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ABSTRACT

Automatic processing of latent fingerprints can alleviate the subjec-
tivity inherent in feature markups done by examiners that may be
affected by factors such as visual perception, expertise and work-
load. Despite several benefits, the use of algorithmic decision sys-
tems is also associated with different risks for individuals, such as
discrimination and unfair practices. The goal of this paper is to
analyze the fairness of prediction and decision-making in foren-
sics through discovering and mitigation of biases in automated
algorithms operating on latent fingerprint images. Previous work
analyzes biases only in match scores without considering the im-
pact of image quality that is crucial to the reliability of the matching
algorithm. Furthermore, due to their learning-based nature, quality
predictors may be biased as well. In our previous work, we carried
out an ROC regression analysis related to the demographic effects
on latent fingerprint matching without considering the impact of
image quality. In this paper, we extract quality measures from latent
prints and consider them in the predictive model as an additional
covariate to the demographics. Experiments were carried out using
the FBI WVU BioCop 2008 database that contains 469 right-thumb
and 219 right-index latent fingerprint images with associated de-
mographics. Quality is estimated using the latent fingerprint image
quality (LFIQ) algorithm. Our findings show that the proposed
covariate-adjusted ROC curve conditioned on image quality and
demographics is a more informative assessment scheme than an
evaluation without quality.
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1 INTRODUCTION

Uncovering and clarifying biases in biometric technologies has re-
cently gained increasing interest. A lot of attention has focused on
how predictive models may be biased and how statistical and ma-
chine learning models’ performance differs along social axes such
as gender, age, and ethnicity [10, 19]. Algorithmic unfairness and its
impact on society is a critical concern for designers of Al systems
including biometric technologies. Discrimination may result from
different types of biases arising from the training data, technical
constraints or societal biases. When given new input data, a ma-
chine learning model generates values based on a model trained
using a certain dataset that may not account for variances in race,
sexual orientation or identity, or age; thus, the outcomes may very
negatively affect people’s lives. In this regard, facial recognition sys-
tems have been examined with respect to the demographic effects
and their dependence on image acquisition and findings confirm
that they are strongly related [5]. Fingerprint features have also
been related to age group (individuals born at a similar time), gen-
der (physical characteristics that distinguish males from females)
and ethnicity (common culture and origin) [8, 13, 18]. Fingerprint
texture offers one possible explanation for these differences.
Latent fingerprints are fingerprint impressions unintentionally
left on surfaces at a crime scene. They are crucial in crime scene
investigations for making identifications or exclusions of suspects.
This data often represents an incomplete or distorted impression
of a finger obtained when the body’s natural oils and sweat on the
skin are left on a surface. Thus, processing latent fingerprints usu-
ally requires the involvement of experts in determining the value
of the print as forensic evidence and only in the past few years
scientists have released fully automated approaches. An interesting
study by Yoon and Jain found that fingerprint match scores vary
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with covariates in terms of demographic differentials [28]. Later,
Marasco et al. utilized the idea of ROC regression techniques to
incorporate demographic differentials in the ROC curve. The result-
ing covariate-specific ROC curves were able to successfully provide
the interpretation of demographic bias by taking them into account
when assessing the system’s performance [17].

Recent research has only focused on gaining crucial insights
about how demographic differentials influence biometric matching.
Although image quality has been extensively used as a predictor of
matching performance, automated quality estimators have not been
investigated from a fairness perspective. The quality of a biometric
signal expresses its utility to an automated system intended as its
suitability to further process by the biometric system. Poor quality
fingerprint images do not have a clear pattern of ridge and valleys
and may result in spurious features and loss of identifiable infor-
mation. Factors such as adverse skin conditions (e.g., dry, creased)
can lower image quality and degrade performance. The importance
of quality has been extensively highlighted for sensor-based finger-
prints, its impact is even more significant in the presence of latent
fingerprint evidence. For latent prints, quality is also an indicator of
which type of evidence we are dealing with, which can help to use
a more accurate model for that specific case, where standard ROC
would not capture the variations in the sample. In the literature,
it is well-known that matching performance is highly impacted
by image quality [3]. Incorporating quality measures for latent fin-
gerprints enables a more objective assessment and mitigating of
algorithmic unfairness.

