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Matching is a popular combinatorial optimization problem with numerous applications in both commercial
and scientific fields. Computing optimal matchings w.r.t. cardinality or weight can be done in polynomial
time; still, this task can become infeasible for very large networks. Thus, several approximation algorithms
that trade solution quality for a faster running time have been proposed. For networks that change over
time, fully dynamic algorithms that efficiently maintain an approximation of the optimal matching after a
graph update have been introduced as well. However, no semi- or fully dynamic algorithm for (approximate)
maximum weighted matching has been implemented.

In this article, we focus on the problem of maintaining a 1/2-approximation of a maximum weighted
matching (MWM) in fully dynamic graphs. Limitations of existing algorithms for this problem are (i) high
constant factors in their time complexity, (ii) the fact that none of them supports batch updates, and (iii) the
lack of a practical implementation, meaning that their actual performance on real-world graphs has not been
investigated. We propose and implement a new batch-dynamic 1/2-approximation algorithm for MWM based
on the Suitor algorithm and its local edge domination strategy [Manne and Halappanavar, IPDPS 2014]. We
provide a detailed analysis of our algorithm and prove its approximation guarantee. Despite having a worst-
case running time of O (n +m) for a single graph update, our extensive experimental evaluation shows that
our algorithm is much faster in practice. For example, compared to a static recomputation with sequential
Suitor, single-edge updates are handled up to 105× to 106× faster, while batches of 104 edge updates are
handled up to 102× to 103× faster.
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1 INTRODUCTION

Context. Matching is a widely studied combinatorial optimization problem with numerous prac-
tical applications [12, Chapter 5]. Given a graph1 G = (V ,E) with n vertices andm edges, a match-
ing M ⊆ E in G is a set of pairwise non-adjacent edges, i.e., all the vertices in G are incident to at
most one edge in M . A matching is called maximal if no edge can be added to it without violating
the matching property. It is called maximum, in turn, if there is no other matching with higher
cardinality. Computing the maximum cardinality matching (MCM) of a graph can be done in
O (m
√
n) time in general graphs with the algorithm by Micali and Vazirani [44], and in O (nω ) time

in planar graphs with the algorithm by Mucha and Sankowski [45], where ω < 2.373 is the matrix
multiplication exponent. On weighted graphs, the maximum weighted matching (MWM) is
a matching with maximum edge weight. The fastest known algorithms for this problem are by
Gabow [23] in O (nm+n2 logn) time and (for very sparse graphs) by Galil [24] in O (mn logn) time.
With some restrictions on the input, faster (but still superlinear) time complexities are possible.
For a broader overview, we refer the reader to Section 2.2 and to References [12, 37, 38].

Motivation. Today, massive graph data sets are ubiquitous and executing an algorithm with su-
perlinear running time on them can be prohibitively expensive. To mitigate long running times, it is
common to resort to approximation. Preis’s greedy algorithm [52] computes a 1/2-approximation
of the matching with highest weight in O (m) time; the same result is also achieved with the path-

growing algorithm (PGA) by Drake and Hougardy [16]. The main disadvantage of these algo-
rithms is that they are inherently sequential and thus cannot exploit another common acceleration
strategy for massive data: parallelism. Birn et al. [11], in turn, provide a parallel implementation
of the local max algorithm [30], which computes a maximal matching of an unweighted graph
and a 1/2-approximation of the MWM of a weighted graph in O (log2 n) expected time. Manne
and Halappanavar introduced Suitor [40], a parallel 1/2-approximation algorithm based on local
domination that outperforms previous strategies and is amenable to parallelism.

Real-world networks are not only large but often change over time [43]: edges are inserted,
deleted, or change their weight. For example, Internet pages are constantly updated or friendships
in social networks are continuously created and terminated. Even with a linear-time algorithm, it
would be excessively expensive to recompute a (weighted) matching from scratch every time the
graph changes. In recent years, several fully dynamic algorithms for both exact and approximate
MCM [3, 5, 6, 8–10, 14, 27, 28, 31, 32, 47, 48, 53, 55] and MWM [1, 28, 57] have been proposed.
These algorithms perform a static computation of the matching on an initial snapshot of the graph
and exploit this information to update the matching more efficiently than a static rerun when the
graph changes. Main limitations of existing fully dynamic algorithms are either a weaker quality
guarantee (Reference [1]), or an expensive time complexity (see Reference [28]). To the best of
our knowledge, none of the existing algorithms for fully dynamic MWM supports batch updates
and—most importantly—none of them has been implemented in practice.

Contribution. In this article, we introduce a new algorithm that takes inspiration from Suitor [40]
and maintains a 1/2-approximation of the MWM on fully dynamic graphs. The main idea is simple:
we use the static Suitor algorithm to compute a matching on an initial snapshot of the graph. Then,
after an edge update, our dynamic algorithm identifies the affected vertices (i.e., whose partner
needs to be updated) and updates the matching accordingly.

Our implementation of this algorithm is the first for semi- or fully dynamic MWM. It supports
multiple-edge insertions and removals in batches. For single-edge updates, our dynamic algorithm

1In this article, we also use the term “network” as a synonym for “graph”.
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has a worst-case time complexity of O (n + m), whereas for batches with b edge updates it is
O (b (n +m)). Although this does not improve the static time complexity, our dynamic algorithm
performs remarkably well in practice: In our experiments, we evaluate its running time on real-
world (complex and street) and synthetic networks with up to 2.5 billion edges. Our results show
that, compared to a static recomputation (for lack of another meaningful MWM baseline) with
(sequential) Suitor, our algorithm can handle single graph updates 105× to 106× faster and batches
of 104 of such updates 102× to 103× faster. Furthermore, the time required by our dynamic algo-
rithm for every considered batch size is always below a millisecond. Thus, our algorithm’s imple-
mentation provides real-time capabilities even without parallelism.

2 PRELIMINARIES

2.1 Problem Definition and Notation

Let G = (V ,E,w ) be a simple, undirected and weighted graph, where n = |V | is the number of
vertices, m = |E | is the number of edges, w : E → R>0, and N (u) is the set of neighbors of vertex
u. A matching in G is a subset of pairwise non-adjacent edges M ⊆ E. Alternatively, one can see a
matching as a subgraph of G (restricted to the edges) with degree at most 1. A vertex is matched

if it is incident to an edge in M ; otherwise, it is called unmatched or free.
In the MWM problem, the objective is to compute a matching M� that maximizes the sum of

the edge weights.

Maximum-weight Matching

Input: Undirected weighted graph G = (V ,E,w ).

Output: Matching M� ⊆ E s.t.
∑

e ∈M� w (e ) is maximal.

In the context of dynamic graphs, if any edge update2 happens to G, then we denote by G ′ =
(V ,E ′,w ′) the graph after the edge update. Similarly, we denote by N ′(u) the set of neighbors of a
vertexu inG ′. Given a matching M computed onG and a sequence of graph updates, our objective
is to update M inG ′ faster (in terms of empirical running time) than recomputing a new matching
in G ′ from scratch, while retaining the theoretical bound on the solution quality.

2.2 Related Work

In the following, we summarize relevant works concerning MCM and MWM in both static and
dynamic settings.

Static Algorithms. Edmond’s blossom algorithm [20] (O (mn2) time), and the later improved algo-
rithm by Micali and Vazirani [44] (O (m

√
n) time) are two popular strategies based on augmenting

paths to compute an MCM. Goldberg and Karzanov [26] propose a blocking skew-symmetric flow
algorithm that achieves the same running time as Micali and Vazirani. More recent works use data
reduction rules [35] or shrink-tree data structures [18] to achieve better running times in practice
on sparse real-world networks. If we restrict the input to planar graphs, then the randomized algo-
rithm by Mucha and Sankowski [45] computes an MCM in O (nω ) time via Gaussian elimination,
whereω < 2.373 is the matrix multiplication exponent. Concerning the MWM problem, recall that
the fastest known algorithms run in O (nm + n2 logn) [23] and in O (mn logn) [24] time. Assum-
ing integral edge weights, the algorithm by Duan et al. [19] takes O (m

√
n log(nW )) time, while

Sankowski [54] takes Õ (Wnω ) time (if we restrict the input to bipartite graphs), where Õ hides a
polylogarithmic factor andW is the highest edge weight.

2Hereafter, we will denote with “edge update” an edge insertion, an edge removal, or an edge weight change.
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6:4 E. Angriman et al.

On bipartite graphs, Sankowski [54] takes Õ (Wnω ) time.
Running a superlinear algorithm is often too expensive on large graphs, therefore several ap-

proximation algorithms with (nearly) linear running time have been introduced. A naïve greedy al-
gorithm that iteratively adds to the matching the (heaviest) edge that does not violate the matching
condition takes O (m logn) time and achieves a 1/2-approximation for both the MCM and MWM
problems [4]. Preis [52] reduced the running time to O (m) while retaining the same quality guar-
antee. Further strategies to obtain the bound 1/2 are the one by Manne and Bisseling [39] based
on dominant edges, the (previously known) local max algorithm investigated by Birn et al. [11],
the path growing algorithms by Drake and Hougardy [16, 17], the global paths algorithm by Maue
and Sanders [41], and Suitor by Manne and Halappanavar [40].

Dynamic Algorithms. A trivial strategy maintains a 1/2-approximation of a maximal match-
ing on dynamic graphs in O (n) time per update by resolving all augmenting paths with length
one. This result has been improved in several works. The update time was reduced for the first

time to O ((n +m)
√

2/2) by Ivković and Lloyd [31]. The randomized algorithm by Onak and Ru-
binfeld [48] maintains an O (1)-approximation of an MCM in O (log2 n) expected amortized up-
date time; this result was further improved by Baswana et al. [6] who reduced the update time to
O (logn) and the approximation ratio to 1/2. Solomon [55] further reduced the amortized update
time of Baswana et al. from logarithmic to constant. Deterministic algorithms for approximate
MCM have been presented first by Bhattacharya et al. [10], who maintain a (3 + ε )-approximate
MCM in Õ (min(

√
n,m1/3/ε )) amortized update time; the update time was later reduced to con-

stant but at the cost of a weaker O (1)-approximation guarantee [9]. In terms of worst-case bounds
for MCM, the best known algorithms are the ones from Gupta and Peng [28] (which maintains a
(1 + ε )-approximation with O (

√
m/ε ) update time), Neiman and Solomon [47] (which maintains

a 3/2-approximation with O (
√
m) update time), and Bernstein and Stein [8] (which maintains a

(3/2+ε )-approximation with O (m1/4/ε2.5) update time). The first (2+ε )-approximation algorithms
in O (poly logn) update time were introduced independently by Charikar and Solomon [14] and
by Arar et al. [3], whereas Grandoni et al. [27] gave a (1 + ε )-approximation algorithm limited
to edge insertions. For graphs with constant neighborhood independence, Barenboim and Mai-

mon [5] present an algorithm for MCM with deterministic Õ (n) update time. For lax and eager
algorithms, i.e., two subclasses of fully dynamic algorithms for maintaining a MCM, Kashyop and
Narayanaswamy [32] prove a conditional lower bound of the update time that is sublinear in the
number of edges.

Despite the vast variety of algorithms for dynamic MCM, very little effort has been invested
in implementing them and evaluating their practical performance in real-world instances. Only
recently, Henzinger et al. [29] evaluated dynamic algorithms for MCM in practice. These are the
algorithms by Baswana et al. [7] (2-approximate MCM in O (

√
n) update time), by Neiman and

Solomon [47] (3/2-approximate MCM inO (
√
m) update time), and two novel algorithms: one based

on random walks and one that uses a depth-bounded blossom algorithm to find augmenting paths.
Their experimental evaluation shows that (i) the optimal matching can be maintained more than
10× faster than a naïve static recomputation, (ii) the considered approximation algorithms are
multiple orders of magnitude faster than the naïve static algorithm, and (iii) the extended random
walk-based algorithms achieve the best practical performance.

Concerning the dynamic MWM problem, Anand et al. [1] propose a fully dynamic algorithm
for maintaining an 8-MWM with an expected amortized time of O (logn logC) per edge update,
where C is the ratio between the maximum edge weight and the minimum edge weight of the
graph. They also show that the approximation ratio can be reduced to 4.9108 without sacrificing
performance by using geometric rounding. Gupta and Peng [28] maintain a (1+ ε )-approximation
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in O (
√
mε−2−O (1/ε ) logW ) update time in graphs with edge weights between 1 andW ; their strat-

egy runs the static algorithm from time to time, trims the graph into smaller equivalent graphs
whenever possible and partitions the edges into geometrically shrinking intervals depending on
their weights.

Stubbs and Williams [57] present metatheorems to show that if there exists an α-approximation
algorithm for MCM with update timeT , then there also exists an 2α (1+ε )-approximation algorithm
for MWM with O ( T

ε2 log2W ) update time, whereW is the maximum edge weight. The main idea
relies on improving and extending the algorithm by Crouch and Stubbs [15], who addressed the
dynamic MWM problem in the semi-streaming model. None of the aforementioned algorithms for
MWM has been implemented.

For the semi-streaming model, Ghaffari and Wajc [25] describe a single-pass MWM algorithm
with a (2+ ε )-approximation ratio requiring O (n logn) bits, improving previous results [15, 21, 22,
42, 50]. Again, with the exception of Henzinger et al. [29], we are not aware of any implementations
of all these dynamic algorithms.

2.3 The Static Suitor Algorithm

Since our dynamic algorithm is built on top of the static one called Suitor [40], we provide in the
following a brief overview of this latter algorithm for self-containment purposes.

Recall that w is the weight function of the edges. By convention, if {u,v} � E or if a vertex
referencev is null, thenw (u,v ) is 0. To guarantee a correct execution, the following total ordering
of the edges incident to the same vertexu is enforced: if {u,x } and {u,y} have the same edge weight
and x < y, then w (u,x ) < w (u,y). Suitor keeps two references for each vertex u ∈ V , p (u) and
suitor (u), during the course of the algorithm. When the execution is finished, then

p (u) = arg max
v ∈N (u )

{w (u,v ) : �x ∈ N (v ) s.t.

p (x ) = v ∧w (x ,v ) > w (u,v )}.
(1)

In other words, p (u) is the neighbor v of u such that w (u,v ) is maximum and there is no vertex
x ∈ N (v ) where p (x ) = v with {x ,v} dominating {u,v}. If no such v exists, then p (u) = null (un-
matched). Vice versa, suitor (v ) refers to the vertex (if any) that keeps a reference tov : suitor (u) = v
iff p (v ) = u.

Algorithm 8 in Appendix A.1 shows the pseudocode of the Suitor algorithm: p and suitor
are initially set to null for every vertex in the graph; then, the recursive function findSuitor
(Algorithm 7) is called on each vertex u, which sets p according to Equation (1). The progress of
the algorithm can be described as follows:

Lemma 2.1. [40, Lemma 3.2] Following each call to findSuitor in Algorithm 8 from the loop over

the vertices of G, p (u) is set according to Equation (1) for each vertex u processed so far.

Clearly, after the execution of the algorithm, the condition in Equation (1) is true for all vertices,
and this leads us to the next property of the resulting matching:

Lemma 2.2. [40, Lemma 3.1] If p (u) is set according to Equation (1) for each vertexu ∈ V , then p (·)
defines the same matching as the greedy algorithm.

Proof. See Reference [33, Section 3.2]. The proof is for b-matching, but it contains the MWM
problem by setting b to 1. �

Thus, regardless of the order in which the loop processes the vertices, Suitor is a determinis-
tic algorithm that computes the same matching as the well-known greedy algorithm that adds
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6:6 E. Angriman et al.

permissible edges in the order of decreasing weight. Due to our assumption of a total edge order-
ing, this matching is unique.

