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Figure 1: MathQA semantic search example relationship question with identifier name and value retrieval and calculation.

Demovideo at purl.org/mathqa.

ABSTRACT

The increasing number of questions on Question Answering (QA)

platforms like Math Stack Exchange (MSE) signifies a growing in-

formation need to answer math-related questions. However, there

is currently very little research on approaches for an open data QA

system that retrieves mathematical formulae using their concept

names or querying formula identifier relationships from knowledge

graphs. In this paper, we aim to bridge the gap by presenting data

mining methods and benchmark results to employ Mathematical

Entity Linking (MathEL) and Unsupervised Formula Labeling (UFL)

for semantic formula search and mathematical question answer-

ing (MathQA) on the arXiv preprint repository, Wikipedia, and

Wikidata. The new methods extend our previously introduced sys-

tem , which is part of the Wikimedia ecosystem of free knowledge.

Based on different types of information needs, we evaluate our

system in 15 information need modes, assessing over 7,000 query

results. Furthermore, we compare its performance to a commer-

cial knowledge-base and calculation-engine (Wolfram Alpha) and

search-engine (Google). The open source system is hosted by Wiki-

media at https://mathqa.wmflabs.org. A demovideo is available at

purl.org/mathqa.
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1 INTRODUCTION

A large part of mathematical search queries are formulated as well-

formed questions [1]. Factoid question answering systems allow

the user to pose questions in natural language to provide quick

and concise answers. In contrast, search engines typically display

ranked lists of web pages or documents [2]. Semantic search engines

aim to ‘understand’ the meaning and intent of a user’s query instead

of just retrieving literal or fuzzy matches of the input words [3].

In this paper, we continue our research on semantic formula

search and factoid mathematical question answering using our

open-source MathQA system1, which is hosted by Wikimedia at

https://mathqa.wmflabs.org. The prominent novelty of our con-

tribution is the open source publication of a comprehensive and

detailed benchmark for semantic formula search and mathematical

question answering on open data sources. We extend our former

work [4] by a comprehensive system evaluation in 15 different in-

formation need modes [5], out of which only one was previously

available. Furthermore, we add a comparison to two state-of-the-art

commercial competitors (Wolfram Alpha and Google). The system

can answer mathematical questions in English and Hindi language,

1A demovideo is available at purl.org/mathqa
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taking formula concept names and identifier relationships as in-

tents. Identifiers are formula variables with no fixed value2. Besides

numbers and operators, they are one of several formula constituent

types. For example, the physics formula 𝐹 = 𝑚 · 𝑎 contains the

identifiers 𝐹 ,𝑚, and 𝑎. The system (Figure 1) presents the succinct

formula answer for an identifier relationship question along with

names for the formula identifiers so that the user can understand

their meaning. Besides, values for constants are retrieved from the

semantic knowledge-base Wikidata, if available. Using these and

additional user input for the variables, MathQA also allows for cal-

culations. Wikidata was launched in 2012 to support Wikipedia by

providing language-independent items containing factual informa-

tion that is framed as claims [6]. The claims consist of item-property

relationship statements, which should be supported by sources and

can be read, accepted, declined, or edited by humans and bots. Up

to now, Wikidata contains around 5,000 statements3 that link an

item concept name to a mathematical formula [7]. Our MathQA

system exploits this information along with semantic indices, which

we created from the NTCIR Wikipedia and arXiv datasets [8] (un-

supervised retrieval without annotation). These datasets contain

a selection of documents and articles to be used as benchmarks

for Mathematical Information Retrieval (MathIR) tasks. Our unsu-

pervised approach differs from supervised math problem solving

experiments, such as [9, 10] by mining linked open data (Wikidata)

and open access corporae (NTCIR arXiv and Wikipedia). Moreover,

it can not be compared to traditional formula search engines that

search formula names and resources, taking the formula string as

input. Here we focus on the opposite way, performing a ‘semantic

formula search’ by retrieving formula strings from names.

2 RELATED WORK

In the following, we describe the state of the art in Factoid question

answering and mathematical QA systems. MathQA is a factoid QA

system, and since we concentrate our evaluations on the physics

domain4, we review related systems.

2.1 Factoid Question Answering Systems

Factoid question answering systems, providing fast and succinct

answers [2], typically employ open semantic knowledge bases such

as Freebase [11] or Wikidata [6] for answer retrieval. They are eval-

uated on datasets that contain labeled question-answer pairs, which

refer to resources in the open databases [12]. Besides the challenges

of knowledge base population [13], it is costly to generate large

benchmark datasets.

Datasets. Since the start of the QA Track 5 at the ‘Text REtrieval

Conference’ (TREC-8) in 1998, there have been efforts to build QA

systems and datasets [14]. Berant et al. introduce the ‘WebQues-

tions dataset’ for benchmarking QA engines that work on struc-

tured knowledge bases [12]. The ‘Stanford Question Answering

Dataset’ (SQuAD) [15] contains 100,000 questions posed by crowd-

workers on a set of Wikipedia articles. Bordes et al. introduce the

2https://www.w3.org/TR/MathML3/chapter4.html#contm.ci
3Run https://w.wiki/z8p to get the current number.
4Note that in our last publication, we already presented a general evaluation on random
math domains. Here, we focus on physics, having domain experts for the assessment.
5https://trec.nist.gov/data/qamain.html

‘SimpleQuestions dataset’ containing 108,442 simple questions over

Freebase triples (subject, predicate, object) [16]. The ‘WikiQuestions

dataset’ contains 4,390,597 questions and corresponding answer

entities, generated by rephrasing Wikipedia sentences as questions

using aWikipedia dump with Freebase entity mentions [17]. Apply-

ing a novel neural network architecture on Freebase to transduce

facts into natural language questions, Serban et al. are able to gen-

erate 30 Million questions for the ‘30M Factoid Question-Answer

corpus’ [18].

Systems. Knowledge Graph based Question Answering (KG-QA)

aims to answer natural language questions retrieving facts from a

knowledge graph [19]. Recent approaches employ neural networks

for question generation [18] or answer retrieval. Besides recurrent

architectures, also long-term memory networks [16] or convolu-

tional neural networks [20] are used for large-scale simple question

answering. In 2018, Tanon et al. introduce ‘Platypus’ as a multilin-

gual question answering platform forWikidata [21]. The system can

answer complex queries in several languages, using hybrid gram-

matical and template based techniques [4]. The ‘MathQA’ system

is based on Platypus with a focus on the mathematics domain.

