] learns the representation
for each node by its neighbor and then combines the representations
of all nodes/ words to predict the label. The initial vector for each
node is retrieved by the vocabulary of Glove vector representation.
[3]. The combination mechanism to predict the label can be done
by the softmax and Relu functions [9].

4 EVALUATION
4.1 Dataset and Configurations
We use the dataset collected from [8]. There are 16 software projects
developed by Agile development, which contains over 23000 soft-
ware issues and actual story points. Similar to [8], we split the

Figure 2: Sensitivity experiment on projects jirasoft-
ware, clover and average accuracy of 16 projects with
window size as [2, 5, 10, 20, 50, 100] and text format as
[𝑟𝑎𝑤, 𝑓 𝑖𝑙𝑡𝑒𝑟𝑣𝑒𝑟𝑏𝑎𝑛𝑑𝑛𝑜𝑢𝑛]

dataset as 80% for training and validation, 20% for testing. We use
the same configuration with prior work [9], with batch size as 32,
drop out probability as 0.5, sliding window offset as 20, and the de-
fault Glove representation pre-trained model with 300-dimensional
vectors for each word in English. The distribution of the level of
story points and numbers of issues per each level are shown in Ta-
ble 1. We select the range of story point levels based on the median
of story points for each project on dataset [8].

We compare the GNN approach with the traditional approach
of story point level classification using TFIDF vectorization and
Random Forest for classification. For TFIDF vectorization, we use
the n-gram as the combination from 1-gram to 4-grams and use
the library TfIdfVectorizer in Python [5]. For RandomForest (RF)
classification, we use its implementation from Scikit-learn library
[4]. We call the traditional approach TFIDF-RF. We aim to answer
the following research questions (RQs):

(1) RQ 1. Accuracy of TextLevel GNN classification from raw
text of issues’ titles and description.

(2) RQ 2. Analysis on ability of TextLevel GNN for regression
for story points estimation.

(3) RQ 3. Analysis on abilities of optimization in running time
and graph complexity for TextLevel GNN.
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Table 1: Distribution of Story Point Level in dataset [8]

Level SP Value Size
Small [1,5] 16759
Medium [6,15] 5173
Large [16,40] 1085
Huge >40 296

Table 2: Accuracy of Text Level GNN compared to. TFIDF-RF
in Story Point Level Classification and Story Point Estima-
tion

Metric Classify Acc Reg MAE

No Software
TFIDF
RF GNN

TFIDF
RFR GNN

1 appceleratorstudio 78.08% 77.78% 1.66 2.67
2 aptanastudio 46.99% 41.41% 3.50 5.16
3 bamboo 100.00% 100.00% 0.88 0.00
4 clover 83.12% 81.25% 4.04 1.22
5 datamanagement 61.67% 56.36% 6.90 13.40
6 duracloud 99.25% 99.22% 0.91 0.07
7 jirasoftware 91.55% 89.06% 1.84 1.31
8 mesos 97.02% 96.88% 1.30 0.28
9 moodle 59.83% 56.25% 11.17 25.16
10 mule 74.16% 66.41% 2.46 4.03
11 mulestudio 54.42% 52.34% 3.92 5.84
12 springxd 87.96% 88.07% 1.90 1.08
13 talenddataquality 80.14% 83.20% 3.99 1.50
14 talendesb 98.28% 98.44% 0.87 0.14
15 titanium 75.61% 74.55% 2.75 2.30
16 usergrid 95.88% 96.88% 1.25 0.03

Average 80.25% 78.63% 3.08 3.09

4.2 RQ 1. Results on TextLevel GNN Story
Point Level Classification

The result of TextLevelGNN is shown in Table 2. From the results
on 16 projects, we achieve an accuracy as close as the traditional
approach for classification. We achieve the highest accuracy on
the bamboo project as 100% while the lowest accuracy is the ap-
tanastudio project as over 41%. We achieve high accuracy as TFIDF
and Random Forest in almost all projects. The project that TFIDF
and RF outperform us most are mule as about 9% while we achieve
significantly higher accuracy on the talendataquality by 3%. We
analyze the data inside 16 projects. We see that the mule and tal-
enddataquality provide challenges with low accuracy in story point
regression in prior work [8], which our experiment has consistent
results in our classification problem.