Algorithm 10 in Appendix A.2 shows an iterative version of Suitor, which does not use p any
more but only suitor . An additional array ws stores for each vertex the value w (u, suitor (u)). We
rewrite the condition in Equation (1) in terms of suitor as follows:

suitor (u) = arg max
v ∈N (u )

{w (u,v ) : �y ∈ N (v ) s.t.

suitor (v ) = y ∧w (y,v ) > w (u,v )}.
(2)

If no such vertex exists, then suitor (u) = null. Similarly to its recursive counterpart,
Algorithm 10 initializes suitor and ws to null and 0, respectively, for every vertex in the graph;
then, for every u ∈ V , the algorithm calls the iterative function findSuitor(u) (Algorithm 9).
findSuitor uses a variable cur to store the vertex that is seeking a new partner in the current
iteration (i.e., vertex u in the recursive findSuitor). In Lines 7–10 it determines whether there
exists a neighbor v of cur that satisfies Equation (2) for cur and, if so, it stores v and w (cur ,v )
into the partner and heaviest variables, respectively. In Line 12, if heaviest is 0, no such neighbor
exists and the function terminates, because done is left to true –hence cur remains unmatched.
Otherwise, partner was set to the matching partner of cur and heaviest to w (cur ,partner ); in
Lines 13–15, y stores the previous matching partner of partner (if any) before making cur the new
matching partner of partner by setting suitor (partner ) to cur and ws (partner ) to heaviest . Then,
in Lines 16–18, if y is not null, then partner had a previous potential matching partner y; there-
fore, y needs to seek a new potential matching partner and this is done by setting cur to y and
done to false, which is equivalent to a recursive call of Algorithm 7.

3 DYNAMIC SUITOR ALGORITHM

In this section, we first describe how we extend the static Suitor algorithm [40] to also handle
single-edge updates. Building upon that, we generalize our approach to multiple-edge updates in
batches in Section 3.3.

We index variables of the Suitor algorithm with the superscript (i ) (for intermediate) [or (f ) for
final, respectively] if they refer to the state directly after the edge change [or after the dynamic
Suitor algorithm has been run], e.g., suitor (i ) (u) [or suitor (f ) (u)]. The matching M (i ) as well as
other Suitor variables are derived from M (and the other counterparts) by taking the edge update
onG into account. For example, if an edge e is deleted fromG that is part of M , then M (i ) = M\{e}.
Our goal is to update/improve the intermediate matching M (i ) efficiently, i.e., to avoid redundant
computations when computing the final matching M (f ) . We will show that M (f ) equals M ′, the
matching computed by the static Suitor algorithm on G ′. To this end, we define the notion of an
affected vertex.

Definition 1. A vertex u is called affected iff M (i ) violates Equation (2) for suitor (i ) (u), i.e., iff
suitor (i ) (u) � arg maxv ∈N ′ (u ) {w ′(u,v ) : �y ∈ N ′(v ) s.t. suitor (i ) (v ) = y ∧w ′(y,v ) > w ′(u,v )}.

Our dynamic algorithm computes M (f ) after an edge update by finding all the vertices affected
by the edge update (findAffected function in Algorithm 1) and by then updating their matching
partner so that Equation (2) is satisfied (updateAffected function in Algorithm 2). If Equation (2)
is satisfied for every vertex in G ′, then it follows from Lemma 2.2 that the resulting matching is
(the unique) M ′.

findAffected (Algorithm 1) is an extended version of the findSuitor function (Algorithm 9)
used by the iterative Suitor algorithm; it uses a Boolean array affected to keep track of the affected
vertices and pushes the affected vertices whose suitor and ws variables need to be updated onto a
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ALGORITHM 1: Extended version of the findSuitor function (Algorithm 9, Appendix A) that
finds the affected vertices.

1: function findAffected(z)
2: Input: Affected vertex z
3: Output: Stack of affected vertices
4: SA ← empty stack � Stack of affected vertices.
5: cur ← z
6: done ← false
7: repeat

8: partner ← suitor (cur )
9: heaviest ← ws (cur )

10: for each x ∈ N (cur ) do

11: if not affected(x ) and w (cur ,x ) > heaviest and w (cur ,x ) > ws (x ) then

12: partner ← x
13: heaviest ← w (cur ,x )

14: done ← true
15: if heaviest > ws (partner ) then

16: y ← suitor (partner )
17: suitor (partner ) ← cur
18: ws (partner ) ← heaviest
19: SA.push(partner )
20: affected(partner ) ← true
21: if y � null then

22: suitor (y) ← null
23: ws (y) ← 0
24: affected(y) ← true
25: cur ← y
26: done ← false
27: else

28: affected(cur ) ← false

29: until done
30: return SA

stack SA. As in findSuitor, cur is the vertex we are trying to find a matching partner for, partner
is the preferred matching partner for cur , i.e., the vertex that satisfies Equation (2) for cur (if any),
and heaviest = w ′(cur ,partner ). Then, in Lines 17 and 18, if a new matching partner for cur is
found, then the suitor (f ) (partner ) and ws (f ) (partner ) variables are updated to cur and heaviest ,
respectively; additionally, partner is pushed onto SA (Line 19). If partner is matched in M with
another vertex y, then the edge {partner ,y} would violate the matching condition and thus needs
to be removed from the matching; this is done in Lines 22 and 23 by “invalidating” the vertex y,
i.e., setting the values of suitor (f ) (y) and ws (f ) (y) to null and 0, respectively. As in findSuitor,
in the next iteration, we seek for a new partner for the invalidated vertex y by updating cur to
y. This procedure is repeated until either a new partner for cur cannot be found (i.e., cur is free
in M ′), or partner is free in M . By keeping track of the affected vertices, we guarantee that a
previously invalidated vertex is not selected as new matching partner in future iterations of the
loop (see Line 11). The stack SA is later used by updateAffected (Algorithm 2) to match the
affected vertices that were not updated by findAffected (i.e., the ones that were stored in the cur
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6:8 E. Angriman et al.

Fig. 1. Example illustration of Lemma 3.1. In this graph, we have that M = {{u,y0}}, suitor (i ) (u) = y0,
suitor (i ) (v ) = null, and a new edge e = {u,v} with weight a has just been added. Clearly, if e ∈ M ′, then
Equation (2) holds only if a > w (u, suitor (i ) (u)) = 4. Vice versa, if a > 4, then Equation (2) holds only if
M ′ = {{u,v}}.

ALGORITHM 2: Updates suitor and ws of the matching partners of the vertices in the stack SA.

1: function updateAffected(SA)
2: Input: Stack of affected vertices SA

3: while SA is not empty do

4: x ← SA.pop()

5: y ← suitor (x )
6: suitor (y) ← x
7: ws (y) ← ws (x )
8: affected(x ) ← false
9: affected(y) ← false

variable) to their new partner (Lines 6 and 7). Once a pair of matched vertices has eventually been
processed, they are not affected anymore and thus updateAffected marks them as unaffected
(Lines 8 and 9). In the following, we show how these two functions are used in case of an edge
insertion or an edge removal and that our dynamic algorithm yields a matching M (f ) that equals
the matching M ′ computed by the static Suitor algorithm onG ′. Concerning edge weight updates,
they can be handled as an edge removal followed by an edge insertion.

3.1 Edge Insertions

Let us first address the case in which an edge is inserted into G, i.e., G ′ = (V ,E ∪ {u,v}) with
e = {u,v} � E.3 Intuitively, this new edge will only be part of the new matching M ′ iff it is “a better
deal” for bothu andv . In other words: e ∈ M ′ iffw ′(u,v ) is heavier than bothw ′(u, suitor (i ) (u)) and
w (v, suitor (i ) (v )) and is thus the dominant edge for both. We show this in the following lemma:

Lemma 3.1. Let G ′ = (V ,E ∪ e ) with e = {u,v} � E.

Then: e ∈ M ′ ⇔ w ′(u,v ) > max{w (u, suitor (i ) (u)),w (v, suitor (i ) (v ))}.

Proof. We develop the proof w.l.o.g. for u by assuming that w (u, suitor (i ) (u)) > w (v, suitor (i )

(v )); the proof for v is symmetric. Let Y ⊆ N (u) be the set of vertices y that do not have any
neighbor x such that w (x ,y) > max{w (x , suitor (i ) (x )),w (u,y)}, i.e., the set of vertices among
which Equation (2) selects suitor (u) as the vertex y with maximum w (y,u). In the example in
Figure 1, Y = {y0,y1,y2,y3}. We also define Y (v ) := Y ∪ {v}.

3The intuition behind the proofs presented in this section share some similarities with the proof presented in Reference [51,

Section A.1] for dynamic maximum cardinality bipartite matching.
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Fig. 2. Examples of alternating paths that cover the vertices affected by the insertion of an edge {u,v}. Solid
lines and dashed lines represent edges in M ′\M and edges in M\M ′, respectively. In Figure 2(a) there is only
one alternating path, because u is matched in M and v is not, whereas in Figure 2(b) there are two, because
both u and v are matched in M .

ALGORITHM 3: Dynamic Suitor algorithm for single-edge insertions.

Input: Graph G ′ = (V ,E ∪ {u,v}), an edge {u,v} � E.
Output: New matching M (f ) on G ′.

1: if w ′(u,v ) > max{w ′(u, suitor (i ) (u)),w ′(v, suitor (i ) (v ))} then

2: affected(x ) ← false ∀x ∈ V
3: for z ∈ 〈v,u〉 do

4: affected(z) ← true
5: SA ← findAffected(z)
6: updateAffected(SA\{suitor (i ) (z)})
7: M (f ) ← {{u,v} ∈ E s.t. (suitor (u) = v ) ∧ (suitor (v ) = u)}
8: return M (f )

“⇒” From e ∈ M ′, we have that suitor ′(v ) = u, and from Equation (2) it follows that v =
arg maxy∈Y (v ) w ′(u,y). Therefore, since suitor (i ) (u) ∈ Y (v ) , w ′(u,v ) > w ′(u, suitor (i ) (u)). In our

example in Figure 1, it is clear that {u,v} ∈ M ′ ⇒ a > 4.
“⇐” By definition, we have that suitor (i ) (u) = arg maxy∈Y w ′(u,y) and that suitor ′(u) =

arg maxy∈Y (v ) w ′(u,y). By hypothesis, w ′(u,v ) > w (u, suitor (i ) (u)), and thus suitor ′(u) =

arg maxy∈Y (v ) w ′(u,y) = v . The same holds if we exchange u and v in the argument. Therefore,

e ∈ M ′. This is also clear in Figure 1: if a > 4, then Equation (2) holds only if {u,v} ∈ M ′. �

Algorithm 3 shows our dynamic algorithm for edge insertions. Given a newly added edge e =
{u,v}, in Line 1 the algorithm excludes e if it does not satisfy Lemma 3.1, because e is then also not
part ofM ′. As we will show later, all the vertices affected by an edge insertion lie on two alternating
paths that start from u and v and that alternate edges in M ′\M with edges in M\M ′, as shown in
Figure 2. In the for loop, our algorithm finds the affected vertices that lie on these two alternating
paths and updates their matching partner according to Equation (2). This is done as follows: the
first vertex in the path is marked as affected, findAffected updates the suitor andws variables of
the affected partner vertices and pushes them onto a stack SA. Finally, updateAffected matches
the vertices in SA to their new partner. Note that, in Line 6, suitor (i ) (z) is removed from SA to avoid
overwriting suitor (z) in updateAffected; this information is needed in the next iteration of the
for loop to find the affected vertices in the alternating path that starts from u.
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6:10 E. Angriman et al.

We now analyze in more detail which vertices are affected by the insertion of an edge e =
{u,v} � E that satisfies Lemma 3.1 (and is thus in M ′) and how M (f ) is computed starting from
M (i ) . In the following, we split our analysis into three possible scenarios: both u and v are un-
matched (Section 3.1.1), only one of u and v is matched (Section 3.1.2), and both u and v are
matched (Section 3.1.3).

3.1.1 u and v Both Unmatched. Let us first cover the trivial case where both u and v are un-
matched in M , i.e., there is no vertex in G that satisfies Equation (2) for both u and v . In the
following lemma, we show that M ′ = M (i ) ∪ {e} and that u and v are the only affected vertices.

Lemma 3.2. Let e = {u,v} � E. If both u and v are unmatched in M , then M ′ = M ∪ {e} and u and

v are the only affected vertices.

Proof. The proof is symmetric for u and v , we develop it for u. If u is unmatched in M , then
suitor (i ) (u) = null and there is no neighbor of u that satisfies Equation (2) in G. After the
insertion of e , we have that 0 = w ′(u, suitor (i ) (u)) < w ′(u,v ) and thus v satisfies Equation (2)
for u. Further, all the neighbors of u in G are already matched, and matching u with v cannot
invalidate Equation (2) for any of them. Therefore, M ′ = M (i ) ∪ {e} and no other vertex apart
from u and v is affected. �

We now show that M (f ) equals M ′, i.e., Equation (2) is fulfilled by M (f ) for every vertex in
G ′. The condition in Line 1 in Algorithm 3 is clearly true, because both u and v are free. In
findAffected(v ), we have that cur = v and partner = u. Thus, suitor (f ) (u) is set to v and u
is pushed onto SA. findAffected(v ) performs only one iteration, since y = suitor (i ) (u) = null,
and updateAffected has no effect, since its input stack is empty. The next iteration of the for
loop performs the same operations but with u and v swapped. Thus, the resulting matching is
M (f ) = M (i ) ∪ {e} = M ′.

3.1.2 u Matched andv Unmatched. To analyze the case where just one of u andv is matched in
M , our analysis assumes w.l.o.g. that u is matched in M and v is not; the other case is symmetric.
We first describe how Algorithm 3 identifies all the affected vertices and then how it updates their
matching partner.

In this scenario, u and v are not the only vertices affected by the insertion of e , because Equa-
tion (2) is violated also for suitor (i ) (u). In particular, we show in the following lemma that the
vertices affected by the insertion of e are covered by a simple (i.e., without loops) path that, start-
ing from v , alternates edges in M ′\M with edges in M\M ′ as shown in Figure 2(a). We show this
in the following lemma.

Lemma 3.3. Let e = {u,v} � E be a newly inserted edge such that e ∈ M ′. If u is matched in M and

v is not, then all the vertices affected by the insertion of e are connected by a simple alternating path

Pv that starts from v and that alternates edges in M ′\M with edges in M\M ′. Further, the weights of

the edges along Pv are decreasing, i.e., for each e1, e2 ∈ Pv where e1 precedes e2 in Pv , we have that

w ′(e1) > w ′(e2).

Proof. Clearly, e ∈ M ′\M is the first edge in Pv . As shown in Figure 2(a), let x1 = suitor (i ) (u):
e ∈ M ′ implies that Equation (2) is violated for x1 in G ′. If no vertex x2 ∈ N ′(x1) satisfies Equa-
tion (2) for x1, then x1 remains unmatched in M ′ and no further vertex is affected. Otherwise, there
exists another vertex x2 ∈ N ′(x1) that satisfies Equation (2) for x1. In the former case, the alter-
nating path has only two edges: e and e1 = {u,x1} ∈ M\M ′. In the latter case, suitor (f ) (x1) = x2

and suitor (f ) (x2) = x1. Hence, in addition to e1, the alternating path has at least another edge
e2 = {x1,x2} ∈ M ′\M . By repeating with e1 the same logic, we applied to e , it follows that the
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vertices affected by the insertion of e lie on a path Pu that, starting from u, follows edges in M ′

and in M alternately.
What is left to be shown is that Pv is simple, which can be done similarly as in the final part of the

proof of Reference [40, Lemma 3.2]. Note that, if x1 is affected, thenw ′(u,x1) < w ′(u, suitor (f ) (u) =
v ) and w ′(x1, suitor

(f ) (x1) = x2) < w ′(u,x1), and thus w ′(x1, suitor
(f ) (x1)) < w ′(u, suitor (f ) (u)).