2.2 Mathematical and Physics Question
Answering

Question answering in the domain of mathematics was first im-

plemented by Smith in 1974. Investigating the understanding of

natural language by computers, a system to answer elementary

mathematics questions using ‘unrestricted natural language input’

was implemented [22]. Unfortunately, until the last decade, there

was little interest and progress in the subject of MathQA. In 2012,

Nguyen et al. introduced a math-aware search engine for a math

question answering system [23]. Their system can handle both

textual keywords and mathematical expressions. They use a Finite

State Machine model to encode the semantics of mathematical ex-

pressions and an online learning binary classifier for the ranking.

The approach was benchmarked against three classical information

retrieval (IR) strategies on math documents crawled from Math

Overflow, claiming other methods by more than 9%. In 2017, Bhat-

tacharya et al. published a survey of question answering for math

and science problems [24]. They review past and present efforts

to make computers smart enough to pass math and science tests.

They conclude that ‘the smartest AI could not pass high school.’

In the ‘SemEval 2019 task’ on math question answering, Hopkins

et al. derive a question set from practice exams [25]. Using 2778

training questions, the top system could answer 45% of the 1082

test questions correctly, significantly better than the random guess-

ing baseline found at 17%. In 2018, Gunawan et al. introduced an

Indonesian question answering system for solving arithmetic word

problems using pattern matching, which was integrated into a phys-

ical humanoid robot [26]. Characterizing searches for mathematical

concepts, Mansouri et al. investigate search engine queries to find

that well-formed questions were surprisingly common [1]. This

was one motivation for the ‘ARQMath Lab’ at CLEF 2020. In two

tasks, the goal was to find answers to new mathematical questions

posted on a community question answering site (Math Stack Ex-

change) by referring to old QA threads, containing both text and

formulae [27ś29]. As the results indicated that approaches to the

https://www.w3.org/TR/MathML3/chapter4.html#contm.ci
https://w.wiki/z8p
https://trec.nist.gov/data/qamain.html
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challenging tasks still need to be elaborated further, the ARQMath

Lab is planned to be continued in the coming years.

Compared to general mathematical question answering, even

less research is done on the physics domain. Pineau [30] and Abdi et

al. [31] discuss and present first approaches to answer questions on

physics. Pineau claims that equations encapsulate a crucial part of

the knowledge in physics [30]. Since equations can be connected via

their natural language meaning, the need for a semantic search on

physics is implied. Furthermore, a cross-disciplinary search would

allow researchers to find solutions to their problems or equations

in other fields. In 2018, Abdi et al. introduced an ontology-based

question answering system in the physics domain (QAPD) [31].

In the first step, an ontology is populated using information from

a textbook, lecture notes, and course materials. Secondly, ten hu-

man experts are asked to generate entity-relationship questions

on ontology knowledge. These include identifier definition and

unit queries, such as ‘how to calculate resistance?’ and ‘what is

the unit of resistance?’. The system is evaluated on 3750 queries,

achieving an F-measure of 76%. Since units of measurement are an

essential part of physical calculations, there have been efforts to

automatically infer them from articles (Wikipedia) supported by

knowledge-base groundings (Wikidata) [32].

Mathematical Entity Linking. Kristianto et al. proposemethods to

link mathematical expression in scientific documents to Wikipedia

articles using their surrounding text [33, 34]. Their learning-based

approach achieves a precision of 83%, compared with a 6.22 base-

line of a traditional MathIR method. A balanced combination of

mathematical and textual elements is required for the linking per-

formance to be reliable. Besides linking to Wikipedia, Schubotz

et al. [35, 36] describe linking mathematical formula content to

Wikidata, both in MathML and LATEXmarkup. To extend classical

citations by mathematical, they call for a ‘Formula Concept Dis-

covery (FCD) and Formula Concept Recognition (FCR) challenge’

to elaborate automated MathEL [37]. Their FCD approach yields a

recall of 68% and precision of 68% for retrieving equivalent repre-

sentations of frequent formulae. In 72% of the cases, a formula name

could be extracted from the surrounding text on the NTCIR arXiv

dataset [8]. Mathematical Entity Linking - being less popular than

its natural language correspondent - has so far been employed in

mathematical question answering systems, such as ‘MathQA’ using

structured Wikidata items [4] and proposed for semi-structured

question posts from Math Stack Exchange (MSE) at the CLEF ARQ-

Math Lab [29]. Moreover, it is expected that MathEL will enhance

mathematical subject classification [38, 39].

3 METHODS

Having reviewed the related work literature (see Section 2), we iden-

tify the ability of a mathematical QA system to answer identifier6

relationship questions, e.g., ‘what is the relationship between mass

and energy’, as research gap. With a research objective to investi-

gate the feasibility of identifier relationship question answering,

our experiments were driven by the following research questions:

(1) What is the quality of a translation of identifier symbols to

names and vice versa?

6For a definition of an identifier, see the introduction.

(2) How well does a semantic formula search using identifier

names or symbols as query perform?

(3) How well does a semantic formula search using the formula

concept name as query perform?

(4) How well do different index sources created from different

datasets perform in comparison?

(5) How well does the semantic search perform compared to a

commercial knowledge-base and search engine?

In the following, we describe the methods we employed to an-

swer the research questions.

3.1 MathQAWorkflow

Our mathematical question answering system workflow consists

of the following steps:

(1) question parsing and classification,

(2) index or knowledge-graph query,

(3) entity linking or relationship extraction,

(4) answer (candidate) retrieval and presentation,

(5) formula parsing, and

(6) result calculation.

In some cases, a QA system involves an additional question

domain classification step. Since we concentrate on mathemati-

cal question answering and MathQA does not distinguish subject

classes, we skip this step. The implementation of these steps in our

system will be described in Section 4. In this section, we discuss

the high-level concepts that are involved.

3.2 Question Parsing and Classification

MathQA is designed to answer the following questions:

(1) What is the formula for [formula name]?

(2) What is the [property] of [geometric object]?

(3) What is the relationship between [identifier name 1] and

[identifier name 2] and ...?

(4) What is the relationship between [identifier symbol 1] and

[identifier symbol 2] and ...?

Question (1) is a general math type question yielding formula

concepts, whereas question (2) is a geometry type question, e.g.,

‘what is the area of a circle?’. Given that there are different ques-

tion types, the first step in question parsing is to distinguish them.

Question types (3) and (4) can be easily recognized by the keywords

‘relationship’ or ‘relation.’ To differentiate (1) and (2), we need to

transform the question into a tree of triples (subject, predicate, ob-

ject). For type (1), the predicate is ‘formula,’ and the object needs to

be retrieved: (subject, formula,?), e.g., (velocity, formula,?). For type

(2), both predicate and subject are variable, yielding: (geometrical

object, property,?), e.g., (sphere, volume,?). We retrieved a list of

geometry properties (volume, area, radius, etc.) from Wikipedia.