4.3 RQ 2. From Text Classification to Text
Regression

The TextLevelGNN approach [9] is applicable in text or issue clas-
sification. Though the space of story point value is not in uniform
distribution, the story point estimation should be considered as the
text regression problem instead of classification. We study other
works in Software Engineering that applied GNN. We see that most
of them focus on the classification or code generation instead of
regression such as [6]. There are a few problems in SE that can
be formalized as regression problems such as project assignment
scoring [13] and Github star project prediction [2], however, none
of them applied GNN as solutions. We studied several works on
graph regression in NLP and see that most of them focus on datasets
in different research areas such as image processing [15].

Considering story points as labels for classification A sim-
ple solution to convert from classification to regression problem
is that we consider the story points themselves as labels for clas-
sification. Next, we evaluate the correctness of output by Mean

Table 3: Number of edges of projects jirasoftware and clover
with window size as [2, 5, 10, 20, 50, 100]

window
size jirasoftware clover

w=2 22511 48658
w=5 58752 124600
w=10 99626 213987
w=20 151170 339562
w=50 229599 568997
w=100 287869 772672

Table 4: Analysis on scale of graphs extracted from training
data

Pp Project Size Nodes Edges
Train
Time
(sec)

[3] appceleratorstudio 1868 14969 1218745 244
[3] aptanastudio 530 8211 545099 41
[3] bamboo 332 6175 297828 20
[3] clover 245 5227 339562 14
[3] datamanagement 2986 18490 1618297 358
[3] duracloud 425 3793 289685 21
[3] jirasoftware 224 2339 151170 9
[3] mesos 1075 25494 1698010 101
[3] moodle 745 8468 696113 70
[3] mule 568 6133 437088 28
[3] mulestudio 468 4316 309768 21
[3] springxd 2256 17198 1194025 128
[3] talenddataquality 883 7324 445830 92
[3] talendesb 555 8766 591293 30
[3] titanium 1440 23989 1728925 304
[3] usergrid 308 4114 218491 17
[7] R8 dataset 4937 2923 1380208 821

Absolute Error (MAE). We compare the traditional approach TFIDF
with Random Forest Regression (TFIDF-RFR). The result which is
shown in Table 2, reveals the fact that the TextLevelGNN approach
achieves higher MAE than the BOW-RFR approach. It means the
TextLevelGNN didn’t perform as well as the traditional approach
with this simple solution for converting from classification to re-
gression problem. In the upcoming work, we intend to change the
mechanism in [9] to regression learning to support story point
estimation.

4.4 RQ 3. Optimization in Running Time and
Graph Complexity

We see that the running time in the training of your approach is
longer than the traditional work. The BOW-RF approach requires
4 minutes to complete the training step, while the TextLevelGNN
requires about 25 minutes for the same tasks of training on 16
projects of [8]. The testing step achieves almost the same running
time for the TFIDF-RF approach and our approach. We study the
result and see that one problem due to long training time is the
number of edges in our graph is usually high, which can be more
than 500000 edges in complicated projects such as𝑚𝑒𝑚𝑜𝑠 . In future
work, we can optimize the running time by simplifying the graph
in which we highlight important information.

4.4.1 Analysis on the scale of graph. To study how the complexity
can affect the performance of the training process, we analyze
the nodes, the edges, the size (number of issues for training) and
compare with similar metrics on the popular natural text dataset 𝑅8
which was used in the work [9]. We have some observations. First,
the size of 16 projects is smaller than the R8 dataset. The number
of issues for each project ranges from over 200 to 3000. Second, the
number of nodes in the R8 dataset is about 3000, which is lower
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Table 5: Accuracy on simplifying the graph in verb-noun for-
mat in 16 projects

Text RawText
Filter
Verb-Noun

No Software GNN GNN
1 appceleratorstudio 77.78% 77.95%
2 aptanastudio 41.41% 54.69%
3 bamboo 100.00% 100.00%
4 clover 81.25% 78.13%
5 datamanagement 56.36% 61.72%
6 duracloud 99.22% 99.22%
7 jirasoftware 89.06% 90.63%
8 mesos 96.88% 96.88%
9 moodle 56.25% 61.98%
10 mule 66.41% 67.97%
11 mulestudio 52.34% 50.78%
12 springxd 88.07% 88.07%
13 talenddataquality 83.20% 75.78%
14 talendesb 98.44% 98.44%
15 titanium 74.55% 75.45%
16 usergrid 96.88% 96.88%