In words, the weights of the edges along Pv are decreasing, because every time an affected vertex
x1 loses its matching partner suitor (i ) (x1), it holds: if it finds a new partner suitor (f ) (x1) = x2,
then w ′(x1,x2) must be smaller than w ′(x1, suitor

(i ) (x1)). Therefore, it is not possible for x1 to be
matched in M ′ with a vertex that is already covered by Pv , which implies that Pv is simple. �

Note that, as shown in Figure 2(a), the alternating path Pv = (u,v,x1, . . . ,x� ) alternates vertices
xi that are matched in M ′ with a “worse partner” (in terms of edge weight) than the one they had
in M (i.e., the ones where i is odd), and vertices xi that are matched in M ′ with a “better partner”
than the one they had in M (i.e., u, v , and the ones where i is even). Hereafter, we will call the
former ones “downgraded” and the latter ones “upgraded.” More formally:

Lemma 3.4. For each vertex xi in an alternating path Pv = (v,u,x1, . . . ,x� ), 1 ≤ i ≤ � holds: if

i is odd, then w ′(xi , suitor
(f ) (xi )) < w ′(xi , suitor

(i ) (xi )) (i.e., xi is downgraded); otherwise, i is even

and w ′(xi , suitor
(f ) (xi )) > w ′(xi , suitor

(i ) (xi )) (i.e., xi is upgraded).

Proof. Every downgraded vertex xi loses its initial matching partner suitor (i ) (xi ), because
suitor (i ) (xi ) is matched in M ′ with another (upgraded) vertex—e.g., x1 loses its initial matching
partner u, because {u,v} ∈ M ′. Note that, in Pv , the upgraded vertex matched with suitor (i ) (xi ) in
M ′ comes always earlier than xi ; from Lemma 3.3, we know that the weights of the edges along
Pv are decreasing, and thusw ′(xi , suitor

(i ) (xi )) < w ′(xi , suitor
(f ) (xi )). Further, by construction of

the alternating path, Pv alternates downgraded and upgraded vertices from x1 on. Thus, knowing
that x1 is downgraded, all the remaining xi with odd i are also downgraded.

If xi is upgraded, then it is either one of u and v , or it is suitor (f ) (xi−1) of the previous down-
graded vertex xi−1 in Pv . Since by our hypothesis xi is in Pv , we also have that suitor (f ) (xi ) = xi−1,
hence w ′(xi , suitor

(f ) (xi ) = xi−1) > w ′(xi , suitor
(i ) (xi )). �

Remark 1. Due to the total ordering of the edge weights, the alternating path Pv is unique and
can be computed deterministically as the sequence of the vertices stored in the cur and partner
variables of the findSuitor(v ) function (Algorithm 9).

From Lemma 3.3 it follows that, to compute M ′, we need to find the affected vertices in the
alternating path Pv and update their suitor (f ) and ws (f ) values according to Equation (2). In the
following, we show that Algorithm 3 finds all the vertices in Pv and updates their matching partner
according to Equation (2), so that M (f ) equals M ′.

Proposition 3.5. findAffected(v ) (Algorithm 1) computes suitor (f ) and ws (f ) according to

Equation (2) for the upgraded vertices in Pv and pushes them onto a stack SA.

Proof. The function maintains the following loop invariant: cur is either v or an invalidated
downgraded vertex xi ∈ Pv ; in the first case, partner is u; in the second case, if the condition in
Line 15 is true, then partner is an improving vertex xi+1 ∈ Pv —otherwise both the loop and Pv

stop. Maintaining the invariant guarantees that findAffected(v ) covers all affected vertices in
Pv and that all the improving vertices xi are updated according to Equation (2) and pushed onto
SA.

The invariant obviously holds in the first two iterations. In the first one, we have that cur = v ,
partner = u, and y = suitor (i ) (u) = x1 (see Figure 2(a)). In the next one, cur = x1 is invalidated

ACM Journal of Experimental Algorithmics, Vol. 27, No. 1, Article 6. Publication date: July 2022.



6:12 E. Angriman et al.

from the previous iteration, and thus it is a downgraded vertex in Pv that is seeking a new partner
to replace the previous partneru; if a new partner x2 is found,partner = x2 is an upgraded vertex in
Pv , thus suitor (f ) (x2) and ws (f ) (x2) are updated to x1 and w ′(x1,x2), respectively, and it is pushed
onto SA (Lines 17–19). By applying the same logic to the remaining vertices in Pv , the invariant also
holds for the remaining iterations of findAffected(v ). We remark that, by marking the vertices
in Pv as affected, the function cannot iterate on the same vertices multiple times. The function
terminates when either partner is a free vertex (hence y = null), or there is no neighbor of cur
that satisfies Equation (2), and thus cur remains unmatched in M (f ) . �

Note that, if Pv ends with a downgraded (hence, free) vertex x� , then findAffected(v ) invali-
dates it before terminating, i.e., suitor (f ) (x� ) and ws (f ) (x� ) are updated according to Equation (2).
Therefore, x� is not affected anymore in G ′ and thus marked as unaffected (Line 28).

Proposition 3.6. After updateAffected finishes, all vertices in Pv satisfy Equation (2) in G ′.

Proof. From Proposition 3.5, we know that, when updateAffected is called, all the upgraded
vertices satisfy Equation (2) inG ′ and that they are stored in the stack SA. updateAffected “com-
pletes” the matching M (f ) by updating, for all the downgraded vertices xi ∈ Pv matched in M ′,
their suitor (f ) (xi ) and ws (f ) (xi ) values to xi+1 and w ′(xi ,xi+1), respectively, and thus all vertices
in Pv satisfy Equation (2) in G ′. �

Proposition 3.7. If u is matched in M and v is not (or vice versa), then Algorithm 3 has a worst-

case running time that is linear in the number of the affected vertices and in the sum of their degrees.

Proof. Algorithm 3 invokes findAffected and updateAffected twice. The number of
iterations of findAffected is linear in the length of a simple alternating path that covers the
vertices affected by the edge insertion (Lemma 3.3). In each iteration, findAffected iterates over
all the neighbors of the current vertex (Line 10) and all the other operations have constant time
complexity.

updateAffected performs constant-time operations on each vertex in SA. findAffected
pushes at most one vertex onto SA in each iteration, and thus the worst-case time complexity of
updateAffected is linear in the number of affected vertices. �

Remark 2. In the worst case, all vertices in the graph are affected by an edge insertion and then
findAffected performs at most n iterations and visits all edges twice. Therefore, the worst-case
time complexity of Algorithm 3 is O (n +m).

3.1.3 u and v Both Matched. To settle the final case, we show (i) that the affected vertices are
covered by two alternating paths Pv and Pu and then (ii) that the matching M (f ) computed by
Algorithm 3 equals M ′.

Lemma 3.8. Let {u,v} � E be a newly inserted edge such that e ∈ M ′. If both u and v are matched

in M , then all the vertices affected by the insertion of e are connected by two simple alternating paths

Pv and Pu with decreasing edge weights that start fromv and u, respectively, and that alternate edges

in M ′\M and edges in M\M ′.

Proof. We proceed similarly as in Lemma 3.3. As shown in Figure 2(b), e ∈ M ′\M is the
first edge for both Pv and Pu . Thus, Equation (2) is violated for both x1 = suitor (i ) (u) and
y1 = suitor (i ) (v ) (due to the matching condition, x1 � y1). Consequently, the edges e1,u = {u,x1}
and e1,v = {v,y1} are removed from M (i ) , which implies that e1,u , e1,v ∈ M\M ′. Now let x2 and
y2 be the two vertices (if any) that satisfy Equation (2) for x1 and y1, respectively, in G ′. Clearly,
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we have that {x1,x2}, {y1,y2} ∈ M ′\M . If x2 and/or y2 are matched in M , then we can apply recur-
sively to their matching partners the same logic as we did with x1 and y1. Hence, Pv and Pu are
constructed exactly as described in Lemma 3.3 and thus they are both simple and have decreasing
edge weights. �

In the following, we show that the vertices along Pv and Pu are computed in the two iterations
of Algorithm 3. A crucial observation is that our dynamic algorithm computes one alternating
path at a time—Pu is computed after Pv . Therefore, when a new partner vertex for cur is found
while computing Pv (i.e., in findAffected(v )), this might not be the actual vertex that satisfies
Equation (2) for cur in G ′, because it is computed without considering the affected vertices in
Pu —they are yet to be computed. If this is the case, then it results in a wrong computation of
Pv and thus, immediately after the first iteration of Algorithm 3, some of the vertices covered by
findAffected(v ) are in a “wrong state,” i.e., Equation (2) is locally satisfied for them, but not for
all the vertices inG ′. However, we show later that, in this case, the second iteration of Algorithm 3
not only updates the affected vertices in Pu but also corrects the vertices that are in a wrong state,
so that eventually all vertices in G ′ fulfill Equation (2) and thus M (f ) = M ′. For this purpose, we
expand our notation by denoting the values of the variables of Suitor and Pv immediately after
the first iteration of Algorithm 3 with superscript (ii ) .

Clearly, if in P (ii )
v there are no vertices in a wrong state, then P (ii )

v = Pv and Pu is computed
exactly in the same way as Pv (as described in Section 3.1.2) and no further analysis is required.

Otherwise, the two paths intersect: let yi be the last vertex in Pu before Pu intersects P (ii )
v and

let x j be the vertex in P (ii )
v adjacent to yi (e.g., vertices x5 and y5 in Figure 3(b)). We observe that

an intersection always happens when findAffected(u) selects a vertex in P (ii )
v as new matching

partner for the current vertexyi in Pu . Therefore,yi is always a downgraded vertex and x j satisfies

Equation (2) for yi in G ′. Depending on the position of x j in P (ii )
v , we identify three possible cases

and treat them separately: (i) x j is downgraded and it is the last vertex in P (ii )
v (as in Figure 3(b)),

(ii) x j is downgraded and internal in P (ii )
v (as in Figure 3(c)), and (iii) x j is upgraded (as in

Figure 3(d)).

Case (i)—x j is downgraded and it is the last vertex in P (ii )
v : In this case (see Figure 3(b)), x j is free in

M (ii ) , because suitor (ii ) (yi ) = yi−1 and no other vertex in N ′(x j ) satisfies the condition in Line 11
of findAffected(v ) for x j . Hence, x j is in a wrong state, because it is not matched with yi , its
actual matching partner in M ′. The wrong state of x j is corrected by findAffected(u): when Pu

reaches yi , suitor
(f ) (x j ) and ws (f ) (x j ) are set to yi and w ′(x j ,yi ), respectively. Also, x j is pushed

onto SA, so that yi will eventually be matched with x j in updateAffected.

Case (ii)—x j is downgraded and it is internal in Pu : Here x j is in a wrong state for the same

reason as in case (i). The main difference (see Figure 3(c)) is that P (ii )
v does not finish in x j , because

there exists a vertex partner = x j+1 ∈ N ′(x j ) that satisfies the conditions in Lines 11 and 15 in

findAffected(v ). Thus, all the vertices in P (ii )
v after x j are in a wrong state as well, because they

are not affected, but their matching partner is updated by Algorithm 3. However, in the following
lemma, we show that the second iteration of the algorithm matches x j to its matching partner in

M ′ and restores the original matching partners of the vertices in P (ii )
v after x j .

Lemma 3.9. The second iteration of Algorithm 3 matches x j with its matching partner in M ′ and

restores the original matching partners of the vertices in P (ii )
v after x j .

Proof. As in case (i), x j fulfills Equation (2) for yi and, once findAffected(u) reaches yi , it

matches x j to yi . Recall that the vertices in P (ii )
v after x j are in a wrong state in M (ii ) , because
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Fig. 3. Examples of intersecting alternating paths computed by Algorithm 3 to update the matching after
the insertion of an edge {u,v}. Figure 3(a) shows the status of the affected vertices after the computation of

P
(ii )
v and before the computation of Pu . Figures 3(b), (c), and (d) show the three possible cases of intersection

between P
(ii )
v and Pu . Dashed and solid edges have the same meaning as in Figure 2, dotted edges are in

M (ii )\M (f ) , dash-dotted edges are in M (f )\M (ii ) .

their matching has been updated, although they are not affected by the edge insertion. Hence, we
need to show that for these vertices, findAffected(u) restores the matching partner they have
in M—i.e., the same as in M ′, since they are not affected.

Let x j+1 be suitor (i ) (x j ); in the iteration where partner is x j , findAffected(u) keeps iterating
with cur = x j+1. Hereafter, findAffected(u) maintains the following invariant: cur is an up-

graded vertex in M (i ) and, if heaviest > ws (ii ) (partner ), then partner is the matching partner of
cur in M ; otherwise cur is free in M ′. Due to the properties of the alternating path, we have that,
in M (i ) , x j+1 is an upgraded vertex, because it is matched with x j and w ′(x j ,x j+1) > w ′(x j+1,x j+2).
In M ′, in turn, we have that x j+1 is either free or matched with another vertex x j+2. In the first
case, findAffected(u) stops at x j+1 and leaves it unmatched, because there is no other vertex in
N ′(xi+1) that satisfies Equation (2). Otherwise, we need to show that findAffected(u) selects x j+2

as matching partner for x j+1. From Lemma 3.8, the vertices on P (ii )
v and Pu before x j+1 satisfy Equa-

tion (2) and thus cannot be selected as partners for x j+1. Furthermore, x j+2 satisfies Equation (2)

for x j+1 in G ′, and it is downgraded in M (ii ) (hence w ′(x j+2, suitor
(ii ) (x j+2)) < w ′(xi+1,x j+2)),

which means that the conditions in Lines 11 and 15 hold. Also, the edge weights are decreasing

along P (ii )
v (Lemma 3.8), implying that no other neighbor of xi+1 in P (ii )

v satisfies Equation (2) for

x j+1 in G ′; hence, {xi+1,xi+2} ∈ M (f ) . The same applies to the remaining vertices in P (ii )
v . �

Case (iii)—x j is upgraded. In this case (see Figure 3(d)), we have that {x j−1,x j } ∈ M (ii ) and that

w ′(yi ,x j ) > w ′(x j−1,x j ) > w ′(x j ,x j+1). Thus, x j−1 is in a wrong state, because {yi ,x j } ∈ M (f ) ,
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whereas the remaining part of P (ii )
v from x j on is not necessarily wrong, because x j is upgraded

also in Pu . findAffected(u) corrects x j−1 by continuing the alternating path from it: once cur = yi

is matched with x j , in the next iteration of findAffected(u) we have that cur is x j−1. Let zj be
the vertex that satisfies Equation (2) for x j−1 in G ′ (e.g., z4 in Figure 3(d)). If no such vertex exists,

then x j−1 is free in M (f ) and findAffected(u) stops; otherwise Pu continues with zj .
We covered now all possible cases that can occur after an edge insertion. In the following lemma,

we generalize our results.

Proposition 3.10. After an edge insertion, Algorithm 3 computes M ′; its worst-case time complex-

ity is O (n +m).

Proof. The correctness of the resulting matching is shown for every possible case of edge in-
sertion in Sections 3.1.1 to 3.1.3. Concerning the worst-case time complexity, from Proposition 3.7
and Remark 2 it follows that the first iteration of Algorithm 3 has O (n +m) worst-case running
time. The same also holds for the second iteration: due to Lemma 3.8, Pu is simple, so that its length
is bounded by O (n), and therefore the worst-case time complexity of Algorithm 3 is O (n+m). �

Unfortunately, a bound using the number of affected vertices and their degrees as in
Proposition 3.7 is not possible here due to the vertices in a “wrong” state.

3.2 Edge Removals

We now address the case in which an edge {u,v} ∈ E is removed from G, i.e., G ′ = (V ,E\{u,v}).
Lemma 3.11. Let G ′ = (V ,E\e ) with e = {u,v} ∈ E. Then: u and v are affected⇔ e ∈ M .