Previous work showed that demographic factors could influence
the performance of automatic latent matching algorithms. However,
the relationship between image quality and demographic effects
has not been investigated. In the proposed study, we address the
research question: "How do demographics affect the matching of
latent fingerprints of same image quality?". This work is inspired
by recent studies in which ROC curves are used to evaluate the
incremental effect of an additional marker in predicting a binary
event. ROC curves are a standard way to evaluate the ability of
a continuous marker to predict a binary outcome. The proposed
approach uses ROC curves derived from regression models, where
demographics and quality are both considered in the predictive
model [2, 16, 23, 25]. The fitted values from the regression model
are used to construct the ROC curve and compare it with the ROC
curve derived from the regression excluding quality.

The contribution of this paper is three-fold: i) Investigate how
demographic differentials affect the latent fingerprint image quality
(LFIQ) algorithm, ii) Study how demographics impact automatic
matching of latent fingerprints of the same quality, and iii) Discuss
the use of covariate-specific ROC regression incorporating not only
demographics but also LFIQ measures for a more fair assessment
compared to the standard ROC. The rest of the paper is organized as
follows: Section 2 reviews research conducted on latent fingerprint
image quality assessment, Section 3 describes the proposed quality-
based mitigation approach, Section 4 presents the experimental
results, Section 5 draws our conclusions and discusses future work.
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2 LITERATURE REVIEW

Methods for demographics estimation from fingerprints have
searched for gender clues in the ridge density structure that can be
encoded by the local texture [18, 22]. An important study on an op-
erational fingerprint database also revealed that fingerprint decision
scores vary with subjects’ demographic covariates [28]. The data
used in Yoon’s study were collected from records of the Michigan
State Police with TenPrint cards as acquisition type. They exper-
imentally confirmed that, for a given individual, genuine match
scores decrease over time, impostor scores do not significantly
vary, and that the accuracy remains stable. Image quality was con-
sidered as being the best covariate to explain the changes in the
genuine match scores. Since Yoon’s model only considers genuine
and impostors separately and focuses on regression, our proposed
framework could provide a more general approach applicable to
adopt demographic information, as well as the quality of the latent
prints.

A Latent Fingerprint Quality assessment was tasked by the FBI
to assess the quality of friction ridge images for use by latent print
examiners. Latent print examiners were tasked with providing an
assessment of overall image usefulness, pattern classification, and
anticipated difficulty for over 1,000 exemplar fingerprint images[6].
However, some unexplained variability by minutia could be due
to the lack of reproducibility of determinations among examiners.
Thus, Yoon et al. proposed a method of defining quality measure
for latent fingerprints, namely Latent Fingerprint Image Quality
(LFIQ), which can be used as a predictor of latent matching perfor-
mance. Based on the minutiae from latent image estimation, the
earlier LFIQ method defines a latent quality measure by combining
a qualitative quality feature (i.e., the average ridge clarity) and a
quantitative quality feature (i.e., the number of minutiae) to esti-
mate the objective target quality [29]. However, the earlier method
that features minutiae count is not a good measurement for latent
quality estimation in the presence of unreliable minutiae. Later on,
Yoon further incorporated i) the connectivity of good ridge quality
regions at the global level, ii) the reliability of minutiae, and iii) fin-
ger position estimation into the latent quality measurement (LFIQ)
[27]. The experimental results show that the modified LFIQ has
a high correlation with latent matching accuracy, and the model
can be effectively used to reveal the quality measurement of latent
fingerprint images.

LQMetric, an objective and automated algorithm to measure the
quality of latent prints, was designed to predict AFIS performance
as well as to augment or replace the informal subjective assessments
of quality used by latent print examiners [6, 15]. LQMetric has been
widely used since its release in 2014, it’s a multipurpose tool that
could provide assistance to examiners in determining which latents
are appropriate for image-only searching (as opposed to requiring
human-marked minutiae); replacing the informal “good”, “bad”,
and “ugly” categories; and in research evaluating the efficacy of
new latent print processing or development methods. Ezeobiejesi
proposed an automatic region-of-interest based latent fingerprint
quality assessment technique using deep learning. The experimen-
tal result has shown that in terms of predicting latent AFIS perfor-
mance, the quality prediction by their deep learning model performs
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better than the state-of-art latent fingerprint value determination
model [7].