The system checks if the triple predicate is in this list to classify

the question as geometry type (2).

3.3 Mathematical Entity Linking

To answer the question types (1)-(4), entity (identifier or formula)

concept names need to be linked to symbols or strings. Using Wiki-

data, an additional entity identification number (QID) is available.

For example, the identifier symbol ‘E’ can be linked to the Wikidata
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item with the name ‘energy’ and QID ‘Q11379’ if it occurs in the

formula ‘𝐸 = 𝑚𝑐2’, which can be assigned to the concept name

‘mass-energy equivalence’ (Q35875). In our evaluation, we com-

pared three different sources for Math Entity Linking: indices cre-

ated using document / article selections taken from 1) the preprint

repository ‘arXiv’7 or 2) Wikipedia, or knowledge-graph content

retrieved from 3) Wikidata using SPARQL queries8. We will discuss

the index creation of 1) and 2) in Section 3.5 and querying Wikidata

in Section 4, where we describe the Formula Retrieval Module of

MathQA.

3.4 Benchmarking

To evaluate MathIR methods and systems, such as MathQA, we

need benchmark samples and datasets. We will now introduce the

sources that are relevant to our studies. As stated in the introduction,

we exploit the NTCIR 11/12 arXiv, and Wikipedia dataset [8] to

create our semantic indices for the Formula Retrieval Module. The

dataset is available at http://ntcir-math.nii.ac.jp/data. It consists of

105,120 document sections taken arXiv papers, in total containing

over 60 million mathematical formulae in MathML markup. The

Wikipedia articles were converted from Wikitext to HTML.

Our evaluation sample consists of formula concepts, which were

annotated using the AnnoMathTeX9 formula and identifier annota-

tion recommender system [40, 41]. The formulae were taken from

an already existing benchmark selection of 25 Wikipedia articles

from physics (classical mechanics). The goldstandard is persisted

in the MathMLben10 repository [35].

3.5 Semantic Formula and Identifier Indexing

There are two ways to create a semantic formula or identifier in-

dex vocabulary: 1) supervised labeling using Mathematical Entity

Linking with systems such as AnnoMathTeX or 2) unsupervised

extraction from corpora, such as the NTCIR arXiv and Wikipedia

dataset. In this project, we use both methods in comparison. Specif-

ically, we test an unsupervised formula and identifier index on a

supervised benchmark sample. The index was created using Un-

supervised Formula Labeling, which should not be confused with

Latent Semantic Indexing (LSI) [42], which indexes documents in-

stead of formulae or identifiers.

We created the following index catalogs:

(1) identifier-semantics catalog (symbol to name)11

(2) semantics-identifier catalog (name to symbol)12

(3) formula concept catalog (name to string)13

We extracted (1) and (3) from the corpus and then inverted (1)

to obtain (2). For each formula or identifier in the corpora, we

attributed words in the surrounding text and ranked them by the

frequency of their occurrence (see the scores sorted by subject

class14). Figure 2 shows how the formula and identifier catalogs are

7https://arxiv.org
8https://www.w3.org/TR/rdf-sparql-query
9https://annomathtex.wmflabs.org
10https://mathmlben.wmflabs.org
11For example, ‘m’ to ‘mass’.
12For example, ‘force’ to ‘F’.
13For example, ‘momentum’ to ‘p = m v’.
14https://en.wikipedia.org/wiki/User:Physikerwelt?oldid=738857609

MathQA 
Relationship 

Question

Formula/ 
Identifier 

Catalog 

(Wikipedia or 
arXiv)

Inverse 
Identifier 

Semantics 

Catalog 
(Wikipedia)

MathQA 
Formula 

Answer

'What is the 

relationship 
between 

mass and 

energy?'

Workflow

Example 'mass': 'm', 'M', ... 

'energy': 'E', '?', ...

'm', 'M', 'E', '?', ... 

?  'E=mc^2', ...

'E=mc^2', where 

'E': 'energy',

'm': 'mass', ...

Input Output

Figure 2: Workflow of MathQA answering a relation-

ship question using a semantic identifier index (arXiv or

Wikipedia) and formula catalog compiled from the NTCIR

11/12 datasets (arXiv or Wikipedia).

employed in the semantic search of MathQA to answer an identifier

relationship question.

Identifier Catalogs. We extracted the identifier from MathML

<mi> tags using a word window of ± 500 characters, which was

chosen such that the average MathML string length is overcome

and words outside the formula environment are reached. We ne-

glected identifier indices. The terms were lowered and cleaned

from punctuation or other symbols. Stopwords were excluded. The

Wikipedia identifier semantics catalog contains a total of 1670 en-

tries, whereas the arXiv catalog contains 94833. The difference

(factor 57) is reasonable considering the different corpus sizes in

terms of documents (factor 53).

Formula Catalogs. The number of formulae in the catalogs are

30776 for Wikipedia and 118120 for arXiv. As we were evaluating

on a physics sample (see Section 5), we confined the arXiv index to

10 physics subject classes: ‘astro-ph’, ‘cond-mat’, ‘gr-qc’, ‘hep-lat’,

‘hep-ph’, ‘hep-th’, ‘math-ph’, ‘nlin’, ‘quant-ph’, and ‘physics’. The

total number of formulae in the catalog is 134217 for Wikipedia and

3450770 for arXiv (here the increase is only a factor 26). We created

single-word indices from the surrounding text of the formulae. For

multiple word concept queries, such as ‘angular acceleration’, we

joined the results in a union.

4 IMPLEMENTATION

While in Section 3, we explained the datamining forMathQA, in this

section we will describe the system with its constituent modules.

According to the steps presented in Section 3.1, we developed five

MathQAmodules. The Question ParsingModule (step 1) transforms

questions into a triple representation to classify the type of intent

(general, geometry, or relationship). The Formula Retrieval Module

(steps 2 and 3) queries an index (arXiv, Wikipedia) or knowledge-

graph (Wikidata). The Formula Answer Module (step 4) identifies

the candidates and presents the top formula result to the user,

including identifier names and values if available. The Formula

Parsing and Calculation Module (steps 5 and 6) split the formula

into its constituents to allow for calculation using the user’s input

values for variables and retrieved values for constants if applicable.

The MathQA web interface design is based on Ask Platypus15.

15https://askplatyp.us

http://ntcir-math.nii.ac.jp/data
https://arxiv.org
https://www.w3.org/TR/rdf-sparql-query
https://annomathtex.wmflabs.org
https://mathmlben.wmflabs.org
https://en.wikipedia.org/wiki/User:Physikerwelt?oldid=738857609
https://askplatyp.us
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# Find items with 'has part' (P527)

'energy' (Q11379) and 'mass' (Q11423)

SELECT ?item ?itemLabel ?formula ?parts ?partsLabel

WHERE {

?item wdt:P527 wd:Q11379.