Proof. We develop the proof w.l.o.g. for u, for v it is symmetric.
“⇐” If e ∈ M , then u is trivially affected, since suitor (i ) (u) = v � N ′(u); u thus violates Equa-

tion (2) in G ′.
“⇒” Let Y ⊆ N (u) be defined as in Lemma 3.1, i.e., as the set of neighbors y of u among which

Equation (2) selects suitor (u) as the vertexy with maximumw (u,y). Further, letY (v ) := Y\{v}. Let
us assume for sake of contradiction that e � M . Hence, suitor (i ) (u) = arg maxy∈Y w (u,y) � v and,

in G ′, this suitor does not change by having removed v from the neighborhood of u. Hence, we
have that suitor ′(u) = arg maxy∈Y (v ) w ′(u,y) = suitor (i ) (u), meaning that u is not affected, which
contradicts our hypothesis. �

Algorithm 4 shows our dynamic algorithm for edge removals. According to Lemma 3.11, Line 1
excludes all the removals where the removed edge e = {u,v} is not in M . Similar to edge insertions,
we show later that the vertices affected by an edge removal lie on two alternating paths that
start from u and v and that alternate edges in M ′\M with edges in M\M ′. If e ∈ M , then both
u and v are affected downgraded vertices for which we have to find a new partner. First, Lines 3
and 4 invalidate them. Then, as for edge insertions in Algorithm 3, the for loop in Line 5 uses
findAffected to compute the alternating paths of the affected vertices and to update the matching
partner of the upgraded vertices in the path. Then, it uses updateAffected to update the matching
for the downgraded vertices in the path.

Lemma 3.12. Let e = {u,v} ∈ M . If e is removed from G, then all the vertices affected by the

removal of e are connected by two simple alternating paths Pu and Pv with decreasing edge weights

that start from u and v , respectively, and that alternate edges in M ′\M and edges in M\M ′.

Proof. As we did in Lemma 3.8, we need to show that the construction of Pu and Pv is equivalent
to the construction of an alternating path that connects the vertices affected by an edge insertion
as described in Lemma 3.3. The only difference is that, after an edge removal, the alternating paths
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ALGORITHM 4: Dynamic Suitor algorithm for single-edge removals.

Input: Graph G = (V ,E), an edge (u,v ) ∈ E.
Output: New matching M (f ) on G ′.

1: if suitor (u) = v then � Check if u and v are matched together.
2: affected(x ) ← false ∀x ∈ V
3: suitor (u) ← null; suitor (v ) ← null
4: ws (u) ← 0; ws (v ) ← 0
5: for z ∈ 〈u,v〉 do

6: affected(z) ← true
7: SA ← findAffected(z)
8: updateAffected(SA)

9: M (f ) ← {{u,v} ∈ E s.t. (suitor (u) = v ) ∧ (suitor (v ) = u)}
10: return M (f )

start from a downgraded vertex rather than from an upgraded vertex. We develop our proof w.l.o.g.
for u, for v it is symmetric.

Due to Lemma 3.12, u is affected and downgraded. If there exists a vertex x1 that satisfies
Equation (2) for u in G ′, then x1 is upgraded and e1 = {u,x1} ∈ M ′\M ; otherwise, u remains
free inG ′ and it is the only vertex in Pu . Similarly, if x1 is matched in M with a vertex x2, then x2 is
affected and downgraded, e2 = {x1,x2} ∈ M\M ′, and we can apply to x2 the same logic we applied
tou; otherwise, x1 is free inG and Pu has only one edge e1. Thus, as in Lemma 3.3, the resulting path
Pu alternates edges in M ′\M and edges in M\M ′ as well as downgraded and upgraded vertices. �

Thus, the vertices affected by an edge removal are covered by alternating paths as the ones
shown in Figure 2, with the difference that the solid lines represent edges in M\M ′ and the dashed
lines represent edges in M ′\M .

Proposition 3.13. After Algorithm 4 finishes, the resulting matching M (f ) equals M ′ in G ′.

Proof. Algorithm 4 works analogously to Algorithm 3, namely, it uses findAffected and
updateAffected to find the affected vertices along an alternating path and to compute their
suitor (f ) (·) and ws (f ) (·). From Lemma 3.12, we know that the vertices affected by an edge re-
moval are covered by two alternating paths as described in Lemma 3.3. Thus, the correctness of
Algorithm 4 follows from the correctness of Algorithm 3. �

Proposition 3.14. The worst-case running time of Algorithm 4 is O (n +m).

As argued in Proposition 3.13, Algorithm 4 works analogously to Algorithm 3. Thus, they have
the same worst-case time complexity O (n +m) (also see Proposition 3.10).

3.3 Multiple-edge Updates

Our dynamic algorithms for single-edge updates can be generalized to batches of edge updates. The
main idea is to run the algorithms for single-edge updates multiple times on the updated graph
G ′. When doing this, we might modify the suitor and ws variables multiple times. Thus, in this
section, we use superscript [i] to denote the values of these variables after we ran the algorithm
for single-edge updates i times. Hence, if the total number of updates in the batch is b, then [b] is
equivalent to (f ) .

Note that the crucial difference to an algorithm that updates the matching after every single-
edge insertion is that our algorithm runs directly on the graph G ′ that already includes a batch B
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ALGORITHM 5: Dynamic Suitor algorithm for a batch of edge insertions.

Input: Graph G ′ = (V ,E ∪ B), batch of edge insertions B = {{u,v} s.t. {u,v} � E}.
Output: New matching M (f ) on G ′.

1: affected(u) ← false ∀u ∈ V
2: i ← 0
3: suitor [i] (u) ← suitor (i ) (u) ∀ u ∈ V
4: ws[i] (u) ← ws (i ) (u) ∀ u ∈ V
5: for {u,v} ∈ B do

6: if w ′(u,v ) > max{w ′(u, suitor [i] (u)),w ′(v, suitor [i] (v ))} then

7: for z ∈ 〈u,v〉 do

8: affected(z) ← true
9: SA ← findAffectedB (z) � Edge weights in Pz must be decreasing as described

in Section 3.3.1.
10: updateAffected(SA\{suitor [i] (z)})
11: i ← i + 1
12: M (f ) ← {{u,v} ∈ E s.t. (suitor (u) = v ) ∧ (suitor (v ) = u)}
13: return M (f )

of edge updates. Thus, the intermediate matching computed by our algorithm after i < |B | = b
iterations is not necessarily the matching that Suitor computes on the initial graph with the first
i edge updates in the batch. As we explain in Sections 3.3.1 and 3.3.2, this allows our algorithm to
update vertices affected by different edge updates in the same iteration; albeit this does now lower
the time complexity, it results in better practical performances (see Section 4.3.3).

3.3.1 Multiple-edge Insertions. Algorithm 5 shows our dynamic algorithm to handle a batch
B = {{u,v} s.t. {u,v} � E} of edge insertions, which essentially applies Algorithm 3 to every indi-
vidual edge in B. For every edge e = {u,v} ∈ B, Algorithm 5 checks if e ∈ M [i+1] (Line 6) and, if so,
it computes the values of suitor [i] and ws[i] of the vertices in G ′ affected by the insertion of e as
done by Algorithm 3. As in Section 3.1, these vertices lie along two alternating paths Pu and Pv that
alternate edges in M [i+1]\M [i] and edges in M [i]\M [i+1]. In addition to their first edge, we allow Pu

and Pv to include further edges in B whose weight is lower compared to any other preceding edge
in the alternating path. This condition is necessary to ensure the correctness of the resulting match-
ing: if an alternating path does not have decreasing edge weights, this could result in violations
of Equation (2) for some vertices after Algorithm 5 finishes. Furthermore, allowing the alternating
paths to include more than one edge in B makes our batch-dynamic algorithm more competitive
in practice than an algorithm that only handles single-edge insertions (see Section 4.3.3).

Remark 3. Let P be an alternating path computed by findAffected in the ith iteration of
Algorithm 5. If the edge weights of P are not decreasing, then Equation (2) could be violated for
some vertices in M (f ) .

Figure 4 shows a simple example when such a violation occurs. Let us assume that B =
{{u,v}, {y3,y4}}, that Algorithm 5 is computing Pu with findAffected(u), and that {y3,y4} is yet
to be processed by Algorithm 5 in the loop in Line 5. Once Pu reaches y5 (by adding {y4,y5} ∈ B),
y5 cannot choose y1 as matching partner, because y1 is already in Pu , and thus findAffected
marked it as affected and does not consider it as a potential matching partner for y5 (see Line 11
in Algorithm 1). Thus, Equation (2) is violated for y5 and y1; further, updateAffected matches
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Fig. 4. Example of alternating path (including edge weights) with non-decreasing edge weights where Equa-
tion (2) is violated for y5. Thick solid edges are in B, solid edges are in M[i+1]\M[i], and dashed edges are in
M[i]\M[i+1]. The dash-dotted edge shows the violation: assuming that y1 satisfies Equation (2) for y5, find-
Affected ignores it, because when cur is y5, y1 is marked as affected and thus not considered as a potential
partner for y5 (see Line 15).

togethery3 andy4, thus the next iteration of Algorithm 5 does not have any effect and the violation
of Equation (2) remains in M (f ) .

Consequently, in case of a batch of edge insertions, we enforce findAffected to discard heavier
edges than the ones that are already part of the alternating path and, to distinguish it from the
function in Algorithm 1, we denote it as findAffectedB (Algorithm 11, Appendix A.3). As we
prove in Lemma 3.15, this guarantees that, for every vertex x in an alternating path computed in
the ith iteration of Algorithm 5, if suitor [i+1] (x ) does not satisfy Equation (2) in M [i+1], then the
vertex y that satisfies Equation (2) for x in M [i+1] is such that {x ,y} ∈ B and {x ,y} is yet to be
processed by Algorithm 5. Hence, once Algorithm 5 finishes, all vertices inG ′ satisfy Equation (2),
and thus the resulting matching M (f ) (i.e., M [b]) equals M ′.

Lemma 3.15. Let P be an alternating path computed in the i-th iteration of Algorithm 5. For every

vertex x ∈ P such that suitor [i+1] (x ) does not satisfy Equation (2) in M [i+1] (if any), let y be the

vertex that satisfies Equation (2) in M [i+1] for x . Then {x ,y} is in B and it is yet to be processed by

Algorithm 5 in the for loop in Line 5.

Proof. We first show that {x ,y} ∈ B: in case of single-edge insertions, as shown in Lemma 3.8,
the resulting alternating paths have always decreasing edge weights. Therefore, an alternating
path computed by findAffected (Algorithm 1) can have non-decreasing edge weights only if
multiple edges are added toG at once—as shown in the example in Figure 4; such edges are excluded
by findAffectedB in Algorithm 5 (Line 9). Thus, suitor [i+1] (x ) does not satisfy Equation (2) in
M [i+1] only if {x ,y} is in B and it is discarded by findAffectedB .

Further, if y satisfies Equation (2) for x in M [i+1], then we have that w ′(x ,y) > max{w ′(x ,
suitor [i] (x )),w ′(y, suitor [i] (y))}. Thus, if {x ,y}was processed by Algorithm 5 in an earlier iteration
than i , then findAffectedB would have matched together x and y. Since {x ,y} � M [i], {x ,y} is
yet to be processed by Algorithm 5. �

3.3.2 Multiple-edge Removals. As shown in Algorithm 6, a batch of edge removals B ⊆ E is
handled similarly to batch insertions, namely, we apply Algorithm 4 to every edge in B. For every
vertex z adjacent to the current edge e = {u,v} ∈ B, we check in Line 7 if suitor [i] (z) violates
Equation (2) in M [i] due to the removal of e . If so, then we update it in Lines 8–12 as done in
Algorithm 4. Otherwise, z has already been updated in a previous iteration of the algorithm and
no further action needs to be done.

Proposition 3.16. Let P be an alternating path computed in the ith iteration of the outermost

for-loop in Algorithm 6. Every vertex x ∈ P satisfies Equation (2) in G ′.
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ALGORITHM 6: Dynamic Suitor algorithm for a batch of edge removals.

Input: Graph G ′ = (V ,E ∪ B), batch of edge removals B ⊆ E.
Output: New matching M (f ) on G ′.

1: affected(u) ← false ∀u ∈ V
2: i ← 0
3: suitor [i] (u) ← suitor (i ) (u) ∀ u ∈ V
4: ws[i] (u) ← ws (i ) (u) ∀ u ∈ V
5: for {u,v} ∈ B do

6: for z ∈ 〈u,v〉 do

7: if suitor [i] (z) = {u,v}\{z} then

8: suitor [i+1] (z) ← null
9: ws[i+1] (z) ← 0

10: affected(z) ← true
11: SA ← findAffected(z)
12: updateAffected(SA)

13: i ← i + 1
14: M (f ) ← {{u,v} ∈ E s.t. (suitor (u) = v ) ∧ (suitor (v ) = u)}
15: return M (f )

Proof. Conversely to batches of edge insertions, in case of a batch of edge removals, all the
alternating paths computed in Lines 11 and 12 of Algorithm 6 have decreasing edge weights, be-
cause no edge is added to the graph. The new matching partner of every vertex x ∈ P is chosen
by findAffected according to Equation (2) and thus once Algorithm 6 finishes, all vertices in G ′

satisfy Equation (2). �

From Proposition 3.16 it follows that, after Algorithm 6 finishes, M (f ) equals M ′. Note that an
alternating path computed by Algorithm 6 can update vertices adjacent to other removed edges in
B; similarly to Algorithm 5, this does not improve the worst-case time complexity of the algorithm
but, as reported in Section 4.3.3, makes it faster in practice.

We can combine Algorithms 5 and 6 to handle batches with both edge insertions and re-
movals, with the only difference that we have to use findAffectedB instead of findAffected in
Algorithm 6. In this way, we guarantee that every alternating path P computed by our algorithm
has decreasing edge weights and thus, as shown in Lemma 3.15, for each vertex x ∈ P either
suitor [i] (x ) satisfies Equation (2) in G ′ or x is adjacent to an edge update in B that is yet to be
processed by our algorithm.

Corollary 3.17. Let B be a batch with |B | = b edge updates. Our dynamic algorithms compute

M ′ in O (b (n +m)) worst-case time complexity.

As shown in Propositions 3.10 and 3.14, the worst-case time complexity of Algorithms 3 and 4
is O (n +m). Thus, after a batch with b edge updates, M (f ) = M ′ is computed in O (b (n +m)) time.

3.4 Implementation

We implement SortSuitor, i.e., the variant of Suitor where the adjacency “list” of every vertex is
sorted by decreasing edge weight so that every vertex considers a neighbor as matching partner
at most once [40]. The adjacency lists are implemented with a dynamic array of dynamic arrays. If
the additional preprocessing cost is not taken into account, then Manne and Halappanavar show
empirically that SortSuitor is faster than Suitor. We implement this by keeping, for each vertex
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u in the graph, an additional index in the adjacency list of u that indicates the next vertex in the
adjacency list of u to be considered as potential matching partner for u. Such indices are stored
in the array nextCandidate; they are incremented in each iteration of the for loop in Line 12 in
Algorithm 11 (Appendix A.3), which is interrupted as soon as a new matching partner is found
(Line 19).