A study by Dr. Ulery and Hicklin et al. proposed an introduction
on assessment of fingerprint value and minutia count, and how it
related to image clarity and feature content. The relationships were
modeled between features and determined values by 21 certified
latent print examiners in 1850 latent impressions [4]. The value of
the print being suitable for individualization was assessed using EFS
categories of value (VID), limited (VEO), and no value (NV). A “no
value” impression states that a comparison cannot be made solely
based on an individualized determination, regardless of quality. An
association was found between minutiae count and value assess-
ments; there was a high count of VEO and NV determinations and a
low count of VIDs [4]. However, unexplained variability by minutia
could be due to the lack of reproducibility of determinations among
examiners. It would be beneficial to develop quality and quantity
metrics to improve comparison accuracy and analyze underlying
relationships.

Later on, Hicklin et al. discussed how to correctly discern fric-
tion ridges in finger and hand prints, particularly its clarity. The
researchers used an analysis/comparison approach to understand
the difference between the value determinations made by latent
print examiners and examiners’ annotation of minutiae, features,
and image quality. The results yield a strong association between
minutia count and value determinations. This defined method can
be used in metrics, data interchanging, or as an aid in fingerprint
matching [11].

3 COVARIATE-SPECIFIC ROC CURVE

The Receiver Operating Characteristic (ROC) curve is a popular
way to evaluate and compare the accuracy of classification markers
when the outputs are continuous. Let Y be the continuous variable
representing these outputs, and we wish to model Pr[Y < j|X], the
probability of a response in value j or lower for subjects with covari-
ates X. While the pooled ROC curve does not take any covariates
into consideration, the covariate-specific ROC curve models the
covariate effects on the ROC curves[30].

Accounting for a set of covariates X = (Xj, ... ,Xp)T that may
represent subject demographics or image quality may provide more
specific error rates. We define the covariate-specific ROC curve as

ROCy(u) = 1 — F1 x(Fy y(1—w)), u€(0,1), (1)
where Fy x(t) = P(T < t|D = 1,X = x), is the distribution of the
genuine group conditional on the covariates, and F, ;(u) = inf{t €
R : Fo x(t) > u} is the quantile function of the imposter group [30].

The conditional distributions Fj x(¢) and F]_’l((u) for j € {0, 1},
are estimated from linear regression models on genuine and im-
poster match scores as follows:

Tj = yj(x) + aj(x)ej,j € {0, 1}, 2)
where the conditional mean and the conditional variance of T are
pj(x) = E(T|D = j,X = x) and ojz(x) = var(T|D = j,X = x)
given observed covariates X = x, respectively. And the error term
€j is independent of x. Then, for a given covariate x, the covariate-
specific ROC curve can be expressed as:

o) () = pra(x)
o1(x) o(x) 7

ROCx(u) = 1 - G1[Gy ' (1 - u) 3)
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Here G;(z) = P(z < ¢;j) is the distribution function of the regression
error term which is independent of covariates for i € {0, 1}. In this
paper, we assume that G(z) is the normal CDF, and the ROC curve
in (3) is the so-called binormal ROC curve. The derivation for this
expression can be found in [21] and [26].

We refer to the unknown source (i.e., the latent fingerprint evi-
dence) as Query Q while the one pertaining to the known source as
Reference R. The demographic covariates for the source subjects are
denoted similarly. For instance, the age variable pertaining to the
unknown source is referred to as Agep while the one pertaining to
the known source as Ageg. The same scheme is used for the gender
and ethnicity covariates. We used two regression models to account
for the effect of LFIQ on matching scores. The unique feature of the
regression models for the ROC curve is the inclusion of the label
term to indicate whether a matching score is genuine or imposter,
and also the inclusion of the interaction between covariates and the
label[30]. The interaction terms ensure that genuine and imposter
groups have different population means.

The first model accounting for the effect of only LFIQ score is
given by

Score ~ Po + pr * label + 1 * LFIQ + Pry * LFIQ * label,
(Model A)
where the variable label equals ’1” if the two images are from
the same subjects, otherwise *0’. To account for the demographics,
the second model includes age, gender and ethnicity as follows:

Score ~ fo + P * label + By * LFIQ + B2 * Ageg + fi3 * Ager
+p4 = Genderg + f5 x Genderg
+f * Ethnicityg + f7 * Ethnicityg + fr1 * LFIQ * label
+PBr2 * Ageg * label
+pL3 * Genderg = label + B4 * Ethnicityg = label.
(Model B)
In the model, Agep and Ageg indicate the age of the two im-
ages being compared, while Genderp and Genderg represent their
gender category (male or female), and Ethnicitygp and Ethnicityg
represent their Ethnicity category (caucasian or non-caucasian).
Specifically, when the subject is male, then gender equals '1’, when
the subject is caucasian, then ethnicity equals '1’. We only con-
sider the interaction term of label and the demographics of the
unknown source (e.g., Agep) because if label=1, the Score is from
comparing the fingerprints of the same person, and hence the de-
mographics of the unknown source and the reference are the same
(e.g., Agep = Ager). When label=0, then the interaction term is
also equal to 0. Hence, there’s no need for the proposed model to
include both interaction terms. After the model above is estimated,
the regression results can be used to compose the covariate-specific
ROC curve in Eqn. (3), then the accuracy of computer algorithms
can be estimated by the curves and can also be summarized using
the area under the ROC curve (AUC).

3.1 Image Quality from Latent Prints

A deep network-based minutiae extractor, referred to as Minuti-
aeNet, is used to obtain the minutia points from the input latent fin-
gerprint image. LFIQ is then applied to the minutiae map extracted
in the previous step to estimate image quality. The algorithms can
only be applied to latent prints with more than five minutiae points.
LFIQ is computed by three components, i.e., ridge quality expressed
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as local ridge continuity, minutiae reliability and finger position. A
diagram illustrating the information flow of the proposed approach
can be seen in Fig. 1.

3.1.1 MinutiaeNet. Fingerprint comparison is primarily based on
minutiae points comparison. Several hand-crafted approaches have
been used to augment the minutiae with their attributes to improve
the recognition accuracy [14]. However, a robust automatic fin-
gerprint minutiae extraction that’s suitable for noisy fingerprint
images, continues to be a bottleneck in fingerprint recognition tech-
niques. With rapid developments in computer technology, deep
learning approach has been used by other researchers for minutiae
extraction. Typically, minutiae extraction and matching involve pre-
processing stages such as ridge extraction and ridge thinning men-
tioned above, followed by minutiae extraction, and some heuristics
to define minutiae attributes [14]. While such an approach performs
well for high-quality images, its performance does degrade for poor
quality rolled/plain prints, in particular for latent prints.

Extracting minutiae automatically from latent prints is a chal-
lenging task. Tang et al. utilized the idea of object detection (non-
maximum suppression) to detect candidate minutiae location and
orientation, but it suffers from two major weaknesses such as hard
threshold to delete the candidate patches, and the use of plain
stacked CNN that suffers from vanishing gradient [24].

For this paper, a fully automatic minutiae extractor called Minu-
tiaeNet is used for minutiae extraction; specifically, we use the
MinutiaeNet introduced by Cao and Nguyen et al. [1]. This tool
consists of a robust patch-based minutiae classifier that significantly
boosts the precision and recall of candidate patches. This approach
could provide reliable minutiae location and orientation without
using a hard threshold or fine-tuning. This method uses residual
net instead of just plain stacked convolutional layers to make the
classifier more precise [9]. The experimental results show that the
MinutiaeNet is robust and has superior performance in terms of
precision, recall and F1 values over the published state-of-the-art
on both benchmark datasets, namely FVC 2004 and NIST SD27
[20]. The architecture is based on two deep neural networks called
CoarseNet and FineNet. CoarseNet uses a residual learning-based
convolutional neural network with fingerprint domain knowledge
to predict the minutiae score map and minutiae orientation. This
minutiae score map is generated using latent fingerprint as a pri-
mary input and the corresponding enhanced image, segmentation
map, and orientation field as a secondary input. FineNet, on the
other hand, is a minutiae classifier based on an inception resid-
ual network that processes each candidate patch to improve the
minutiae score map and approximate minutiae orientation using
regression [20].

In case of only small amount of candidate minutiae given, an
adaptive threshold was applied in minutiae classifier - FineNet for
determining final minutiae:

0.45, if Ny > 20
045-n, ifN, <20
ne{0.05,0.1,0.15 . .. 0.40}

Threshold =

where Ny, is the number of candidates minutiae for each latent
fingerprint. This adaptive threshold will obtain all candidate points
over 45% threshold, plus additional top-ranking candidates until
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either minimum threshold of 0.05 is reached or at least 20 minutiae
points are provided.