?item wdt:P527 wd:Q11423.

?item wdt:P2534 ?formula.

?item wdt:P527 ?parts

SERVICE wikibase:label {

bd:serviceParam wikibase:language "en".}}

Figure 3: SPARQL query to retrieveWikidata formula items

either using a python client orweb interface at https://query.

wikidata.org.

The system relies on the web application framework Flask 16. The

programming languages Python, JavaScript, and HTML are used.

Question Classification and Parsing Module. Employing the Stan-

ford CoreNLP17 server and Natural Language Toolkit (NLTK)18

library, the module produces (subject, predicate, object) triples from

the free-text questions. The CoreNLP server runs in Java. It allows

for the required dependency and constituency parsing in English.

Currently, it supports five other languages: German, French, Span-

ish, Arabic, and Chinese. The NLTK platform provides interfaces to

corpora, lexical resources, and text processing methods. We use its

parsing, tokenization, stemming, and stopword removal capabilities

for our system. Geometry questions are identified by containing

predicates from the list of geometry properties. Relationship ques-

tions are identified by containing the keywords ‘relationship’ or

‘relation’. Identifier name to symbol or symbol to name conversion

is triggered by the keyword ’symbol’.

Formula Retrieval Module. We use Pywikibot19 and SPARQL20

libraries to retrieve formulae (format unrestricted) and their identi-

fiers (amount unlimited) fromWikidata items. Pywikibot is an inter-

face to the MediaWiki API, whereas the SPARQL client can perform

SELECT and ASK queries against a SPARQL endpoint via HTTP.

Figure 3 shows an example SPARQL query for an identifier relation-

ship question to retrieve all items with specific items, e.g., ‘energy’

(Q11379), as ‘has part’ property (P527). A permanent speedlink to

the query in a web interface is https://w.wiki/39RQ. The analogous

query for items as ‘calculated from’ (P4934) can be accessed via

https://w.wiki/39RR. We need to query both properties since, cur-

rently, they are both used by the community. Identifier symbols are

commonly inserted via ‘quantity symbol (LaTeX)’ (P7973), ‘quantity

symbol (string)’ (P416), or ‘in defining formula’ (P7235) property.

You can find an example query at https://w.wiki/$vr. We employed

the aforementioned queries in our evaluation tasks.

Formula Parsing and Calculation Module. To provide calculations

using the formula answer, the LATEXstring needs to be parsed. This is

16https://pypi.org/project/Flask
17https://stanfordnlp.github.io/CoreNLP
18https://www.nltk.org
19https://github.com/wikimedia/pywikibot
20https://pypi.org/project/sparql-client

Table 1: Excerpt of 10 from the 65 benchmark examples

used for the evaluation of our MathQA system (modes 1-

15). The goldstandard [35] is persisted at https://mathmlben.

wmflabs.org (GoldID 310-375).

GoldID QID Name Formula

310 Q11376 acceleration a =
dv
d𝑡

311 Q186300 angular acceleration 𝜶 =
d𝝎
d𝑡

312 Q834020 angular frequency 𝜔 = 2𝜋 𝑓

313 Q161254 angular momentum L = r × p

314 Q161635 angular velocity 𝝎 =

d𝜑
d𝑡
u

315 Q2945123 center of mass
∑𝑛
𝑖=1𝑚𝑖 (r𝑖 − R) = 0

316 Q2248131 centripetal acceleration 𝑎𝑐 =
𝑣2

𝑟

317 Q172881 centripetal force ®𝐹 = −𝑚𝑣2𝑟
𝑟

318 Q843905 circumference 𝐶 = 𝜋 · 𝑑 = 2𝜋 · 𝑟

319 Q11382 conservation of energy 𝐸tot1 = 𝐸tot2
320 Q2305665 conservation of momentum 𝑝tot1 = 𝑝tot2

done via the python SimPy21 module. Although themain purpose of

the library is to provide process-based discrete-event simulations, it

can also be used to generate abstract syntax trees from formulae and

perform calculations. At the moment, only a single left-hand-side

identifier can be calculated using input values for the right-hand

side identifiers. In the future, we plan to use Computer Algebra

Systems (CAS) to rearrange formulae such that each occurring

identifier can be calculated.

5 EVALUATION

To introduce benchmark results for mathematical question answer-

ing on open data, we evaluated our system on a formula set (Table

1), which was persisted on the MathMLben benchmark platform

from [35]. Using graduated domain experts from physics, we as-

sessed over 7,000 results in 15 different evaluation modes (as in [5]).

Modes 1-6 (identifier semantics) are preparation steps for modes 7-

12 (semantic search). All evaluation scripts and tables can be found

in the respective mode folders in the MathQA repository at https://

github.com/ag-gipp/MathQA/tree/master/evaluation/semanticsearch.

5.1 Evaluation Modes, Metrics, and Examples

In the following, we will describe the evaluation modes (input

and output), metrics (accuracy, ranking), and examples (formula

benchmark) we employed.

Evaluation Modes. To evaluate the semantic search capabilities

of our system, we assessed its performance to

• search identifier names by symbols,

• search identifier symbols by names,

• search formula strings by identifier symbols,

• search formula strings by identifier names,

• search formula strings by formula names.

Table 2 lists the resulting 15 different evaluation modes. The

following evaluation sections will refer to the mode numbers. We

will divide thematically into identifier names vs. symbols (modes

1-6), identifier relationship questions (modes 7-12), and formula

concept name retrieval (modes 13-15). For modes 1-15, we framed

21https://simpy.readthedocs.io/en/latest

https://query.wikidata.org
https://query.wikidata.org
https://w.wiki/39RQ
https://w.wiki/39RR
https://w.wiki/$vr
https://pypi.org/project/Flask
https://stanfordnlp.github.io/CoreNLP
https://www.nltk.org
https://github.com/wikimedia/pywikibot
https://pypi.org/project/sparql-client
https://mathmlben.wmflabs.org
https://mathmlben.wmflabs.org
https://github.com/ag-gipp/MathQA/tree/master/evaluation/semanticsearch
https://github.com/ag-gipp/MathQA/tree/master/evaluation/semanticsearch
https://simpy.readthedocs.io/en/latest
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Table 2: Evaluation mode 1-15 results for formula con-

cept and identifier name or symbol queries using arXiv or

Wikipedia indices or Wikidata SPAQRL queries. Only mode

15 (orange) was previously available. Modes 1-14 (blue) are

contribution of this paper.