On dynamic graphs, we need to update the adjacency lists and nextCandidate before running
both SortSuitor and our dynamic algorithm. In case of b edge insertions, we insert the new edges
into the sorted edge lists. Under the reasonable assumption that the newly added edges are inserted
at the back of every adjacency list, we sort the new edges and we merge the first (already sorted)
part of the adjacency list with the second one. With this strategy the adjacency list of each vertex
x ∈ V can be sorted in O (deg(x ) + δx logδx ), where δx is the number of edges in B adjacent to
x . When rerunning SortSuitor, for each vertex in G ′, nextCandidate is updated to the first (i.e.,
heaviest) edge in the adjacency list. In our dynamic algorithm, in turn, for each vertex u adjacent
to an edge insertion, nextCandidate[u] is updated so that in G ′ it indicates the same edge as
in G. This prevents findAffectedB from computing paths with non-decreasing edge weight (as
required by Algorithm 5), because every vertex x in an alternating path, when seeking a new
partner, can only consider edges that are lighter than ws[i] (x ). Newly inserted edges adjacent to
x and heavier than ws[i] (x ) are taken into account by updating the neighbor index of the current
vertex x to the first (i.e., heaviest) edge in the adjacency list of x .

In case of b edge removals, the adjacency lists are updated with the same time complexity as
edge insertions—for each vertex x ∈ V , the index of an edge in B adjacent to x can be found in
O (log deg(x )) time and all removed edges adjacent to x can be deleted from the adjacency list in
O (deg(x )) time. Concerning the neighbor indices, in SortSuitor they are updated to the first edge
in the adjacency list, whereas in our dynamic algorithm this is done only for the vertices adjacent
to a removed edge.

4 EXPERIMENTS

We conduct experiments to compare the performance of our dynamic algorithms against the static
Suitor algorithm in computing an MWM in fully dynamic graphs with single or multiple-edge
updates.

4.1 Settings

All algorithms are implemented in C++, and they use the NetworKit [56] graph APIs. All experi-
ments are conducted on a Linux machine equipped with 192 GB of RAM and an Intel Xeon Gold
6126 CPU with two sockets, 12 cores each (24 cores in total) at 2.6 GHz. Because we want to eval-
uate the algorithmic speedup (i.e., ratio between the sequential running times) of our dynamic
algorithms against Suitor, in all our experiments, we only use one core. All the experiments are
managed by the SimexPal [2] software to ensure reproducibility; they are executed on both real-
world graphs and randomly generated instances—see Tables 1 and 2 in Appendix B. All the com-
plex networks in Table 1 are downloaded from the KONECT [36] repository; the road networks, in
turn, are downloaded from OpenStreetMap [49]. From the road networks, we build the pedestrian
routing graph using RoutingKit,4 and choose the geographic distance as weight function. Further
weighted networks are downloaded from SuiteSparse.5 Synthetic networks are generated using the
R-MAT [13] and the random hyperbolic6 models. For the R-MAT model, we use the Graph500 [46]

4https://github.com/RoutingKit/RoutingKit.
5https://sparse.tamu.edu/.
6The random hyperbolic model generates networks with a power-law degree distribution.
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Fig. 5. Violin plots showing the number of affected vertices in the real-world networks of Table 1 in
Appendix B. For complex networks, edge weights are randomly generated using a normal and an exponential
distribution.

parameter setting (i.e., edge factor 16, a = 0.57, b = 0.19, c = 0.19, and d = 0.05), and the gen-
erator from Khorasani et al. [34]. For the random hyperbolic model, we use the generator from
von Looz et al. [58] within NetworKit; we set the average degree to 20, and the exponent of the
power-law distribution to 3. Detailed statistics about synthetic networks are reported in Table 2 in
Appendix B. Experiments on synthetic networks are repeated five times, in each one, we generate
the network using a different random seed—this results in a different graph for every experiment.

Because the real-world complex networks and the synthetic networks are initially unweighted,
we generate edge weights using a normal distribution with mean 1 and standard deviation 0.5, and
an exponential distribution with parameter 1. Experiments with random edge weights are repeated
five times; in each one we generate random weights using a different random seed.

For each tested graph, we either add or remove a batch of edges selected uniformly at random
and run the dynamic algorithm after each batch update. We repeat this process 100 times. For batch
insertions, we first remove a random batch of edges from the original graph and re-add them back,
whereas for removals, we first add a batch of edges and then remove them. Therefore, after every
batch of graph updates the resulting graph G ′ is always the same, and thus we need to run the
static Suitor algorithm only once on G ′, regardless of the batch size.

4.2 Affected Vertices

We first analyze how many vertices are affected by a batch of edge updates according to
Definition 1. The number of affected vertices is summarized in Figure 5 for real-world networks
and in Figure 6 for synthetic networks (detailed results are reported in Tables 3 to 10 in Appen-
dix C.1). In road networks, the number of affected vertices is on average moderately higher than
the batch size for both edge insertions and removals; intuitively, a random edge update is more
likely to update the matching of its adjacent vertices if their degree is low, and road networks are
the ones with lowest average degree—see Appendix B. Also, as explained in Section 3, updating
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Fig. 6. Violin plots showing the number of affected vertices in the synthetic networks of Table 2 in Appendix B.
Edge weights are randomly generated using a normal and an exponential distribution.

the matching of two vertices might also impact the matching of other vertices, which explains why
in road networks we have an higher number of affected vertices w.r.t. the batch size.

Regarding complex networks (both real-world and synthetic), their average degree is higher
than road networks and, as expected, the number of affected vertices is lower—it is on average one
order of magnitude smaller than the batch size. Results do not change notably between the two
distributions of edge weights.

4.3 Speedups on the Static Algorithm

We now evaluate the algorithmic speedup of our dynamic Suitor algorithm against a static recom-
putation, both on real-world and on synthetic networks. Because both the dynamic and the static
algorithm need to sort the adjacency lists of the vertices after a batch of edge updates, we discard
this step in the speedup computation (i.e., we only compare the running time of both algorithms
after the adjacency lists have been sorted). As shown in Figure 9 in Appendix C.4, in terms of run-
ning time this preprocessing step is almost negligible as it always takes less than 6%—but mostly
less than 2%—of the overall running time of the static Suitor algorithm.

Detailed speedup results are reported in Tables 11 to 18 in Appendix C.2. Running times in
seconds are reported in Tables 19 to 22 in Appendix C.3.

4.3.1 Speedups on Real-world Networks. Figure 7(a) summarizes the speedup on road networks.
For single-edge insertions and removals, the dynamic algorithm is on average 5 orders of mag-
nitude faster than a static recomputation (geometric mean). As we consider larger batches, the
number of affected vertices increases, and thus the dynamic algorithm becomes slower. Neverthe-
less, the geometric mean of the speedup is still higher than 103 for batches with up to 103 edge
updates. For batches of 104 edge insertions and removals, the geometric mean of the speedup is
still 196.1× and 310.4×, respectively.
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Fig. 7. Violin plots showing the speedups of the dynamic algorithm over a static recomputation over the
real-world networks of Table 1 in Appendix B. For complex networks, edge weights are randomly generated
using a normal and an exponential distribution.

Concerning complex networks, our dynamic algorithm performs even better: the geometric
mean of the speedup is always greater than 106 for single-edge updates, and greater than 104 for
batches of up to 103 edge edge updates (Figures 7(b) and 7(c)). For batches of 104 edge updates with
edge weights generated using a normal distribution, the dynamic algorithm is on average 1,362.1×
and 2,135.7× faster than a static recomputation, respectively; using an exponential distribution to
generate edge weights yields similar speedups: 1,352.5× for edge insertions and 2,114.1× for edge
removals.

As discussed in Section 4.2, better speedups on complex networks can be explained by the fact
that the number of affected vertices on complex networks are on average lower compared to road
networks, and therefore the dynamic algorithm needs to perform less work. Further, these results
show that the worst-case time complexity of our algorithms is very pessimistic compared to their
practical performance, and thus that the length of the alternating paths described in Section 3—
which determine the running time of our algorithms—is, in practice, usually only a small fraction
of the number of vertices in the graph.

Our speedup results are comparable to the ones achieved by Henzinger et al. for MCM [29]:
their dynamic algorithms are roughly 105× faster than a static recomputation with an optimal

MCM algorithm. Note that they compare against an exact algorithm, which is speed-wise a weaker
baseline than an approximate algorithm. This advantage, however, may be compensated by the fact
that their comparisons are run on rather small networks (25K vertices), where higher speedups are
more difficult to obtain.

4.3.2 Speedups on Synthetic Networks. Results on R-MAT and random hyperbolic networks are
shown in Figures 8(a) and 8(b), respectively. Because speedups results on synthetic networks are
not subject to substantial variation, we report the geometric mean of the speedups in bar plots
instead of violin plots. Compared to the static Suitor algorithm, for both models and for both
distributions of the edge weights, our dynamic algorithm is 5 to 6 orders of magnitude faster on
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Fig. 8. Geometric mean of the speedups of the dynamic algorithm over a static recomputation over the
synthetic networks of of Table 2 in Appendix B. The considered graphs have 2s vertices, where s is the scale
shown in the legend. Edge weights are randomly generated using a normal and an exponential distribution.

single-edge updates, and 3 to 5 orders of magnitude faster on batches with up to 103 edge updates.
Concerning batches of 104 edge updates, the speedup for edge insertions and removals on R-MAT
networks is always at least 2,228.7× and 3,719.2×, respectively, and always at least 550.5× and
811.6×, respectively, on random hyperbolic networks.

From Figures 8(a) and 8(b), we can also see that, for every batch size, the speedups increase with
the size of the networks. A possible interpretation of this result is that, as explained in Section 4.3.1,
even though our algorithms have a worst-case time complexity ofO (n+m) for a single-edge update
(see Sections 3.1 and 3.2), in a real-world scenario this is too pessimistic and the algorithm is instead
much faster. As we have shown in Section 4.2, in complex networks edge updates either do not
change the matching of any vertex in the graph (and thus they are handled in constant time), or
they affect a very small number of vertices, leading to short processing times.

4.3.3 Speedup of Batch Updates on Single Updates. Finally, we measure the speedup of our
batch-dynamic algorithm against the more naïve approach of handling the edge updates in the
batch one by one. We perform these experiments for batches of size b = 100 edge updates. As
described in Section 3.3, although the worst-case time complexity of the two algorithms is the same,
in a real-world scenario, we observe that the batch-dynamic algorithm is faster than the naïve
one. On road networks (Table 1, Appendix B), the batch-dynamic algorithm is on average 4.3×
and 5.3× faster than the naïve one (geometric mean) on batches of edge insertions and removals,
respectively. Regarding complex networks (Table 1, Appendix B), when edge weights are generated
with a normal distribution, the speedups on batches of edge insertions and removals are 7.7× and
10.2×, respectively; the results for edge weights drawn from an exponential distribution are similar:
7.5× and 10.7× for batches of edge insertions and removals, respectively.
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5 CONCLUSIONS

We have developed and implemented a batch-dynamic 1/2-approximation algorithm for MWM
based on the Suitor algorithm by Manne and Halappanavar [40]. Our dynamic algorithm updates
the matching results from an initial static computation quickly after a batch of edge updates, lead-
ing to results that are equivalent to the static algorithm’s. Our experimental data show that it can
handle in less than a millisecond batch sizes of up to 104, thus providing real-time capabilities.
Compared to a static recomputation, our dynamic algorithm is 2 to 6 orders of magnitude faster,
depending on the input network and on the batch size; further, our speedup results are comparable
to the ones achieved by Henzinger et al. for the related dynamic MCM problem [29].

The main reason of such high speedups is that the running time of our dynamic algorithms is
determined by the length of the alternating paths. In the worst case, these paths can contain all
vertices in the graph. However, as explained in Section 4.3, in practice these paths are much shorter.
Conversely, even in a best-case scenario, the complexity of the static Suitor algorithm is linear in
the size of the input network.

A possible extension of our dynamic algorithms left for future work is to improve the quality of
the solution by adapting the two-round approach [40] to dynamic graphs.

APPENDICES

A PSEUDOCODES

Here, we show the pseudocode of the Suitor algorithm by Manne and Halappanavar [40]: the
recursive Suitor is shown in Algorithms 7 and 8 (Appendix A.1) while the iterative Suitor is shown
in Algorithms 9 and 10 (Appendix A.2). Further, in Appendix A.3, we report the findAffectedB

function.

A.1 Recursive Suitor

ALGORITHM 7: Recursive findSuitor function.

1: function findSuitor(u)
2: p (u) ← arg maxv ∈N (u ) {w (u,v ) : w (u,v ) > w (v, suitor (v )}
3: if p (u) � null then

4: y ← suitor (u)
5: suitor (p (u)) ← u
6: if y � null then

7: findSuitor (y)

ALGORITHM 8: Static recursive Suitor algorithm [40].

Input: Graph G = (V ,E).

1: for each u ∈ V do

2: p (u) ← null
3: suitor (u) ← null

4: for each u ∈ V do

5: findSuitor(u)
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A.2 Iterative Suitor

ALGORITHM 9: Iterative findSuitor function.

1: function findSuitor(u)
2: cur ← u
3: done ← false
4: repeat

5: partner ← suitor (cur )
6: heaviest ← ws (cur )
7: for each v ∈ N (cur ) do

8: if w (cur ,v ) > heaviest and w (cur ,v ) > ws (v ) then

9: partner ← v
10: heaviest ← w (cur ,v )

11: done ← true
12: if heaviest > 0 then

13: y ← suitor (partner )
14: suitor (partner ) ← cur
15: ws (partner ) ← heaviest
16: if y � null then

17: cur ← y
18: done ← false
19: until done is true

ALGORITHM 10: Static iterative Suitor algorithm [40].

1: for each u ∈ V do

2: suitor (u) ← null
3: ws (u) ← 0

4: for each u ∈ V do

5: findSuitor (u)
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A.3 Function findAffected for Batches of Edge Updates

ALGORITHM 11: Generalization of the findAffected function (Algorithm 1, Section 3) for
batches of edge updates.

1: function findAffected(z)
2: Input: Affected vertex z
3: Output: Stack of affected vertices
4: SA ← empty stack � Stack of affected vertices.
5: nextCandidate[z]← 0
6: done ← false
7: cur ← z
8: repeat

9: partner ← suitor (cur )
10: heaviest ← ws (cur )
11: f ound ← false
12: for i ← nextCandidate[cur ] to deg(cur ) do

13: x ← adjList[cur ][i] � i-th neighbor in the adjacency list of vertex cur .
14: nextCandidate[cur ]← i + 1
15: if not affected(x ) and w (cur ,x ) > heaviest and w (cur ,x ) > ws (x ) then

16: partner ← x
17: heaviest ← w (cur ,x )
18: f ound ← true
19: break

20: done ← true
21: if f ound then

22: y ← suitor (partner )
23: suitor (partner ) ← cur
24: ws (partner ) ← heaviest
25: SA.push(partner )
26: affected(partner ) ← true
27: if y � null then

28: suitor (y) ← null
29: ws (y) ← 0
30: affected(y) ← true
31: cur ← y
32: done ← false
33: else

34: affected(cur ) ← false

35: until done
36: return SA
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B INSTANCE STATISTICS

Tables 1 and 2 reports detailed statistics about the real-world and synthetic instances used in our
experiments.