The result is shown in Fig. 2, minutiae points extracted from
right index and right thumb with different background noise are
illustrated. The algorithm works well in difficult situations such as
Fig.2(a) distorted, Fig.2(b) occluded, and Fig.2(c) partial latent fin-
gerprints which demonstrated its robustness to noisy background.
The orientation field of two latent impressions marked in Fig.2(d)
and 2(e) show the CoarseNet mapping suffers poor performance
from dry latent that are extremely low contrast in grey-scale (com-
pared to background), due to the discontinuity of broken ridges.
The algorithm failed to detect the correct center of a latent at the
beginning, this is caused by the weak continuity of true ridges has
been further coarsened into background noise while residual neural
nets are fused to get the final minutiae score map. In fact, these
phenomena commonly happen to latent fingerprints that belong to
the no value (NV) category due to the texture of the ridges becomes
indistinguishable even by a professional examiner’s eye.

3.1.2  Latent Fingerprint Image Quality (LFIQ). LFIQ score can be
an independent latent fingerprint’s quality indicator for evaluating
the matching performance of any existing Automated Fingerprint
Identification System (AFIS). This proposed model can be effectively
used to i) automatize quality measurement of latent fingerprint
images and ii) assist latent examiners in their value determination
[27].

The objective quality metric for latent fingerprints is the Latent
Fingerprint Image Quality (LFIQ). It can be utilized to successfully
distinguish high-quality latent fingerprints that don’t require hu-
man intervention, as well as compensate for the subjective aspect
of value determination by latent examiners.

The LFIQ is determined by three parameters that affect the qual-
ity of latent fingerprints: (i) ridge quality, (ii) minutiae reliability,
and (iii) finger position. Local ridge clarity and the friction ridge
regions with high ridge clarity determine ridge quality. The relia-
bility of minutia is determined by its likelihood of being a genuine
minutia. The position of a finger is determined by detecting the
reference point (e.g., core point(s) or maximum curvature point for
arch-type fingerprints) and assigning high weights to minutiae in
the central regions of the finger in the LFIQ computation [27]

3.1.3  Latent Quality Score Computation. For each triangle T;
3
QT,' = Qri Z Qm,-ijij’
Jj=1

Where Qy, is the average ridge quality in T;, Oy, j is the Reliability
of j-th minutia of T;, and Wy, ; is the weight based on the finger
position. The quality score of a latent is computed as follows:

N
LFIQ = ) Qr,.
i=1

where N is the number of triangles in the latent print. LFIQ requires
the least amount of 5 candidate minutiae to achieve any meaningful
result (LFIQ > 0).
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Figure 1: The LFIQ extraction process.

Figure 2: Sample images result from MinutiaeNet on right thumb finger from the FBI Biometric Collection (BioCoP) Next Gen-
eration Identification Phase 1 (2008 - 2009) dataset[12]: (a) occluded (b) partial and (c) distorted latent fingerprint impressions;
(d) and (e) are wrongful orientation field (red area) obtained from the low contrast dry-latent print (unsurprisingly LFIQ = 0).
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4 EXPERIMENTAL RESULTS

4.1 Dataset

The dataset used in this study is a subset of the FBI Biometric
Collection of People (BioCoP) Next Generation Identification Phase
1 (2008 - 2009) [12]. The data collection involved the acquisition
of latent-deposited fingerprints on common materials as well as
standard ink and paper methods. The ink and paper data was used
as an exemplar set for both electronic capture performed using
BioCOP and the latent substrate capture. Each scanned image is
saved as a grayscale type image with a resolution of 1000 ppi. These
fingerprints pertained to a total of 1504 subjects and were collected
at West Virginia University. There was a nearly equal amount of
male to female participants with 52% to 48% ratio. Also, among the
participants, the age group between 18-29 was highest accounting
for 74% percent of people, 8% between 30-39 years old, 7% between
40-49 years old and 11% above 50 years old. Among the ethnicity,
Caucasians accounted for 79% of the people, only 6.2% Asian, 3.8%
Asian Indian, 3.7% African American, 2.4% African, 2.1% Hispanic.
For the experiments of this paper, we use the right index and right
thumb.