Mode Query Top1 Acc. mean(DCG)

1 names to symbols, arXiv 0.24 0.82

2 names to symbols, Wikipedia 0.31 0.92

3 names to symbols, Wikdata 0.12 0.20

4 symbols to names, arXiv 0.37 0.79

5 symbols to names, Wikipedia 0.12 0.54

6 symbols to names, Wikdata 0.22 0.20

7 identifier names, arXiv 0.06 0.23

8 identifier names, Wikipedia 0.03 0.24

9 identifier names, Wikdata 0.85 0.98

10 identifier symbols, arXiv 0.00 0.00

11 identifier symbols, Wikipedia 0.24 0.98

12 identifier symbols, Wikdata 0.48 0.46

13 formula names, arXiv 0.00 0.00

14 formula names, Wikipedia 0.17 0.98

15 formula names, Wikdata 0.52 1.03

the evaluation as a ranking problem (calculating accuracy and rank-

ing quality), aiming to determine the best source (arXiv, Wikipedia

or Wikidata) to be used in our system. For mode 15, we additionally

compared our system to commercial competitors (knowledge-base

and calculation-engine Wolfram Alpha and search-engine Google).

Evaluation Metrics. For each of our 15 different evaluationmodes,

we calculated the top1 accuracy and Discounted Cumulative Gain

(DCG). In each mode and result, the system could score either 0

points (irrelevant), 1 point (relevant), or 2 points (exact match as

in benchmark). We assessed the top10 results. Using this score, we

could calculate the top1 accuracy as the number of results with score

1 or 2 divided by the total number of evaluations. The Discounted

Cumulative Gain (DCG) ranking performance measure is calculated

according to [43] as

DCGp =

𝑝∑

𝑖=1

𝑟𝑒𝑙𝑖

log2 (𝑖 + 1)
,

where 𝑟𝑒𝑙𝑖 is the relevance (here 0, 1 or 2) at position i and p is

the ranking scale cutoff (here position 10). In some cases, an Ideal

Discounted Cumulative Gain (IDCG) can be set to calculate a nor-

malized DCG (nDCG). In our case, we could not estimate an IDCG.

One possibility would be to assign 2 points for each of the ten rank-

ing positions. This would yield an IDCG of
∑10
𝑖=1 2/𝑙𝑜𝑔2 (𝑖+1) = 9.09.

However, providing the exact benchmark match at each of the ten

positions is very unlikely. Moreover, having the exact match (2

points) at position 1 and relevant hits (1 point) at each subsequent

is not realistic either as ten identifier names or symbol synonyms

often do not even exist. Each other possibility, e.g., 2 points first,

followed by four times 1 point, and five times 0 points, is arbitrary.

Therefore, we did not calculate an IDCG and nDCG.

Evaluation Examples. Our examples test set (Table 1) was cre-

ated from a selection of 25 physics Wikipedia articles, for which

formula and identifier entities were linked using a formula and

identifier name annotation recommender system [40]. The for-

mula selection is persisted on the benchmark platform MathMLben

(https://mathmlben.wmflabs.org) ranging form GoldID 310 to 375.

For each example formula, a GoldID represents the numbering. It

also corresponds to the Wikidata QID of the concept item and its

name. The constituting identifiers (e.g., E, m, and c for 𝐸 = 𝑚𝑐2)

are annotated and linked to Wikidata items using either the ‘has

part’(P527) or ‘calculated from’ (P4934) Wikidata properties. The

formula and identifier names and symbols are used as query inputs,

as described in the following subsections.

5.2 Formula Identifier Symbol and Name
Relationships

Modes 1-6 prepare the evaluation of the semantic formula search

(modes 7-12). It is assessed how accurate identifier names can be

translated into symbols and vice versa. Example questions could

be ‘What are the symbols for energy?’ or ‘What are the meanings

of the symbol E?’. To implement a semantic search on a formula

database that is not semantically indexed, i.e., identifier names are

not annotated, we need to translate the user’s natural language

query into symbolic language first (modes 1-3). Subsequently, after

parsing, formulae can be found using their constituting identifier

symbols. On the other hand, if we already have a semantic index,

we can also query it using symbols after the translation (modes 4-6).

In the following, we discuss the evaluation execution and results

for the index sources arXiv, Wikipedia, and Wikidata, respectively.

MathQA on arXiv and Wikipedia. To evaluate the translation of

identifier names to symbols and vice versa on the arXiv (modes 1

and 4) and Wikipedia (modes 2 and 5), we employed the respective

semantic identifier indices, which were previously created from the

NTCIR 11/12 arXiv dataset and Wikipedia (see Section 3.5). Each

index is sorted by the ranking score (occurrence frequency of an

identifier name-symbol relationship). For each example query for-

mula from the benchmark (Table 1), all annotated identifier names

and symbols are extracted. For each symbol or name, the top10

ranked results are then evaluated. For each result, we assess (score,

rank) tuples to calculate the DCG ranking measure as described in

Section 5.1. Table 3 shows example results for the arXiv (modes 1

and 4). With around 250 identifier name-symbol pairs, almost 500

query predictions (translation in both directions) had to be assessed.

The evaluation is analogous for Wikipedia (modes 2 and 5) with

an additional 500 evaluation table rows. The scripts and tables for

prediction and scoring can be found in the respective mode folder

of the MathQA repository.

MathQA on Wikidata. To evaluate the identifier name-symbol

translation prediction of MathQA on Wikidata (modes 3 and 6), we

employed SPARQL queries to retrieve the result candidates (see

Section 4). First, a SPARQL query was compiled to find all items

with ’quantity symbol (LaTeX)’ (P7973) or ’quantity symbol (string)’

(P416) or ’in defining formula’ (P7235) in a union list. We had 84

results for P416, 1248 for P7973, and 599 for P7235, i.e., 1931 in

total. Second, the items were used to create a semantic index for

identifier names and symbols, respectively, as for the arXiv and

Wikipedia. Since the Wikidata ‘corpus’ is smaller than the other

source corporae, we only had results for 195 of the 500 queries.

https://mathmlben.wmflabs.org
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Table 3: Example evaluation mode 1 and 4 results (first two GoldIDs) for identifier symbol-name relationship index that was

created from the NTCIR arXiv 11/12 dataset [8]. Exact match to benchmark score 2 points, also relevant related results 1 point.

The list (modes 1 and 4) is continued with 489 additional queries (total 498) and structurally identical to the one forWikipedia

(modes 2 and 5).

GoldID Query Benchmark Matches (Score, Rank) DCG

310 a acceleration - - 0

310 v velocity velocity, vector, speed (2,2), (1,5), (1,10) 1.94

310 t duration time (1,1) 1

310 acceleration a a, g (2,1), (1,4) 1.69

310 velocity v v, c, V, u (2,1), (1,2), (1,4), (1,5) 3.45

310 duration t 𝜏 (1,3) 0.5

311 𝛼 angular acceleration - - 0

311 𝜔 angular velocity frequency, oscillator, harmonic (1,1), (1,8), (1,9) 1.62

311 t duration time (1,1) 1

312-375 ... ... ... ... ...