Table 1. Real-world Instances used in the Experiments

Complex Networks

Graph ID |V | |E | Avg. Deg.

hyves hy 1,402,673 2,777,419 4.0
com-youtube cy 1,134,890 2,987,624 5.3
flixster fx 2,523,386 7,918,801 6.3
youtube-u-growth yg 3,223,589 9,375,374 5.8
flickr-growth fg 2,302,925 22,838,276 19.8
livejournal-links ll 5,204,176 48,709,621 18.7
soc-LiveJournal1 lj 4,846,609 68,475,391 14.1
orkut-links ol 3,072,441 117,184,899 76.3
dimacs10-uk-2002 di 18,483,186 261,787,258 28.3
wikipedia_link_en we 13,593,032 437,167,958 32.2
twitter tw 41,652,230 1,468,364,884 35.3
twitter_mpi tm 52,579,682 1,963,263,507 37.3
friendster fs 68,349,466 2,586,147,869 37.8

SuiteSparse Networks

Graph ID |V | |E | Avg. Deg.

human_gene2 hg 14,340 9,027,024 1,259.0
mouse_gene mg 45,101 14,461,095 641.3
mawi_201512012345 m2 18,571,154 19,020,160 2.0
GAP-road gr 23,947,347 28,854,312 2.4
mawi_201512020000 m3 35,991,342 37,242,710 2.1
cage15 cg 5,154,859 47,022,346 18.2
mawi_201512020030 m1 68,863,315 71,707,480 2.1
GAP-twitter gt 61,578,415 1,202,513,046 39.1
GAP-web gw 50,636,151 1,810,063,330 71.5

Road Networks

Graph ID |V | |E | Avg. Deg.

belgium be 1,216,902 1,563,642 2.6
czech-republic cz 1,713,252 2,181,152 2.5
finland fi 2,177,796 2,639,775 2.4
austria au 2,621,866 3,082,590 2.4
canada ca 3,795,591 4,780,472 2.5
poland po 5,567,642 7,200,814 2.6
italy it 6,339,229 7,818,183 2.5
great-britain gb 7,108,301 8,358,289 2.4
france fr 11,063,911 13,785,539 2.5
russia ru 10,984,765 14,079,238 2.6
germany ge 15,918,055 20,266,409 2.5
dach da 20,207,259 25,398,909 2.5
africa af 23,975,266 31,044,959 2.6
us us 41,256,068 51,271,328 2.5
asia as 57,736,107 72,020,649 2.5

Hereafter, we will refer to every instance by its “ID.” For complex networks, edge weights are

randomly generated using either a normal or an exponential distribution.

Table 2. R-MAT and Random Hyperbolic Networks Used in the Experiments

R-MAT Networks

Graph |V | |E | Avg. Deg.

rmat-22 222 67,108,864 32.0
rmat-23 223 134,217,728 32.0
rmat-24 224 268,435,456 32.0

Random Hyperbolic Networks

Graph |V | |E |min |E |avg |E |max Avg. Deg.

hyp-22 222 41,876,800 41,951,095.8 42,013,293 20.0
hyp-23 223 83,705,169 83,830,659.2 83,928,747 20.0
hyp-24 224 167,562,625 167,697,480.2 167,902,689 20.0

Every network is generated five times with a different random seed. For a fixed number of vertices the random

hyperbolic generator [58] generates networks with different number of edges; thus, we report the minimum, the

average, and the maximum number of edges in the |E |min, |E |avg, and |E |max columns, respectively. Edge

weights are randomly generated using either a normal or an exponential distribution.
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C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Affected Vertices

Tables 3 to 8 report the average number of vertices affected by a batch of b = {1, . . . , 104} edge
insertions or edge removals on all the considered instances.

Table 3. Average Number of Affected Vertices in the Road Networks of Table 1 in Appendix B

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

be 1.2 12.0 113.5 1,143.7 12,598.5
cz 1.3 11.9 116.0 1,135.4 12,179.6
fi 0.9 10.2 109.9 1,121.2 11,983.8
au 0.8 11.3 116.2 1,156.7 12,236.6
ca 1.1 12.3 110.2 1,116.2 11,477.2
po 1.1 11.6 113.7 1,120.6 11,295.4
it 1.3 10.8 114.2 1,149.6 11,651.4
gb 1.0 11.1 116.0 1,150.1 11,726.8
fr 0.8 11.0 116.8 1,156.5 11,539.0
ru 1.2 11.3 112.0 1,096.9 11,117.6
ge 1.1 11.0 113.1 1,129.5 11,356.4
da 1.1 12.3 114.4 1,132.9 11,421.6
af 0.8 10.7 111.3 1,088.6 10,981.8
us 0.9 10.6 109.1 1,103.7 11,072.7
as 0.9 10.9 111.4 1,096.9 11,039.0

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

be 1.3 12.0 113.6 1,144.9 12,945.1
cz 1.5 11.9 116.2 1,135.9 12,383.4
fi 1.0 10.2 109.9 1,123.1 12,158.1
au 1.0 11.3 116.2 1,160.1 12,413.1
ca 1.3 12.3 110.2 1,120.9 11,564.0
po 1.3 11.6 113.7 1,121.8 11,388.3
it 1.6 10.8 114.2 1,149.2 11,697.5
gb 1.1 11.1 116.0 1,150.2 11,792.9
fr 0.9 11.0 116.9 1,158.3 11,592.1
ru 1.4 11.3 111.9 1,097.1 11,153.0
ge 1.1 11.0 113.1 1,129.5 11,383.1
da 1.3 12.3 114.4 1,132.9 11,439.9
af 0.9 10.7 111.3 1,088.4 10,998.5
us 1.0 10.6 109.1 1,103.2 11,081.2
as 1.1 10.9 111.4 1,096.9 11,043.5

Table 4. Average Number of Affected Vertices in the SuiteSparse Networks of Table 1 in Appendix B

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hg 0.0 0.1 1.3 9.2 97.7
mg 0.0 0.2 0.8 12.4 128.5
m2 0.1 0.4 5.0 55.0 556.8
gr 0.9 10.5 112.0 1,144.7 11,523.9
m3 0.1 0.6 5.3 47.3 462.3
cg 0.2 1.4 14.9 165.3 1,772.3
m1 0.1 0.4 4.5 43.4 405.4
gt 0.1 0.3 3.3 32.2 330.8
gw 0.0 0.2 3.9 35.9 348.4

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hg 0.0 0.1 1.3 9.2 98.8
mg 0.0 0.2 0.8 12.2 135.5
m2 0.1 0.4 5.0 55.1 557.3
gr 0.9 10.5 112.1 1,143.9 11,533.1
m3 0.1 0.6 5.3 47.3 462.5
cg 0.2 1.4 14.9 163.9 1,773.3
m1 0.1 0.4 4.5 43.4 405.1
gt 0.1 0.3 3.3 32.2 330.5
gw 0.0 0.2 3.9 35.9 348.3
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Table 5. Average Number of Affected Vertices in the Complex Networks of Table 1 in Appendix B

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.09 1.25 11.60 121.27 1,458.87
cy 0.24 2.57 24.97 252.53 2,745.08
fx 0.03 0.37 3.71 38.66 398.10
yg 0.29 2.42 23.59 238.19 2,437.38
fg 0.05 0.85 8.57 82.59 826.29
ll 0.14 1.65 16.12 157.23 1,587.56
lj 0.10 1.85 16.73 162.72 1,625.15
ol 0.11 0.82 8.17 75.39 761.71
di 0.09 0.74 7.36 75.44 745.72
we 0.01 0.53 4.80 48.77 483.54
tw 0.03 0.25 3.26 32.70 325.47
tm 0.03 0.26 3.13 29.73 297.10
fs 0.07 0.54 5.61 58.07 580.53

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.15 1.24 11.96 119.92 1,461.82
cy 0.31 2.70 24.65 249.34 2,734.40
fx 0.04 0.49 3.70 37.78 398.93
yg 0.19 2.52 24.55 238.09 2,431.13
fg 0.06 0.88 7.86 80.81 819.98
ll 0.15 1.43 16.23 156.64 1,586.20
lj 0.10 1.54 16.31 163.42 1,627.85
ol 0.04 0.77 7.42 77.20 758.17
di 0.06 0.71 7.60 76.17 745.27
we 0.00 0.44 5.05 48.32 484.18
tw 0.03 0.38 3.32 32.46 326.62
tm 0.01 0.35 2.82 29.07 301.16
fs 0.01 0.81 6.04 57.13 576.43

Edge weights are generated using a normal distribution.

Table 6. Average Number of Affected Vertices in the Complex Networks of Table 1 in Appendix B

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 1.08 12.28 121.90 1,462.90
cy 0.20 2.29 24.98 253.57 2,758.08
fx 0.05 0.41 3.96 38.35 400.75
yg 0.21 2.52 23.97 239.36 2,447.33
fg 0.05 0.78 8.09 81.13 827.56
ll 0.12 1.57 16.35 158.27 1,597.29
lj 0.16 1.99 16.77 162.35 1,637.20
ol 0.06 0.82 8.24 74.27 767.03
di 0.07 0.66 7.43 74.23 754.21
we 0.04 0.41 5.12 48.18 486.44
tw 0.02 0.25 3.34 32.67 329.47
tm 0.04 0.41 3.36 30.91 299.93
fs 0.08 0.74 5.74 58.48 585.62

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.10 1.16 11.88 121.57 1,465.79
cy 0.19 2.38 24.98 253.28 2,766.21
fx 0.05 0.34 3.74 38.19 398.68
yg 0.24 2.46 23.80 240.16 2,453.34
fg 0.04 0.85 7.95 81.96 830.43
ll 0.19 1.60 15.72 160.37 1,592.24
lj 0.17 1.81 16.88 162.95 1,636.81
ol 0.05 0.86 7.81 75.83 762.64
di 0.07 0.68 8.00 73.94 751.44
we 0.04 0.34 4.85 48.05 487.52
tw 0.05 0.35 3.19 32.34 327.00
tm 0.08 0.33 3.33 30.86 303.08
fs 0.09 0.69 5.90 59.63 585.80

Edge weights are generated using an exponential distribution.

Table 7. Average Number of Affected Vertices in R-MAT Networks (Table 2, Appendix B)

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.03 0.32 3.16 31.60 317.28
rmat-23 0.03 0.31 2.93 28.64 291.35
rmat-24 0.02 0.29 2.71 27.60 272.77

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.04 0.34 3.04 31.23 316.55
rmat-23 0.01 0.25 2.84 29.13 289.61
rmat-24 0.02 0.27 2.69 27.27 273.35

Edge weights are generated using a normal distribution.
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Table 8. Average Number of Affected Vertices in R-MAT Networks (Table 2, Appendix B)

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.03 0.31 3.32 31.71 318.74
rmat-23 0.03 0.26 3.02 28.79 292.93
rmat-24 0.02 0.29 2.69 27.20 273.99

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.03 0.31 3.23 31.63 318.52
rmat-23 0.04 0.26 2.87 28.98 292.65
rmat-24 0.04 0.24 2.77 27.43 274.55

Edge weights are generated using an exponential distribution.

Table 9. Average Number of Affected Vertices in Random Hyperbolic Networks (Table 2, Appendix B)

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.22 2.38 24.08 236.89 2,381.54
hyp-23 0.20 2.46 23.43 237.93 2,376.37
hyp-24 0.24 2.24 23.41 236.56 2,369.67

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.24 2.28 23.96 235.66 2,383.13
hyp-23 0.25 2.53 23.42 236.70 2,376.14
hyp-24 0.26 2.22 24.05 237.51 2,372.14

Edge weights are generated using a normal distribution.

Table 10. Average Number of Affected Vertices in Random Hyperbolic Networks (Table 2, Appendix B)

Edge insertions

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.21 2.49 24.15 238.28 2,396.69
hyp-23 0.20 2.27 23.98 238.23 2,388.64
hyp-24 0.19 2.38 23.53 238.20 2,387.47

Edge removals

Graph
Average #of affected vertices
b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.26 2.52 23.95 237.98 2,400.01
hyp-23 0.22 2.25 24.16 238.31 2,392.24
hyp-24 0.22 2.35 23.50 238.74 2,388.09

Edge weights are generated using an exponential distribution.
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C.2 Speedups

Tables 11 to 18 report the geometric mean of the speedups of the dynamic Suitor algorithm
over a static recomputation on the instances reported in Appendix B. Results are averaged over
100 batches with {1, . . . , 104} edge updates.

Table 11. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static
Recomputation on the Road Networks of Table 1

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

be 1.3 · 105 2.4 · 104 3.6 · 103 4.0 · 102 3.1 · 101

cz 1.4 · 105 3.4 · 104 5.0 · 103 5.6 · 102 4.5 · 101

fi 1.8 · 105 4.2 · 104 5.9 · 103 6.5 · 102 5.3 · 101

au 2.3 · 105 6.0 · 104 8.0 · 103 8.7 · 102 7.1 · 101

ca 3.1 · 105 6.1 · 104 1.0 · 104 9.9 · 102 8.4 · 101

po 3.8 · 105 1.1 · 105 1.7 · 104 1.8 · 103 1.5 · 102

it 4.8 · 105 1.2 · 105 1.8 · 104 1.9 · 103 1.7 · 102

gb 6.3 · 105 1.1 · 105 2.0 · 104 2.0 · 103 1.8 · 102

fr 9.8 · 105 1.9 · 105 2.9 · 104 3.4 · 103 3.1 · 102

ru 6.6 · 105 1.6 · 105 2.7 · 104 3.1 · 103 2.8 · 102

ge 1.4 · 106 2.7 · 105 4.4 · 104 5.0 · 103 4.5 · 102

da 1.4 · 106 3.0 · 105 5.1 · 104 6.4 · 103 5.7 · 102

af 1.6 · 106 2.8 · 105 4.7 · 104 5.5 · 103 5.1 · 102

us 2.4 · 106 4.7 · 105 7.1 · 104 9.0 · 103 8.7 · 102

as 3.8 · 106 6.0 · 105 9.4 · 104 1.3 · 104 1.2 · 103

geom. mean 6.0 · 105 1.3 · 105 2.0 · 104 2.2 · 103 2.0 · 102

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

be 1.5 · 105 3.0 · 104 4.2 · 103 4.9 · 102 4.3 · 101

cz 2.1 · 105 4.0 · 104 6.1 · 103 6.9 · 102 6.5 · 101

fi 2.4 · 105 4.9 · 104 7.6 · 103 8.4 · 102 7.7 · 101

au 3.6 · 105 7.1 · 104 9.8 · 103 1.1 · 103 1.0 · 102

ca 3.4 · 105 7.3 · 104 1.2 · 104 1.4 · 103 1.4 · 102

po 4.6 · 105 1.3 · 105 2.1 · 104 2.4 · 103 2.4 · 102

it 4.3 · 105 1.5 · 105 2.3 · 104 2.7 · 103 2.6 · 102

gb 6.6 · 105 1.7 · 105 2.6 · 104 3.0 · 103 3.0 · 102

fr 1.5 · 106 2.6 · 105 4.2 · 104 4.7 · 103 4.8 · 102

ru 7.1 · 105 2.4 · 105 3.7 · 104 4.6 · 103 4.6 · 102

ge 1.4 · 106 3.6 · 105 6.5 · 104 7.4 · 103 7.4 · 102

da 1.8 · 106 5.2 · 105 7.8 · 104 9.2 · 103 9.5 · 102

af 1.7 · 106 4.5 · 105 7.4 · 104 8.7 · 103 8.8 · 102

us 2.9 · 106 7.7 · 105 1.3 · 105 1.5 · 104 1.5 · 103

as 3.9 · 106 10.0 · 105 1.8 · 105 2.1 · 104 2.1 · 103

geom. mean 7.1 · 105 1.7 · 105 2.8 · 104 3.2 · 103 3.1 · 102

Results are averaged over 100 batches with b ∈ {1, . . . , 104 } edge updates.