The latent fingerprints collection was carried out by gloving
the subject’s hands with nitrile gloves that induce sweating re-
quired for the development of the first latent fingerprints. Three
quality sets were needed, good, bad and ugly, so that three whole
or partial impressions for each finger were made on each of the
substrates. Three different substrates were used: paper, plastic, and
glass/porcelain. The items were separated based on substrate type
and processed in one of three ways: i) chemical (ninhydrin) pro-
cessing, ii) cyanoacrylate processing, iii) lift cards (processed with
black fingerprint powder at the collection site). All fingerprints
processed with cyanoacrylate were digitally photographed, while
all ninhydrin and black powder fingerprints were scanned.

4.2 Latent-to-reference print comparison

The match scores in this paper were obtained using the end-to-end
latent fingerprint search system recently published by Cao et al..
The algorithm does include automated ridge structure cropping,
latent image pre-processing, feature extraction, feature comparison,
and outputs a candidate list. The model is robust to poor quality
latents by generated a set of virtual minutiae to construct a texture
template. This fully automated latent search system was evaluated
on NIST SD27 (258 latents); MSP (1,200 latents), WVU (449 latents)
and N2N (10,000 latents) against a background set of 100K rolled
prints, which includes the true rolled mates of the latents with rank-
1 retrieval rates of 65.7%, 69.4%, 65.5%, and 7.6% respectively[1].

4.3 Results

Fig. 3 shows the distributions of the genuine and impostors match
scores generated using the MSU identification system for right
index and right thumb.

Fig. 4 illustrates how demographics impact LFIQ measures. Fig.
4 (a) points out instead that LFIQ differs across different age groups
with the younger population achieving the highest scores (LFIQ >
60) while the subjects greater than 41 years old exhibit an upper
bound of only LFIQ = 20. Fig. 4 (b) suggests that there is no trend
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with respect to gender, which may be due to a lack of textural infor-
mation capture by the LFIQ algorithm. From the literature, gender
estimation from fingerprints does exploit textural differences be-
tween males and females. Similarly, Fig. 4 (c) highlights that higher
LFIQ scores are more likely to be achieved by the Non-Caucasian
population. The same behavior can be found in Fig. 4 for the right
thumb finger as we can see in (d), (e) and (f).

We examine how the ROC curve varies conditioning on observed
covariates by reporting the regression results for the two covariate-
specific ROC models: Model A and Model B. Various classifiers are
capable of predicting the likelihood of a sample belonging to a class.
A probabilistic classifier is implemented by setting a threshold that
divides the entire data into different classes. The results shown in
Table 1 were used to compute the sensitivities of the right index
and the right thumb fingers. The residual plots of Model B for the
right index indicate that the linear model fits the data very well and
also validates the model’s normality assumption. Similar results
have been observed in right thumb data and also in Model A. The
significant interaction terms, as we can see in Table 1, indicate
the mean difference between genuine and imposter scores changes
with covariates. For example, Model B for the right index fingers
has significant interaction terms, LFIQ*label, GenderQ *label and
Ethnicityg*label. This indicates that the difference in mean scores
between genuine and imposter groups change when LFIQ scores
or age change. The difference in mean matching scores between
genuine and imposter groups also change with ethnicity levels. For
the right thumb, significant interaction terms indicate the difference
in mean matching scores between genuine and imposter groups
change as LFIQ scores and for different gender change. The mean
difference is a main component in the ROC curve expression. Sig-
nificant interactions imply when the covariates change, the ROC
curve adjusting for the covariates tends to have significant changes.

Table 1: Result of the designed covariate-specific ROC Mod-
els

Right Index Right Thumb

Model (A) (B) (A) (B)
Intercept 1.5756* | 1.3017* | 1.8731* | 1.8833*
Label 0.4419* | -0.3022 | 0.6196* | 0.4667*
LFIQ 0.0227* | 0.0229* | 0.0177* | 0.0175*
Ageg - 0.0015* - -0.0025*
Ageg - 0.0021* - 0.0020*
Genderg - 0.0797* - 0.0167*
Genderg - 0.1057* - 0.0930*
Ethnicityg - 0.0624* - -0.0827*
Ethnicityg - 0.0251%* - 0.0117
LFIQ*label 0.0257* | 0.0266* | 0.0216* | 0.0210*
Agegp*label - 0.0091 - 0.0034
Genderp*label - 0.4077 * - 0.2535*
Ethnicityg*label - 0.3453* - -0.0742