The missing ones were treated as scoring zeros. For mode 3 (names

to symbols), the retrieved results scored a DCG of 0.25, yielding

0.20 taking into account the missing results. The top1 accuracy

was 0.16 and 0.12, respectively. For mode 6 (symbols to names),

the retrieved results scored a DCG of 0.34, yielding 0.20 taking

into account the missing results. The top1 accuracy was 0.36 and

0.22, respectively. Comparing the two modes, it is apparent that

the symbol-to-name conversion performs better than the name to

symbol conversion. This contrasts the overall results for all sources

(see next paragraph). Due to the small size of the Wikidata index, it

may not be representative.

Comparison. Table 2 shows the results of modes 1-6, comparing

top1 accuracy and mean DCG. Comparing the mapping directions,

we find that modes 1-3 (’names to symbols’) perform better than

modes 4-6 (’symbols to names’) in terms of mean DCG (0.65 vs.

0.51), but slightly less in terms of top1 accuracy (0.22 vs. 0.23).

This suggests the assumption that identifier symbols are more

ambiguous than identifier names. For a given symbol, there are

more potential names than there are symbols for a given name.

Comparing the index sources, we find that modes 1 and 4 (‘arXiv’)

perform better than modes 2 and 5 (’Wikipedia’) and modes 3 and 6

(’Wikidata’) both in terms of mean DCG (0.81 vs. 0.73 vs. 0.20) and

top1 accuracy (0.30 vs. 0.21 vs. 0.17). The arXiv is most, Wikidata

least efficient as a source to provide a semantic formula search by

using identifier name or symbol relationships. Since the corpus

size decreases from the arXiv to Wikipedia to Wikidata, this is

an indication that corpus size helps to improve index quality (the

larger, the better).

5.3 Formula Identifier Name or Symbol
Relationship Questions

Modes 7-12 evaluate the semantic search of formulae by their con-

stituting identifier names or symbols. Example questions could be

‘What is the relationship between mass and energy?’ or ‘What is

the relation between the symbols m and E?’. For each mode and

example, we evaluated the top10 ranked prediction of the different

semantic indices for identifier and formulae (see Section 3.5). This

yields a total of 6 x 66 = 396 queries to evaluate. As the formula

indices are large, the semantic search provided more results, from

which we only considered the top ten for each query.

MathQA on arXiv and Wikipedia. Querying the NTCIR arXiv

and Wikipedia formula indices for identifier relationships yielded a

total 4225 formulae for the combinations of constituting identifiers

(names or symbols). We also tested querying the formula index

using multiple possibilities for each identifier name or symbol (e.g.,

symbols 𝐸 and 𝜖 for the name ‘energy’ - or names ‘time’ and ‘dura-

tion for the symbol 𝑡 ). However, due to low accuracy, we discarded

these modes. For each formula, the system also retrieved the name

of the arXiv document (e.g., ‘astro-ph0203007.tei’) or Wikipedia

article (e.g., ‘Acceleration.html’). The number of results per example

query (GoldID) varied between zero (e.g., for ‘angular acceleration’)

to one (e.g., for ‘electromagnetic force’) to a maximum of 967 for

‘momentum’ (i.e., querying the relationship between momentum,

mass, and velocity or p, m and v respectively). The fraction of the

total retrieved formulae from the arXiv and Wikipedia indices is

4225 / 135997 = 3.1%.

MathQA on Wikidata. Querying Wikidata for identifier relation-

ships yielded a total 11285 formulae for the combinations of consti-

tuting identifiers (names or symbols). As for the identifier name and

symbol translations (modes 1-6), we employed SPARQL queries. We

retrieved identifier relationships via ‘has part’(P527) or ‘calculated

from’ (P4934) Wikidata item properties. Unfortunately, sometimes

the right-hand side of a formula is not annotated, leading to fewer

results for the name queries (mode 9). Fortunately, the symbol

queries (mode 12) are not affected. They search for occurrences

of the given symbols (resp. their combinations) in the mathml22

formula strings of the Wikidata item’s ‘defining formula’ property

(P2534). The SPARQL queries yielded 10048 results for mode 9 but

only 1237 for mode 12. Apparently, there are already a lot of items

22https://www.w3.org/Math

https://www.w3.org/Math
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where the identifiers are annotated with their names. Due to the

ambiguity of the identifier symbols, it is more favorable to query

by names, and we suspect that users will also prefer this mode.

Comparison. Table 2 shows the results of modes 7-12, comparing

top1 accuracy and mean DCG. Comparing the query types, we find

that querying by identifier names (modes 7-9) outperforms symbols

(modes 10-12) in terms of top1 accuracy (0.31 vs. 0.24), while both

types are equally good (0.48) in terms of mean DCG. A priori, we

could not find a reason why one should outperform the other apart

from the fact that symbols are more ambiguous than names since

the vocabulary is much smaller. Comparing the index sources, we

find that modes 9 and 12 (’Wikidata’) perform better than modes 8

and 11 (’Wikipedia’) and modes 7 and 10 (‘arXiv’) both in terms of

mean DCG (0.72 vs. 0.61 vs. 0.12) and top1 accuracy (0.67 vs. 0.14 vs.

0.03). Here interestingly, a smaller index corpus size leads to more

precision. This indicates that for the smaller corpora, the formula

index is performing better than the identifier index.

5.4 Formula Concept Name Questions

Modes 13-15 evaluate the retrieval of formulae by their concept

names (e.g., ‘What is the formula for mass-energy equivalence?’

yielding 𝐸 = 𝑚𝑐2). While for the arXiv and Wikipedia (modes 13

and 14), we created a semantic index for formulae (in analogy to

the identifier indices), for Wikidata (mode 15), the formulae are

directly retrieved using a SPARQL query (see Section 4). Mode 15 is

deployed in the live MathQA system, as it yielded the best results.

MathQA on arXiv andWikipedia. Querying the NTCIR arXiv and

Wikipedia semantic formula index catalogs, we were confronted

with the problem of retrieving very short formulae as top results

(e.g., 𝑡 = 0), which were mostly not relevant results. The reason

is that formulae are ranked by the frequency of their occurrence

(number of duplicates) in the corpus, and apparently, the short

ones appear more often than the long ones. We tried to get more

relevant results by inverting the ranking but could not improve the

quality this way. Unfortunately, for the arXiv, the top1 accuracy

and mean DCG is even zero, meaning that there were no relevant

results (scoring 1 or 2) within the top10 hits. The Wikipedia index

performed much better with a top1 accuracy of 0.17 (17% of the

first hits were relevant) and mean DCG of 0.98, which is close to

the performance when querying Wikidata (see the comparison in

Table 2).