Table 12. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static
Recomputation on the SuiteSparse Networks of Table 1

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hg 4.4 · 104 1.6 · 104 2.6 · 103 3.4 · 102 5.2 · 101

mg 6.7 · 104 2.5 · 104 5.2 · 103 4.9 · 102 6.7 · 101

m2 6.3 · 105 3.2 · 105 7.1 · 104 1.1 · 104 1.3 · 103

gr 1.6 · 106 2.6 · 105 3.6 · 104 4.6 · 103 4.5 · 102

m3 1.2 · 106 4.5 · 105 1.2 · 105 2.2 · 104 2.5 · 103

cg 4.7 · 105 1.8 · 105 3.1 · 104 3.5 · 103 3.5 · 102

m1 2.1 · 106 9.1 · 105 2.2 · 105 3.7 · 104 4.4 · 103

gt 1.9 · 107 6.2 · 106 1.6 · 106 2.0 · 105 2.2 · 104

gw 8.1 · 106 3.8 · 106 1.0 · 106 1.4 · 105 9.7 · 103

geom. mean 9.3 · 105 3.4 · 105 7.2 · 104 9.5 · 103 1.1 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hg 1.4 · 105 3.8 · 104 6.1 · 103 6.4 · 102 8.5 · 101

mg 2.2 · 105 6.0 · 104 8.1 · 103 8.7 · 102 1.0 · 102

m2 6.8 · 105 4.0 · 105 1.2 · 105 2.2 · 104 2.7 · 103

gr 1.8 · 106 4.3 · 105 6.0 · 104 7.0 · 103 7.2 · 102

m3 1.3 · 106 7.1 · 105 2.2 · 105 4.5 · 104 5.4 · 103

cg 8.8 · 105 3.2 · 105 4.0 · 104 4.3 · 103 4.2 · 102

m1 2.3 · 106 1.4 · 106 4.2 · 105 7.9 · 104 1.1 · 104

gt 2.1 · 107 1.0 · 107 2.4 · 106 3.2 · 105 3.5 · 104

gw 1.5 · 107 5.6 · 106 1.6 · 106 2.3 · 105 1.7 · 104

geom. mean 1.5 · 106 5.8 · 105 1.2 · 105 1.7 · 104 1.8 · 103

Results are averaged over 100 batches with b ∈ {1, . . . , 104 } edge updates.
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Table 13. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static Recomputation
on the Complex Networks of Table 1 in Appendix B

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.3 · 105 5.0 · 104 1.0 · 104 1.2 · 103 1.3 · 102

cy 1.4 · 105 4.2 · 104 6.4 · 103 7.6 · 102 7.9 · 101

fx 1.5 · 105 7.2 · 104 1.7 · 104 2.1 · 103 2.5 · 102

yg 3.1 · 105 1.0 · 105 2.0 · 104 2.4 · 103 2.6 · 102

fg 3.0 · 105 1.1 · 105 2.0 · 104 3.5 · 103 4.2 · 102

ll 9.2 · 105 3.1 · 105 7.5 · 104 8.7 · 103 9.6 · 102

lj 1.1 · 106 2.5 · 105 4.7 · 104 7.2 · 103 8.5 · 102

ol 1.2 · 106 5.0 · 105 7.3 · 104 1.1 · 104 1.4 · 103

di 1.5 · 106 7.3 · 105 1.7 · 105 2.1 · 104 2.2 · 103

we 3.8 · 106 1.1 · 106 1.8 · 105 2.5 · 104 4.2 · 103

tw 1.4 · 107 4.5 · 106 8.2 · 105 1.5 · 105 2.1 · 104

tm 1.7 · 107 6.0 · 106 1.1 · 106 1.5 · 105 2.6 · 104

fs 2.3 · 107 9.4 · 106 1.5 · 106 2.7 · 105 3.1 · 104

geom. mean 1.2 · 106 4.2 · 105 7.9 · 104 1.1 · 104 1.4 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.6 · 105 7.8 · 104 1.8 · 104 2.2 · 103 2.3 · 102

cy 1.6 · 105 6.2 · 104 1.1 · 104 1.2 · 103 1.2 · 102

fx 1.9 · 105 1.0 · 105 3.5 · 104 4.8 · 103 5.7 · 102

yg 4.3 · 105 1.4 · 105 2.9 · 104 3.7 · 103 4.0 · 102

fg 3.2 · 105 1.5 · 105 3.2 · 104 5.7 · 103 6.4 · 102

ll 1.0 · 106 5.0 · 105 9.2 · 104 1.3 · 104 1.3 · 103

lj 1.4 · 106 5.1 · 105 7.4 · 104 1.0 · 104 1.2 · 103

ol 1.6 · 106 7.5 · 105 1.4 · 105 1.6 · 104 2.0 · 103

di 2.2 · 106 1.1 · 106 2.8 · 105 3.6 · 104 3.8 · 103

we 4.6 · 106 1.7 · 106 3.1 · 105 4.1 · 104 6.4 · 103

tw 1.8 · 107 6.1 · 106 1.4 · 106 2.2 · 105 3.5 · 104

tm 2.3 · 107 8.2 · 106 2.0 · 106 2.6 · 105 4.0 · 104

fs 3.0 · 107 1.3 · 107 2.0 · 106 3.5 · 105 4.5 · 104

geom. mean 1.5 · 106 6.3 · 105 1.3 · 105 1.8 · 104 2.1 · 103

Edge weights are generated using a normal distribution. Results are averaged over 100 batches with b ∈
{1, . . . , 104 } random edge updates.

Table 14. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static Recomputation
on the Complex Networks of Table 1 in Appendix B

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.2 · 105 5.1 · 104 9.5 · 103 1.2 · 103 1.3 · 102

cy 1.4 · 105 4.1 · 104 6.6 · 103 7.7 · 102 7.9 · 101

fx 1.5 · 105 7.0 · 104 1.7 · 104 2.1 · 103 2.5 · 102

yg 3.2 · 105 1.0 · 105 2.0 · 104 2.4 · 103 2.6 · 102

fg 2.7 · 105 1.1 · 105 2.0 · 104 3.4 · 103 4.2 · 102

ll 1.0 · 106 3.1 · 105 6.6 · 104 8.9 · 103 9.6 · 102

lj 1.0 · 106 2.4 · 105 4.7 · 104 8.4 · 103 8.5 · 102

ol 1.3 · 106 4.8 · 105 6.8 · 104 1.1 · 104 1.4 · 103

di 1.5 · 106 7.1 · 105 1.7 · 105 2.1 · 104 2.2 · 103

we 3.6 · 106 1.1 · 106 1.9 · 105 2.5 · 104 4.2 · 103

tw 1.6 · 107 4.5 · 106 8.3 · 105 1.3 · 105 2.1 · 104

tm 1.5 · 107 6.0 · 106 1.1 · 106 1.5 · 105 2.7 · 104

fs 2.3 · 107 8.7 · 106 1.4 · 106 2.3 · 105 3.0 · 104

geom. mean 1.2 · 106 4.2 · 105 7.7 · 104 1.1 · 104 1.4 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hy 1.7 · 105 8.1 · 104 1.7 · 104 2.2 · 103 2.3 · 102

cy 1.8 · 105 6.6 · 104 1.0 · 104 1.2 · 103 1.2 · 102

fx 1.9 · 105 1.2 · 105 3.5 · 104 4.6 · 103 5.7 · 102

yg 3.9 · 105 1.4 · 105 2.9 · 104 3.7 · 103 4.0 · 102

fg 2.9 · 105 1.5 · 105 3.1 · 104 5.4 · 103 6.3 · 102

ll 1.1 · 106 4.8 · 105 8.8 · 104 1.2 · 104 1.3 · 103

lj 1.3 · 106 4.9 · 105 7.3 · 104 1.0 · 104 1.2 · 103

ol 1.5 · 106 6.9 · 105 1.4 · 105 1.8 · 104 2.0 · 103

di 2.0 · 106 1.1 · 106 2.7 · 105 3.7 · 104 3.7 · 103

we 4.1 · 106 1.8 · 106 3.1 · 105 4.0 · 104 6.5 · 103

tw 1.8 · 107 6.6 · 106 1.4 · 106 2.5 · 105 3.5 · 104

tm 2.1 · 107 8.2 · 106 1.9 · 106 2.5 · 105 4.4 · 104

fs 2.6 · 107 1.2 · 107 2.2 · 106 4.3 · 105 3.6 · 104

geom. mean 1.4 · 106 6.4 · 105 1.3 · 105 1.8 · 104 2.1 · 103

Edge weights are generated using an exponential distribution. Results are averaged over 100 batches with b ∈
{1, . . . , 104 } random edge updates.

Table 15. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static Recomputation
on R-MAT Networks of Table 2 in Appendix B

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 5.9 · 105 2.2 · 105 4.5 · 104 8.7 · 103 1.1 · 103

rmat-23 1.1 · 106 4.0 · 105 8.5 · 104 1.8 · 104 2.2 · 103

rmat-24 2.1 · 106 7.6 · 105 1.6 · 105 3.7 · 104 4.5 · 103

geom. mean 1.1 · 106 4.0 · 105 8.5 · 104 1.8 · 104 2.2 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 6.4 · 105 3.0 · 105 7.3 · 104 1.5 · 104 1.9 · 103

rmat-23 1.2 · 106 5.5 · 105 1.4 · 105 2.8 · 104 3.7 · 103

rmat-24 2.4 · 106 1.0 · 106 2.6 · 105 6.3 · 104 7.5 · 103

geom. mean 1.2 · 106 5.5 · 105 1.4 · 105 3.0 · 104 3.7 · 103

Edge weights are generated using a normal distribution. Results are averaged over 100 batches with b ∈
{1, . . . , 104 } random edge updates.
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Table 16. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static Recomputation
on R-MAT Networks of Table 2 in Appendix B

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 5.9 · 105 2.2 · 105 4.4 · 104 8.4 · 103 1.1 · 103

rmat-23 1.1 · 106 4.0 · 105 8.4 · 104 1.8 · 104 2.2 · 103

rmat-24 2.0 · 106 7.6 · 105 1.6 · 105 3.7 · 104 4.5 · 103

geom. mean 1.1 · 106 4.1 · 105 8.4 · 104 1.8 · 104 2.2 · 103

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 6.5 · 105 3.1 · 105 7.2 · 104 1.4 · 104 1.8 · 103

rmat-23 1.2 · 106 5.7 · 105 1.4 · 105 2.6 · 104 3.7 · 103

rmat-24 2.4 · 106 1.0 · 106 2.6 · 105 6.4 · 104 7.5 · 103

geom. mean 1.2 · 106 5.7 · 105 1.4 · 105 2.9 · 104 3.7 · 103

Edge weights are generated using a exponential distribution. Results are averaged over 100 batches with b ∈
{1, . . . , 104 } random edge updates.

Table 17. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static Recomputation
on Random Hyperbolic Networks of Table 2 in Appendix B

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.4 · 105 1.2 · 105 2.5 · 104 2.8 · 103 2.8 · 102

hyp-23 6.3 · 105 2.0 · 105 4.6 · 104 5.2 · 103 5.5 · 102

hyp-24 1.3 · 106 3.9 · 105 8.9 · 104 1.0 · 104 1.1 · 103

geom. mean 6.6 · 105 2.1 · 105 4.7 · 104 5.3 · 103 5.5 · 102

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.8 · 105 1.9 · 105 3.8 · 104 4.4 · 103 4.2 · 102

hyp-23 6.5 · 105 3.3 · 105 7.2 · 104 8.6 · 103 8.2 · 102

hyp-24 1.3 · 106 6.7 · 105 1.4 · 105 1.7 · 104 1.6 · 103

geom. mean 6.9 · 105 3.5 · 105 7.3 · 104 8.5 · 103 8.1 · 102

Edge weights are generated using a normal distribution. Results are averaged over 100 batches with b ∈
{1, . . . , 104 } random edge updates.

Table 18. Geometric Mean of the Speedups of the Dynamic Algorithm Over a Static Recomputation
on Random Hyperbolic Networks of Table 2 in Appendix B

Edge insertions

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.4 · 105 1.1 · 105 2.4 · 104 2.8 · 103 2.8 · 102

hyp-23 6.2 · 105 2.0 · 105 4.6 · 104 5.2 · 103 5.5 · 102

hyp-24 1.3 · 106 3.8 · 105 9.0 · 104 1.0 · 104 1.1 · 103

geom. mean 6.5 · 105 2.1 · 105 4.6 · 104 5.3 · 103 5.5 · 102

Edge removals

Graph
Speedup

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 3.8 · 105 1.9 · 105 3.8 · 104 4.4 · 103 4.2 · 102

hyp-23 6.7 · 105 3.5 · 105 7.1 · 104 8.5 · 103 8.2 · 102

hyp-24 1.4 · 106 6.8 · 105 1.4 · 105 1.7 · 104 1.6 · 103

geom. mean 7.1 · 105 3.5 · 105 7.3 · 104 8.5 · 103 8.1 · 102

Edge weights are generated using a exponential distribution. Results are averaged over 100 batches with b ∈
{1, . . . , 104 } random edge updates.

C.3 Running Times

Tables 19 to 26 report the average running time in seconds of both the static and dynamic Suitor
algorithms. Results are averaged over 100 batches with {1, . . . , 104} edge updates. As explained in
Section 4.1, on every run of our experiments we create a batch of edge insertions or removals by
preemptively removing or adding a batch of edges selected uniformly at random. Thus, after every
batch of graph updates, the resulting graph G ′ (i.e., the graph on which we measure the running
time of both the static and the dynamic algorithms) is always the same (and we need to run the
static Suitor algorithm only once, regardless of the batch size).
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Table 19. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms
for 100 Batches of b ∈ {1, . . . , 104} Edge Updates on the Road Networks of of Table 1

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

be 0.07 5.5 · 10-7 3.0 · 10-6 2.1 · 10-5 1.9 · 10-4 2.0 · 10-3

cz 0.10 7.2 · 10-7 3.1 · 10-6 2.1 · 10-5 1.9 · 10-4 2.1 · 10-3

fi 0.11 6.2 · 10-7 2.7 · 10-6 1.9 · 10-5 1.8 · 10-4 2.0 · 10-3

au 0.16 6.9 · 10-7 2.7 · 10-6 2.0 · 10-5 1.9 · 10-4 2.2 · 10-3

ca 0.20 6.5 · 10-7 3.3 · 10-6 2.0 · 10-5 2.1 · 10-4 2.4 · 10-3

po 0.36 9.8 · 10-7 3.4 · 10-6 2.2 · 10-5 2.0 · 10-4 2.3 · 10-3

it 0.41 8.6 · 10-7 3.3 · 10-6 2.2 · 10-5 2.2 · 10-4 2.3 · 10-3

gb 0.45 7.2 · 10-7 4.3 · 10-6 2.3 · 10-5 2.3 · 10-4 2.4 · 10-3

fr 0.72 7.7 · 10-7 3.9 · 10-6 2.6 · 10-5 2.1 · 10-4 2.1 · 10-3

ru 0.67 1.0 · 10-6 4.4 · 10-6 2.5 · 10-5 2.1 · 10-4 2.3 · 10-3

ge 1.17 8.8 · 10-7 4.5 · 10-6 2.7 · 10-5 2.3 · 10-4 2.5 · 10-3

da 1.46 1.1 · 10-6 4.6 · 10-6 3.0 · 10-5 2.3 · 10-4 2.5 · 10-3

af 1.27 8.4 · 10-7 4.7 · 10-6 2.6 · 10-5 2.3 · 10-4 2.5 · 10-3

us 2.29 9.8 · 10-7 5.0 · 10-6 3.3 · 10-5 2.5 · 10-4 2.6 · 10-3

as 3.20 8.6 · 10-7 5.5 · 10-6 3.4 · 10-5 2.5 · 10-4 2.5 · 10-3

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

be 0.07 4.7 · 10-7 2.5 · 10-6 1.8 · 10-5 1.6 · 10-4 1.5 · 10-3

cz 0.10 5.0 · 10-7 2.6 · 10-6 1.7 · 10-5 1.6 · 10-4 1.5 · 10-3

fi 0.11 4.7 · 10-7 2.3 · 10-6 1.5 · 10-5 1.4 · 10-4 1.4 · 10-3

au 0.16 4.5 · 10-7 2.3 · 10-6 1.6 · 10-5 1.6 · 10-4 1.5 · 10-3

ca 0.20 5.9 · 10-7 2.7 · 10-6 1.6 · 10-5 1.5 · 10-4 1.5 · 10-3

po 0.36 8.1 · 10-7 2.9 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

it 0.41 9.6 · 10-7 2.8 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

gb 0.45 6.9 · 10-7 2.8 · 10-6 1.8 · 10-5 1.5 · 10-4 1.4 · 10-3

fr 0.74 5.0 · 10-7 2.9 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

ru 0.67 9.6 · 10-7 2.9 · 10-6 1.8 · 10-5 1.4 · 10-4 1.4 · 10-3

ge 1.17 8.7 · 10-7 3.3 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

da 1.49 8.5 · 10-7 2.9 · 10-6 1.9 · 10-5 1.6 · 10-4 1.5 · 10-3

af 1.26 7.8 · 10-7 2.7 · 10-6 1.8 · 10-5 1.4 · 10-4 1.4 · 10-3

us 2.30 8.1 · 10-7 3.0 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

as 3.19 8.5 · 10-7 3.3 · 10-6 1.8 · 10-5 1.5 · 10-4 1.5 · 10-3

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively.