* p-value<0.05

Fig.5 shows the ROC curves based on Model A only considering
LFIQ score, and the corresponding AUC values are also reported
in the figure. Here, the 25”’, 50”’, and 75" percentiles of LFIQ
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Figure 3: Distributions of the Genuine and Impostor Match Scores: (a) Right Index and (b) Right Thumb.
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Figure 4: Distributions of LFIQ Score vs. Demographics: (a), (b) and (c) are from right index finger; (d), (e) and (f) are from right

thumb finger.

score were chosen to compute the curves. The purple curve in
the figure is the pooled ROC curve used for comparison. We can
observe that as LFIQ score increases, the model’s identifying ability
increases. Fig.6 and Fig.7 show the ROC curves based on Model B
considering demographics and also LFIQ score for index and thumb
finger, respectively. We can see that when the demographics are
constant, larger LFIQ scores lead to higher the model’s identifying
ability, which is consistent with the univariate model Model A.
Fig.6 shows that for the same LFIQ score and demographics, as
age increases the model has a much better identifying ability for
right index, while the increase in identifying ability for right thumb
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in Fig.7 is minimal. Fig.6 also shows that when LFIQ scores and
other demographics are adjusted, male subjects perform better in
identification than females; we can find similar behavior in Fig.7. In
Fig.6, it is observed that when the LFIQ score and other demograph-
ics are identical, the caucasian group has a better identifying ability
compared with the non-caucasian group for the right index. While
for the right thumb, as we can see in Fig.7, the non-caucasian group
performs better in identification. And also, Table 1 shows that Gen-
der has the most significant impact on the algorithm’s performance,
while Age has the little influence among the demographics.
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Figure 5: Covariate-specific ROC curves conditioned on LFIQ scores: (a) Right Index, (b) Right Thumb.
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Figure 6: Covariate-specific ROC curves conditioned on LFIQ scores and demographics for right index.

Fig.6 (c) and (d), shows although LFIQ is not able to provide in-
sights about gender differentials while incorporated as an additional
covariate into the proposed demographic-adjusted ROC regression,
it can contribute to improving the performance that was not ob-
tained in previous research based only on demographic covariates.
Specifically, Fig.6 (d) indicates better performance for males using
the quality-based adjusted-ROC with higher LFIQ values.
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5 CONCLUSIONS

In most cases, latent fingerprint images are obtained under non-
ideal acquisition conditions, resulting in partial or distorted impres-
sions, contaminated by background noise. Reliable latent quality
assessment can prevent any evidence of value from being discarded,;
contrarily, by rejecting poor quality fingerprints, an AFIS can re-
duce incidents of false accepts or false rejects. The identification
ability of an automatic matching algorithm is expected to increase
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Figure 7: Covariate-specific ROC curves conditioned on LFIQ scores and demographics for right thumb.

in the presence of a high-quality image, and it could be further
improved if the demographics of each subject can be obtained.

In this paper, we evaluate a regression model derived from match
scores in which both image quality and demographic covariates
are incorporated. The regression model includes the interaction
between covariates and group status (genuine or impostor) so that
all scores are analyzed in the same model. The covariate-adjusted
ROC curve is then obtained from the regression coefficients. Our
findings show that the proposed covariate-adjusted assessment
scheme conditioned on image quality and demographics is more
informative than the traditional ROC curve. Specifically, between
high quality and low quality, the impact of demographics on the
ROC curves changes. The accuracy increases as age increases for
the right index and right thumb. Also, the matching algorithm tends
to have higher accuracy in male subjects than females for both types
of fingers. The accuracy is higher for the Caucasian group than
the non-Caucasian group for the right index, but opposite for the
thumb.

In this paper, the match scores were extracted using Cao’s 2018
algorithm based on comparing minutiae and texture templates. A
more "tailored" analysis of the quality covariate can be obtained
by accessing the minutiae template using the matching algorithm.
Furthermore, the MinutiaeNet CNN-based minutiae extractor used
in this work was trained on the FVC 2002 dataset that does not
contain examples of dry fingers. Thus, the minutiae extracted from
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dry fingers in the WVU database are often not enough for being
processed through LFIQ.

In future work, we will: i) Enhance the robustness of the CNN-
based minutiae extractor to dry fingers by fine-tuning it on the
WVU database; ii) Access to the minutiae templates extracted by
the MSU identification system and apply LFIQ to those; and iii)
Enhance the LFIQ algorithm by fusing multi-layer of minutiae
maps from additional extractors for increased robustness in the
presence of poor image quality.
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