MathQA on Wikidata (Comparison to Commercial Systems). As

for modes 3, 6, 9, and 12, we retrieved the formula results for mode

15 from Wikidata using a SPARQL query. Besides comparing it

to the other index sources (arXiv and Wikipedia), we carried out

an additional competition against a commercial knowledge base

(Wolfram Alpha) and commercial search engine (Google). Mode 15

is the only one in which MathQA can be compared to its external

competitors, as they do not allow for the other modes. Figure 4

shows screenshots of the results of the different competing systems

for an example formula (GoldID 363) from our test set. MathQA

(above) and Google (below) display the same formula, but only

MathQA allows for calculation. Wolfram Alpha (middle) also al-

lows for calculation but using a different formula with different

identifiers, which is relevant too. Table 4 lists the formulae retrieved

Figure 4: Screenshots of MathQA (above), Wolfram Alpha

(middle), and Google (below) answering the same question:

"what is the formula for speed?". Coloring will be reused in

Table 4.

by the three systems for the first five example query concept names

(GoldID 310-315 in Table 1). For each system and GoldID, we eval-

uated whether a formula is displayed and relevant. Besides, the

availability of a calculation is assessed. For Google, we additionally

report the availability of a box around the formula in contrast to

only highlighting the formula result in the text of a web page. The

Google formula box is only available in the English language at the

moment. The results of our investigation can be found in the evalu-

ation folder at https://github.com/ag-gipp/MathQA/blob/master/

evaluation/semanticsearch/evalresultsMQAvsWAvsG.pdf. For clar-

ity, the coloring scheme is the same in Figure 4, Table 4, and the

result table. Wolfram Alpha yields relevant formulae in 48% of

the queries, 81% of which can be used to calculate the occurring

quantities. MathQA performs slightly better with 52% relevant hits

and almost equal 80% calculation availability. Google provides rel-

evant results in 68% of the cases. However, only in 58%, a boxed

formula is displayed and thus performing comparably to the other

systems. Still, Google slightly outperforms the other two, which

is not surprising given its expertise and budget. Yet, Google only

in one case (GoldID 218: ‘circumference’), i.e., 2% the possibility

https://github.com/ag-gipp/MathQA/blob/master/evaluation/semanticsearch/evalresultsMQAvsWAvsG.pdf
https://github.com/ag-gipp/MathQA/blob/master/evaluation/semanticsearch/evalresultsMQAvsWAvsG.pdf
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Table 4: Query results for formula name questions. For the first five benchmark examples, the formula retrieved by MathQA

(blue) is compared to the results of a commercial knowledge base (Wolfram Alpha, pink) and search engine (Google, lime).

Query Concept Name MathQA Formula Wolfram Alpha Formula Google Formula

acceleration 𝑎 = 𝑑𝑣/𝑑𝑡 𝑣 = 𝑎𝑡 𝑎 = Δ𝑣/Δ𝑡

angular acceleration 𝛼 = 𝑑𝜔/𝑑𝑡 𝜔 = 𝛼𝑡 𝛼 = Δ𝜔/Δ𝑡

angular frequency 𝜔 = 2𝜋 𝑓 𝜈 = 𝜔/(2𝜋) 𝜔 = 2𝜋/𝑡

angular momentum 𝐿 = 𝑟 × 𝑝 𝐿 = 𝐼𝜔, 𝜔 = 2𝜋𝑛 𝐿 =𝑚𝑣𝑟

angular velocity 𝜔 = 𝑑𝜑/𝑑𝑡 · 𝑢 𝜔 = 𝛼𝑡 𝜔 = Δ𝜃/Δ𝑡

to calculate is enabled. One reason why MathQA could often not

retrieve and display a formula is that for many of the cases, it links

to Wikidata disambiguation page items. For example, ‘work’ can be

either ‘energy transferred to an object via the application of force

on it through a displacement’ (Q42213) or ‘physical or virtual object

made by humans’ (Q386724). Both items have the same name.

Comparison. Table 2 shows the results of modes 13-15, compar-

ing top1 accuracy and mean DCG. Comparing the index sources,

we find that, like for modes 7-12, Wikidata performs better than

Wikipedia and the arXiv. This supports our assumption that for-

mula name indices created from smaller corpora are more precise,

in contrast to the results for the identifier name-symbol mappings.

A question like ‘What is the formula for symbol E?’ would not

be reasonable due to the large symbol ambiguity. This is why we

did not evaluate the respective additional modes 16-18. As for the

identifier relationship questions (modes 7-12), Wikidata performs

best and is therefore also deployed for the formula concept name

questions (modes 13-15) in the live version of MathQA.

6 DISCUSSION

In this section, we describe our dataset benchmarking and discuss

challenges with data and format impermanence of Wikidata.

6.1 Benchmarking

We introduce a benchmark for mathematical question answering

in 15 evaluation modes on open formula data (Wikidata, Wikipedia,

arXiv). The selection and results are persisted in the MathMLben

and MathQA repositories (see Section 5). In the live version of our

system, we deployed the best performing modes: Wikidata queries

using Pywikibot (formula string retrieval via formula concept name)

and Wikidata SPARQL queries (formula string retrieval via iden-

tifier names). After paper publication, we will add a reference to

our sample dataset, evaluation metrics, and results to benchmark

platforms, such as Papers With Code23. The repositories contain

all necessary data persisted to reproduce the results and potentially

compare and present improved systems. This is required since

Wikipedia and Wikidata are constantly changing. To reproduce

results on raw open data, the respective dumps of Wikipedia24 and

Wikidata 25 can be employed. For queries on data dumps, Tanon et

23https://paperswithcode.com/task/mathematical-question-answering
24https://archive.org/details/enwiki-20210120
25https://archive.org/details/wikibase-wikidatawiki-20210120

al. introduced [44] a SPARQL endpoint for Wikidata history26. The

impermanence of the data model and content change of Wikidata

is discussed in the next section.

6.2 Challenges and Limitations

Wikidata data model. Employing open databases, such as Wiki-

data for information retrieval tasks and systems, such as question

answering, has the advantage of profiting from a constantly grow-

ing community-curated collection of world knowledge. However,

there are some drawbacks, such as data model impermanence and

content change.

In the case of MathQA working on Wikidata, we noticed three

challenges that prevented the system from constantly providing

the same results:

• Wikidata users deleted the ‘defining formula’ for some items.

For example, the equation 𝑃𝑉 = 𝑛𝑅𝑇 was shifted from the

item ‘gas’ (Q11432) to ‘ideal gas law’ (Q191785), refining the

semantic context. This forced us to change the list of formula

name example questions.