Table 20. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms
for 100 Batches of b ∈ {1, . . . , 104} Edge Updates on the SuiteSparse Networks of Table 1

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hg 0.01 2.0 · 10-7 5.3 · 10-7 3.2 · 10-6 2.5 · 10-5 1.6 · 10-4

mg 0.01 2.2 · 10-7 6.0 · 10-7 2.9 · 10-6 2.7 · 10-5 2.3 · 10-4

m2 0.40 6.5 · 10-7 1.3 · 10-6 5.7 · 10-6 3.4 · 10-5 3.2 · 10-4

gr 1.09 6.5 · 10-7 4.1 · 10-6 3.0 · 10-5 2.6 · 10-4 2.4 · 10-3

m3 0.74 6.5 · 10-7 1.5 · 10-6 6.1 · 10-6 3.5 · 10-5 3.0 · 10-4

cg 0.27 5.9 · 10-7 1.5 · 10-6 8.7 · 10-6 8.0 · 10-5 7.3 · 10-4

m1 1.39 6.5 · 10-7 1.6 · 10-6 6.4 · 10-6 3.9 · 10-5 3.1 · 10-4

gt 10.13 5.6 · 10-7 1.7 · 10-6 6.3 · 10-6 4.9 · 10-5 4.1 · 10-4

gw 6.77 9.4 · 10-7 1.7 · 10-6 6.3 · 10-6 4.8 · 10-5 6.8 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hg 0.01 6.3 · 10-8 2.2 · 10-7 1.4 · 10-6 1.4 · 10-5 1.1 · 10-4

mg 0.01 6.5 · 10-8 2.4 · 10-7 1.8 · 10-6 1.7 · 10-5 1.6 · 10-4

m2 0.40 6.0 · 10-7 1.0 · 10-6 3.3 · 10-6 1.7 · 10-5 1.5 · 10-4

gr 1.10 6.6 · 10-7 2.8 · 10-6 1.8 · 10-5 1.4 · 10-4 1.5 · 10-3

m3 0.76 5.9 · 10-7 1.1 · 10-6 3.5 · 10-6 1.7 · 10-5 1.4 · 10-4

cg 0.27 3.1 · 10-7 8.4 · 10-7 6.9 · 10-6 6.6 · 10-5 6.5 · 10-4

m1 1.34 6.4 · 10-7 9.4 · 10-7 3.2 · 10-6 1.6 · 10-5 1.3 · 10-4

gt 10.28 4.5 · 10-7 1.0 · 10-6 4.4 · 10-6 3.3 · 10-5 2.8 · 10-4

gw 6.51 4.2 · 10-7 1.2 · 10-6 4.1 · 10-6 2.8 · 10-5 3.8 · 10-4

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively.
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Table 21. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms
for 100 Batches of b ∈ {1, . . . , 104} Edge Updates on the Complex Networks of Table 1

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 6.0 · 10-7 1.6 · 10-6 7.8 · 10-6 6.4 · 10-5 5.6 · 10-4

cy 0.06 4.5 · 10-7 1.5 · 10-6 9.9 · 10-6 8.3 · 10-5 7.3 · 10-4

fx 0.11 7.5 · 10-7 1.6 · 10-6 6.8 · 10-6 5.1 · 10-5 3.9 · 10-4

yg 0.21 7.1 · 10-7 2.1 · 10-6 1.1 · 10-5 9.0 · 10-5 7.9 · 10-4

fg 0.19 6.4 · 10-7 1.7 · 10-6 9.6 · 10-6 5.3 · 10-5 4.1 · 10-4

ll 0.69 7.6 · 10-7 2.3 · 10-6 9.4 · 10-6 8.0 · 10-5 6.7 · 10-4

lj 0.68 6.5 · 10-7 2.9 · 10-6 1.5 · 10-5 9.7 · 10-5 6.6 · 10-4

ol 0.80 7.0 · 10-7 1.6 · 10-6 1.1 · 10-5 7.4 · 10-5 5.2 · 10-4

di 1.19 7.9 · 10-7 1.7 · 10-6 7.1 · 10-6 5.6 · 10-5 5.0 · 10-4

we 2.15 5.9 · 10-7 2.1 · 10-6 1.2 · 10-5 8.9 · 10-5 4.4 · 10-4

tw 11.23 8.9 · 10-7 2.5 · 10-6 1.4 · 10-5 7.6 · 10-5 4.7 · 10-4

tm 14.45 8.9 · 10-7 2.5 · 10-6 1.3 · 10-5 1.0 · 10-4 5.0 · 10-4

fs 21.51 1.0 · 10-6 2.5 · 10-6 1.5 · 10-5 7.6 · 10-5 6.0 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 5.1 · 10-7 1.0 · 10-6 4.6 · 10-6 3.5 · 10-5 3.2 · 10-4

cy 0.06 4.1 · 10-7 1.0 · 10-6 6.0 · 10-6 5.4 · 10-5 4.9 · 10-4

fx 0.11 5.9 · 10-7 1.1 · 10-6 3.3 · 10-6 2.3 · 10-5 1.8 · 10-4

yg 0.22 5.1 · 10-7 1.6 · 10-6 7.6 · 10-6 5.8 · 10-5 5.2 · 10-4

fg 0.19 6.0 · 10-7 1.2 · 10-6 6.0 · 10-6 3.3 · 10-5 2.7 · 10-4

ll 0.69 6.9 · 10-7 1.4 · 10-6 7.6 · 10-6 5.5 · 10-5 4.8 · 10-4

lj 0.68 5.2 · 10-7 1.4 · 10-6 9.6 · 10-6 6.8 · 10-5 4.7 · 10-4

ol 0.80 5.2 · 10-7 1.1 · 10-6 5.7 · 10-6 5.2 · 10-5 3.7 · 10-4

di 1.19 5.6 · 10-7 1.1 · 10-6 4.3 · 10-6 3.4 · 10-5 3.0 · 10-4

we 2.15 4.9 · 10-7 1.3 · 10-6 7.3 · 10-6 5.4 · 10-5 2.8 · 10-4

tw 11.46 7.0 · 10-7 1.9 · 10-6 8.0 · 10-6 5.3 · 10-5 2.9 · 10-4

tm 14.47 6.5 · 10-7 1.8 · 10-6 7.4 · 10-6 5.5 · 10-5 3.3 · 10-4

fs 20.99 7.3 · 10-7 1.7 · 10-6 1.1 · 10-5 5.8 · 10-5 4.2 · 10-4

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively. Edge weights are generated using a normal distribution.

Table 22. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms
for 100 Batches of b ∈ {1, . . . , 104} Edge Updates on the Complex Networks of Table 1

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 6.5 · 10-7 1.5 · 10-6 8.3 · 10-6 6.4 · 10-5 5.7 · 10-4

cy 0.06 4.6 · 10-7 1.6 · 10-6 9.7 · 10-6 8.3 · 10-5 7.4 · 10-4

fx 0.11 7.3 · 10-7 1.6 · 10-6 6.7 · 10-6 5.0 · 10-5 3.9 · 10-4

yg 0.21 6.8 · 10-7 2.1 · 10-6 1.1 · 10-5 8.8 · 10-5 7.9 · 10-4

fg 0.19 7.1 · 10-7 1.7 · 10-6 9.5 · 10-6 5.5 · 10-5 4.1 · 10-4

ll 0.69 7.0 · 10-7 2.3 · 10-6 1.1 · 10-5 7.7 · 10-5 6.7 · 10-4

lj 0.68 7.1 · 10-7 2.9 · 10-6 1.5 · 10-5 8.2 · 10-5 6.6 · 10-4

ol 0.80 6.5 · 10-7 1.7 · 10-6 1.2 · 10-5 7.4 · 10-5 5.2 · 10-4

di 1.18 8.0 · 10-7 1.7 · 10-6 7.1 · 10-6 5.6 · 10-5 5.0 · 10-4

we 2.14 6.3 · 10-7 2.0 · 10-6 1.2 · 10-5 8.9 · 10-5 4.4 · 10-4

tw 11.41 7.9 · 10-7 2.6 · 10-6 1.4 · 10-5 9.1 · 10-5 4.6 · 10-4

tm 14.66 1.0 · 10-6 2.5 · 10-6 1.3 · 10-5 1.1 · 10-4 4.8 · 10-4

fs 21.69 1.0 · 10-6 2.6 · 10-6 1.6 · 10-5 9.3 · 10-5 6.5 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hy 0.08 4.7 · 10-7 9.8 · 10-7 4.5 · 10-6 3.5 · 10-5 3.2 · 10-4

cy 0.06 3.7 · 10-7 9.7 · 10-7 6.2 · 10-6 5.4 · 10-5 4.9 · 10-4

fx 0.11 6.0 · 10-7 9.6 · 10-7 3.2 · 10-6 2.3 · 10-5 1.8 · 10-4

yg 0.22 5.6 · 10-7 1.6 · 10-6 7.6 · 10-6 5.9 · 10-5 5.2 · 10-4

fg 0.19 6.5 · 10-7 1.3 · 10-6 6.1 · 10-6 3.5 · 10-5 2.7 · 10-4

ll 0.69 6.2 · 10-7 1.5 · 10-6 8.1 · 10-6 5.8 · 10-5 4.8 · 10-4

lj 0.68 5.6 · 10-7 1.5 · 10-6 9.8 · 10-6 6.9 · 10-5 4.7 · 10-4

ol 0.80 5.5 · 10-7 1.2 · 10-6 6.0 · 10-6 4.6 · 10-5 3.7 · 10-4

di 1.18 6.1 · 10-7 1.1 · 10-6 4.5 · 10-6 3.3 · 10-5 3.0 · 10-4

we 2.16 5.6 · 10-7 1.2 · 10-6 7.2 · 10-6 5.5 · 10-5 2.9 · 10-4

tw 11.47 7.2 · 10-7 1.8 · 10-6 7.9 · 10-6 4.7 · 10-5 2.8 · 10-4

tm 14.62 7.5 · 10-7 1.9 · 10-6 7.9 · 10-6 5.7 · 10-5 2.9 · 10-4

fs 21.26 8.2 · 10-7 1.9 · 10-6 1.0 · 10-5 5.0 · 10-5 5.0 · 10-4

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively. Edge weights are generated using an exponential distribution.

Table 23. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms
for 100 Batches of b ∈ {1, . . . , 104} Edge Updates on the R-MAT Networks of Table 2

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 7.1 · 10-7 1.9 · 10-6 9.3 · 10-6 4.8 · 10-5 3.5 · 10-4

rmat-23 0.84 8.1 · 10-7 2.1 · 10-6 1.0 · 10-5 4.8 · 10-5 3.6 · 10-4

rmat-24 1.73 8.3 · 10-7 2.3 · 10-6 1.1 · 10-5 4.7 · 10-5 3.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 6.6 · 10-7 1.4 · 10-6 5.7 · 10-6 2.8 · 10-5 2.1 · 10-4

rmat-23 0.85 6.9 · 10-7 1.6 · 10-6 6.2 · 10-6 3.1 · 10-5 2.1 · 10-4

rmat-24 1.72 7.2 · 10-7 1.7 · 10-6 6.7 · 10-6 2.8 · 10-5 2.2 · 10-4

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively. Edge weights are generated using a normal distribution.
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Table 24. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms
for 100 Batches of b ∈ {1, . . . , 104} Edge Updates on the R-MAT Networks of Table 2

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 7.1 · 10-7 1.9 · 10-6 9.4 · 10-6 5.0 · 10-5 3.5 · 10-4

rmat-23 0.85 7.9 · 10-7 2.1 · 10-6 1.0 · 10-5 4.9 · 10-5 3.6 · 10-4

rmat-24 1.73 8.7 · 10-7 2.3 · 10-6 1.1 · 10-5 4.8 · 10-5 3.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

rmat-22 0.41 6.4 · 10-7 1.4 · 10-6 5.8 · 10-6 3.0 · 10-5 2.1 · 10-4

rmat-23 0.85 7.4 · 10-7 1.5 · 10-6 6.2 · 10-6 3.3 · 10-5 2.1 · 10-4

rmat-24 1.73 7.4 · 10-7 1.7 · 10-6 6.7 · 10-6 2.7 · 10-5 2.2 · 10-4

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively. Edge weights are generated using an exponential distribution.

Table 25. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms for
100 Batches of b ∈ {1, . . . , 104} Edge Updates on the Random Hyperbolic Networks of Table 2

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.21 6.4 · 10-7 1.8 · 10-6 8.8 · 10-6 7.7 · 10-5 7.5 · 10-4

hyp-23 0.43 6.8 · 10-7 2.2 · 10-6 9.3 · 10-6 8.2 · 10-5 7.5 · 10-4

hyp-24 0.85 6.5 · 10-7 2.2 · 10-6 9.7 · 10-6 8.3 · 10-5 7.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.22 5.7 · 10-7 1.1 · 10-6 5.7 · 10-6 4.9 · 10-5 5.0 · 10-4

hyp-23 0.43 6.6 · 10-7 1.3 · 10-6 5.9 · 10-6 5.0 · 10-5 5.1 · 10-4

hyp-24 0.85 6.7 · 10-7 1.3 · 10-6 6.1 · 10-6 5.2 · 10-5 5.3 · 10-4

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively. Edge weights are generated using a normal distribution.

Table 26. Average Running Time in Seconds of the Static and Dynamic Suitor Algorithms for
100 Batches of b ∈ {1, . . . , 104} Edge Updates on the Random Hyperbolic Networks of Table 2

Edge insertions

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.21 6.3 · 10-7 1.9 · 10-6 8.8 · 10-6 7.7 · 10-5 7.5 · 10-4

hyp-23 0.43 7.0 · 10-7 2.1 · 10-6 9.4 · 10-6 8.2 · 10-5 7.6 · 10-4

hyp-24 0.85 6.6 · 10-7 2.3 · 10-6 9.6 · 10-6 8.3 · 10-5 7.6 · 10-4

Edge removals

Graph
Static Dynamic

b = 1 b = 101 b = 102 b = 103 b = 104

hyp-22 0.22 5.7 · 10-7 1.1 · 10-6 5.7 · 10-6 4.9 · 10-5 5.0 · 10-4

hyp-23 0.43 6.5 · 10-7 1.2 · 10-6 6.1 · 10-6 5.0 · 10-5 5.1 · 10-4

hyp-24 0.85 6.2 · 10-7 1.3 · 10-6 5.9 · 10-6 5.2 · 10-5 5.3 · 10-4

The columns “Static” and “Dynamic” report the average time (in seconds) for the static and for the dynamic

algorithm, respectively. Edge weights are generated using an exponential distribution.
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C.4 Preprocessing Time

Figure 9 shows the percentage of running time spent by the static Suitor algorithm in sorting the
adjacency lists after a batch of edge updates w.r.t. the overall running time.

Fig. 9. Percentage of time spent by the static Suitor algorithm for the preprocessing step (i.e., sorting the
adjacency lists after a batch of edge updates) w.r.t. the overall running time of the algorithm.
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