Average 78.63% 79.66%

Table 6: Accuracy on simplifying the graph in verb-noun for-
mat in datamanagement project

Metric
Raw
issue

Filter
Verb-Noun

nodes 18490 2986
edges 1618297 10309
training time 358 209
accuracy 56.36% 61.72%

than some projects like 𝑑𝑎𝑡𝑎𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡,𝑚𝑒𝑚𝑜𝑠 , or 𝑡𝑎𝑙𝑒𝑛𝑑𝑒𝑠𝑏. It
means that there are more new words inside each issue instead of a
standard NLP text dataset. We study some issues and we see that the
description of issues is usually longer than the description that the
combination of title and descriptions can be more than 10 sentences.
This fact of causing the risk of out-of-vocabulary words that didn’t
appear in the standard vector corpus Glove used in [9]. We can
improve this challenge by building a new Glove representation
trained from the context of issues’ description. Third, the number
of edges is much larger than the number of nodes. This is because
the mechanism of making edges between a word and neighbor
words in the offset 𝑤 = 20 causes the exponential of the edges.
Similarly, the number of edges provided in the 𝑅8 dataset is high
which is about 1.3 million edges. In the issues dataset, the project
that has the highest number of edges is𝑚𝑒𝑚𝑜𝑠 project, due to the
complexity of long issues’ description. The project that has the least
number of edges is the 𝑗𝑖𝑟𝑎𝑠𝑜 𝑓 𝑡𝑤𝑎𝑟𝑒 project, which can be due to
the compact number of training records. Forth, for the running time,
the running time for each project ranges from about 9 seconds to
370 seconds, which is comparable with the 𝑅8 dataset.

4.4.2 Simplifying the graph of issues by verb and noun. We analyze
the potential of simplifying the input text as an issue by filtering
its words’ roles in part of speech tagging by an experiment that its
results are shown in Table 6 and Table 5. In this study, we filter the
words that are verbs and nouns and remove all words in other tags of
the issue. We run the experiment on the 𝑑𝑎𝑡𝑎𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 project,
we called this configuration 𝑣𝑒𝑟𝑏𝑁𝑜𝑢𝑛𝐹𝑖𝑙𝑡𝑒𝑟 . The results show that
the accuracy is 56.36% on this project, compared to 61.72%with the
normal text without the filter. Moreover, the training time and the
graph complexity are alleviated. Though this is a very beginning
and heuristic strategy to simplify the textual content, it shows the
potential of simplifying the graph that focused on important parts

of speech tags. The total average accuracy on 16 projects was raised
to 79.66%.

4.4.3 Sensitivity on window size. We study the impact of win-
dow size on the number of edges and the classification accuracy
by the sensitivity experiment by changing window size to one
of the following sizes: [2, 5, 10, 20, 50, 100]. We evaluate projects
𝑗𝑖𝑟𝑎𝑠𝑜 𝑓 𝑡𝑤𝑎𝑟𝑒 and 𝑐𝑙𝑜𝑣𝑒𝑟 . The impact of window size on the num-
ber of edges is shown in Table 3, which shows the high increase of
edges when we increase the window size. The accuracy experiment
is shown in Figure 2. We can see that too big a window size can
cause a decrease in the accuracy, possibly due to many non-useful
edges of the constructed graph.

5 CONCLUSION
In this project, we propose a new mechanism of story point level
estimation. Instead of converting text sequence to vector repre-
sentation for features, we apply graph as the data structure for
story points level classification. By the experiment, we see that the
TextLevelGNN approach achieves comparable accuracy compared
to the traditional approach using TFIDF for vectorization combined
with Random Forest for machine learning classification. There are
rooms for improvement in future works, which is related to ad-
justing the classification problem to the regression problem and
optimizing the running time by filtering important information of
the input text for graph construction.
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