• Wikidata users changed the formula identifier data model

in both property usage (from ‘has part’ to ‘in defining for-

mula’ / ‘symbol represents’) and sequence (from qualifier,

item, symbol to qualifier, symbol, item). See Figure 5 for an

illustration of the variants. This broke the functioning of the

relationship questions until code adaption.

• In the geometry items, the object attributes can either be

modeled as direct properties, e.g., ‘area’ (P2046) or ‘volume’

(P478) in the form property, formula. However, a commonly

used alternative is linking the attribute items instead as ‘has

quality’ (P1552) property, e.g., ‘area’ (Q11500) or ‘volume’

(Q39297) in the form property, item, formula. The emergence

of further alternatives potentially breaks the geometry ques-

tion functionality.

In summary, formulae can always be deleted from or shifted to

other items. Furthermore, different properties may be used to store

identifier semantics or geometric attributes. Aggravatingly, differ-

ent hierarchical sequence schemes may be employed (see Figure 5).

Notably, many attributes are available both as property and item

(e.g., ‘volume’ as P1552 and Q39297). Changes in property usages

and schemes are ideally discussed by the community on property

26https://github.com/Tpt/wikidata-sparql-history

https://paperswithcode.com/task/mathematical-question-answering
https://archive.org/details/enwiki-20210120
https://archive.org/details/wikibase-wikidatawiki-20210120
https://github.com/Tpt/wikidata-sparql-history
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Figure 5: Variants in the Wikidata formula identifier data

model (as of December, 29th 2021) in different schemes a)

.qualifier, item, symbol, and b) qualifier, symbol, item.

talk 27 and proposal28 pages. To make our system more robust, we

introduce a cache with an alert in case changes cause a previously

working query to be broken. Users can then inspect the respective

items to adapt the system. An interesting research question would

be to track such changes to predict potential extensions using rule-

based or statistical machine learning. This will help the system

to auto-repair, searching for identifier information by employing

semantic similarity metrics. Given data-query pairs, we can explore

predicting one from the other.

Further challenges. An additional challenge is the aforemen-

tioned issue that for some concept names, disambiguation page

items (e.g., for ‘work’) prevent the system from finding the math-

ematical item. Furthermore, the Stanford parser sometimes does

not provide the correct tree, especially for long concept names

involving verbs or adjectives, such as ‘Dirac equation in curved

spacetime (Q16853908)’. Lastly, some concepts have synonyms that

should link to the same formula concept, such as ‘electric force’ and

‘Coulomb force’ or ‘Mśsigma relation’ and ‘Faber-Jackson law.’

7 CONCLUSION AND OUTLOOK

In this section, we summarize our contributions and outline the

benefits and future directions of our work.

7.1 Conclusion

In this paper, we demonstrated how Mathematical Entity Linking

(MathEL) and Unsupervised Formula Labeling (UFL) can be used

for semantic formula search and mathematical question answering.

We implemented a system that can answer factoid natural language

questions yielding a formula. The system also displays names of

the constituting formula identifiers and values of constants if this

information is available on Wikidata. Moreover, it allows for a com-

putation using additional input values from the user. We tested our

system and retrieval methods on a selection of annotated formula

concepts, created from physics Wikipedia articles using a formula

and identifier name annotation recommender system. We evaluated

over 5,000 results in 15 different modes using identifier names and

symbols as input or output, respectively, or formula names as input

and strings as output, and Wikidata, Wikipedia, or the arXiv as

source for the index.

27https://www.wikidata.org/wiki/Property_talk:P4934
28https://www.wikidata.org/wiki/Wikidata:Property_proposal/symbol_represents

Research questions 1-3 are answered in Table 2 and Section 5.2

to 5.4. In the identifier name and symbol index evaluations, Wiki-

data outperformed Wikipedia and the arXiv as source in terms

of both top1 accuracy and Discounted Cumulative Gain (research

question 4). Based on the results, we decided to choose Wikidata

as source for the live version of MathQA since it is intended to

only display the highest-ranked formula. Besides, in contrast to

the other indices, which were fixed snapshots on the NTCIR 11/12

benchmark evaluation datasets, Wikidata is constantly extended by

new formulae. For the search of formula strings by formula names,

the Wikidata SPARQL query retrieval scored highest compared to

the semantic indices created from the arXiv and Wikipedia. Using

this best-performing mode, we compared our MathQA system to

a commercial knowledge-base and calculation-engine (Wolfram

Alpha) and search-engine (Google). While our system (52%) was

outperformed by Google (68%), it outperformed Wolfram Alpha

(48%). For 80% of the test formulae, MathQA could allow for cal-

culations (research question 5). The advantage of our system over

the commercial competitors is its transparency - being open source

and working on linked open data29. Moreover, Wolfram Alpha and

Google can only answer formula concept name questions (modes

13-15) and not identifier queries (modes 1-12). MathQA is available

hosted by Wikimedia at https://mathqa.wmflabs.org.

7.2 Outlook

Our MathQA system is intended to aid students and researchers

from STEM disciplines in finding formulae by querying concept

names or identifier relationships. To the best of our knowledge,

there is no comparable search engine available so far. Students can

get an overview of identifier relationships to understand connec-

tions between different identifier concepts better.

Future Work. So far, we did not implement the question type

‘What is the name of [formula string]?’ This is the classical mode of

a formula search engine, and we concentrate on the reverse modes,

i.e., searching formula strings by names. Although this is not the

focus of our research, we will extend this functionality. Moreover,

we aim to automate the index construction from arXiv datasets or

Wikipedia data dumps. MathQA should also return links to arXiv

papers or Wikipedia articles (possibly with the surrounding text

passage). However, as classical commercial search engines (e.g.,

Google) already provide this, it is again not our focus. What we

consider a more important next step is to include the units of the

identifiers [32], e.g., ‘Coulomb’ for ‘charge.’ However, the Wikidata

knowledge-graph still needs to be completed with this information.

Having crawled formula and identifier relationships, we can create

a graph of relevance relations, a ‘FormulaRank’ (in analogy to

‘TextRank’ [45] and ‘PageRank’ [46]) to get a concept map of a

specific subject ontology (e.g., in physics). Lastly, Entity Linking

to Wikidata items can possibly be used to support and enhance

mathematical document classification [38] by augmenting subject

class labels with concept labels. We will explore this in an upcoming

research project.

29This can however also be a bottleneck, since data quality is not ensured and protected.

https://www.wikidata.org/wiki/Property_talk:P4934
https://www.wikidata.org/wiki/Wikidata:Property_proposal/symbol_represents
https://mathqa.wmflabs.org
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